Advertisement

Numerical Solutions for Known Trajectories

  • Bram de Jager
  • Thijs van Keulen
  • John Kessels
Chapter
  • 2.4k Downloads
Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter deals with numerical solutions for the powersplit problem for hybrid vehicles using predefined power and velocity trajectories. Two numerical solution methods are pursued: an indirect method that uses the necessary conditions for optimality obtained with Pontryagin’s Minimum Principle, and a direct method using the Dynamic Programming algorithm which is based on Bellman’s Principle of Optimality. Both methods are illustrated with an example.

Keywords

Fuel Consumption Optimal Control Problem Dynamic Programming Algorithm Hybrid Vehicle Drive Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ascher UM, Mattheij RMM, Russell RD (1988) Numerical solution of boundary value problems for ordinary differential equations. Prentice-Hall, Englewood Cliffs zbMATHGoogle Scholar
  2. Bellman RE (1957) Dynamic programming. Princeton University Press, Princeton zbMATHGoogle Scholar
  3. Bertsekas DP (2000) Dynamic programming and optimal control. Athena Scientific, Belmont Google Scholar
  4. Bock H, Plitt K (1984) A multiple shooting algorithm for direct solution of optimal control problems. In: Proc 9th IFAC world Congress, Budapest, Hungary, pp 243–247 Google Scholar
  5. Boyce WE, Diprima RC (2003) Elementary differential equations and boundary value problems. Wiley, New York Google Scholar
  6. Brahma A, Guezennec Y, Rizzoni G (2000) Dynamic optimization of mechanical/electrical power flow in parallel hybrid electric vehicles. In: Proc internat symp advanced veh control, Ann Arbor, MI, USA Google Scholar
  7. Delprat S, Guerra TM, Rimaux J (2002) Optimal control of a parallel powertrain: from global optimization to real time control strategy. In: Proc IEEE veh technol conf. IEEE, Birmingham, pp 2082–2088 Google Scholar
  8. Filipi Z, Louca L, Daran B, Lin CC, Yildir U, Wu B, Kokkolaras M, Assanis D, Peng H, Papalambros P, Stein J, Szkubiel D, Chapp R (2004) Combined optimisation of design and power management of the hydraulic hybrid propulsion system for the 6×6 medium truck. Int J Heavy Veh Syst 11:372–402 CrossRefGoogle Scholar
  9. Gerdts M, Kunkel M (2008) A nonsmooth Newton’s method for discretized optimal control problems with state and control constraints. J Ind Manag Optim 4:247–270 MathSciNetzbMATHCrossRefGoogle Scholar
  10. Hofman T, Steinbuch M, Van Druten R, Serrarens A (2007) Rule-based energy management strategies for hybrid vehicles. Int J Elec Hybrid Veh 1:71–94 CrossRefGoogle Scholar
  11. Kessels JTBA (2007) Energy management for automotive power nets. PhD thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands Google Scholar
  12. van Keulen T (2011) Fuel optimal control of hybrid vehicles. PhD thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands Google Scholar
  13. Kirschbaum F, Back M, Hart M (2002) Determination of the fuel-optimal trajectory for a vehicle along a known route. In: Proc 15th IFAC world congress, Barcelona, Spain, pp 1–5 Google Scholar
  14. Koot M (2006) Energy management for vehicular electric power systems. PhD thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands Google Scholar
  15. Lin CC, Peng H, Grizzle JW, Kang JM (2003) Power management strategy for a parallel hybrid electric truck. IEEE Trans Control Syst Technol 11(6):839–849 CrossRefGoogle Scholar
  16. Loxton R, Teo K, Rehbock V, Yiu K (2009) Optimal control problems with a continuous inequality constraint on the state and the control. Automatica 45:2250–2257 MathSciNetzbMATHCrossRefGoogle Scholar
  17. Lukic SM, Emadi A (2004) Effects of drivetrain hybridization on fuel economy and dynamic performance of parallel hybrid electric vehicles. IEEE Trans Veh Technol 53(2):385–389 CrossRefGoogle Scholar
  18. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mischenko EF (1962) The mathematical theory of optimal processes. Wiley, New York zbMATHGoogle Scholar
  19. Quarteroni A, Sacco R, Saleri F (2000) Numerical mathematics. Texts in applied mathematics, vol 37. Springer, New York Google Scholar
  20. Rizzoni G, Guzzella L, Baumann BM (1999) Unified modeling of hybrid electric vehicle drivetrains. IEEE/ASME Trans Mechatron 4(3):246–257 CrossRefGoogle Scholar
  21. Rotenberg D, Vahidi A, Kolmanovsky I (2011) Ultracapacitor assisted powertrains: modeling, control, sizing, and the impact on fuel economy. IEEE Trans Control Syst Technol 19(3):576–589 CrossRefGoogle Scholar
  22. Sager S (2005) Numerical methods for mixed integer optimal control problems. PhD thesis, Universität Heidelberg, Heidelberg, Germany Google Scholar
  23. Sundström O, Ambühl D, Guzzella L (2010a) On implementation of dynamic programming for optimal control problems with final state constraints. Oil Gas Sci Technol Rev IFP 65:91–102 CrossRefGoogle Scholar
  24. Sundström O, Guzzella L, Soltic P (2010b) Torque-assist hybrid electric powertrain sizing: from optimal control towards a sizing law. IEEE Trans Control Syst Technol 18(4):837–849 CrossRefGoogle Scholar
  25. Tate ED, Boyd SP (2000) Finding ultimate limits of performance for hybrid electric vehicles. In: Hybrid electric vehicles (SP-1560), Costa Mesa, CA, SAE paper 2000-01-3099 Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Bram de Jager
    • 1
  • Thijs van Keulen
    • 2
  • John Kessels
    • 3
  1. 1.Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.DAF Trucks N.V.EindhovenThe Netherlands
  3. 3.Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations