Skip to main content

Data Representation and Modeling for Process Planning

  • Chapter
  • First Online:
Semantic Modeling and Interoperability in Product and Process Engineering

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

Process planning designs the details required for the manufacture of a product according to its design specifications and available manufacturing resources

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The symbols used in Eq. (5) can be found in the Notations list at the beginning of this chapter.

Abbreviations

AOR:

Annual operational requirement (h)

γ :

Annual preventive maintenance cost including servicing, inspection, calibration

C o :

Machine capital cost

C m :

Normalized machine cost based on machine capital cost and maintenance cost

d ij :

Dimensional tolerance between manufacturing faces f i and f j

EIDL:

End item design life

ET j :

Elapsed time of the jth preventive maintenance task for the ith failure mode

F i , F j :

ith and jth manufacturing features

f i , f j :

ith and jth manufacturing faces

m :

Number of relative tolerances

MTBF:

Mean time between failures

MTTR:

Mean time to repair for corrective maintenance

n :

Number of manufacturing faces in a part to be machined

P cm :

Corrective maintenance cost rate per hour, including payment and spare parts

P pm :

Preventive maintenance cost rate per hour, including payment and supplies

q :

Number of failure modes in a machine

R a :

Roughness average

r :

Number of preventive maintenance tasks in a failure mode

s i :

Surface roughness given to a manufacturing face f i

TF j :

Task frequency of the jth preventive maintenance task for the ith failure mode

References

  1. Ahmad N, Haque A, Hasin A (2001) Current trend in computer aided process planning. In: Proceedings of the 7th annual paper meeting and 2nd international conference, pp 81–92

    Google Scholar 

  2. Cao Q, Dowlatshahi S (2005) The impact of alignment between virtual enterprise and information technology on business performance in an agile manufacturing environment. J Oper Manag 23:531–550

    Article  Google Scholar 

  3. Chang T, Wysk RA, Wang H (1997) Computer-aided manufacturing, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  4. Chung C, Peng Q (2004) The selection of tools and machines on web-based manufacturing environments. Int J Mach Tools Manuf 44:315–324

    Google Scholar 

  5. Huang SH (1998) Automated set-up planning for lathe machining. Int J Manuf Syst 17:196–208

    Article  Google Scholar 

  6. Huang SH, Zhang H (1996) Tolerance analysis in set-up planning for rotational parts. Int J Manuf Syst 15:340–350

    Article  Google Scholar 

  7. Fernandes JK, Raja HV (2000) Incorporated tool selection system using object technology. Int J Mach Tools Manuf 40:1547–1555

    Article  Google Scholar 

  8. Kumar M, Rajotia S (2003) Integration of scheduling with computer aided process planning. J Mat Proc Technol 138:297–300

    Article  Google Scholar 

  9. Moon C, Seo Y (2005) Evolutionary algorithm for advanced process planning and scheduling in a multi-plant. Comput Ind Eng 48:311–325

    Article  Google Scholar 

  10. Moon C, Lee M, Seo Y, Lee YH (2002) Integrated machine tool selection and operation sequencing with capacity and precedence constraints using genetic algorithm. Comput Ind Eng 43:605–621

    Article  Google Scholar 

  11. Peng Q, Hall RF, Lister MP (2000) Application and evaluation of VR-based CAPP system. J Mat Proc Technol 107:153–159

    Article  Google Scholar 

  12. Pramet (2001) Lathe turning tool handbook, Czech Republic

    Google Scholar 

  13. Pramet (2001) Lathe turning tool catalogue, Czech Republic

    Google Scholar 

  14. Singh N (1996) System approach to computer-integrated design and manufacturing. Wiley, New York

    Google Scholar 

  15. Soromaz D, Khosknevis B (1997) Machine and tool constraint specification for integrated process planning system. In: Proceedings of the 7th industrial engineering research conference, pp 901–906

    Google Scholar 

  16. Usher MJ, Fernandes JK (1999) An object-oriented application of tool selection in dynamic process planning. Int J Prod Res 37:2879–2894

    Article  MATH  Google Scholar 

  17. Watson TR (1999) Data management, database and organization. Wiley, New York

    Google Scholar 

  18. Texas A&M University, (2012) Tolerances. Lecture notes (ENG105). http://edg.tamu.edu/PEOPLE/schreuders/ENDG105/Lecture%206.2%20Tolerances.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjin Peng .

Editor information

Editors and Affiliations

Appendices

Appendix 1 Database Models for Process Planning

1.1 Data Modeling for External Insert Holder

Figure 28

Fig. 28
figure 28

Data model external insert holder

1.2 Data Modeling of Insert for Turning

Figure 29

Fig. 29
figure 29

Data model of insert for turning

1.3 Data Modeling for Internal Insert Holder

Figure 30

Fig. 30
figure 30

Data model of internal insert holder

1.4 Data Modeling of Insert Holder for Threading

Figure 31

Fig. 31
figure 31

Data model of insert holder for threading

1.5 Data Modeling of Insert for Threading

Figure 32

Fig. 32
figure 32

Data model of insert for threading

1.6 Data Modeling of Turning Tool

Figure 33

Fig. 33
figure 33

Data model of turning tool

1.7 Data Modeling of Threading Tool

Figure 34

Fig. 34
figure 34

Data model of threading tool

1.8 Data Modeling of Numerical Control Lathe Machine

Figure 35

Fig. 35
figure 35

Data model of NC lathe machine

Appendix 2 Flowchart of Obtaining Geometry Entities from DXF Representations

Figure 36

Fig. 36
figure 36

Flowchart of obtaining geometry entities from DXF representations

Appendix 3 Decision-Making Diagrams for Feature Definition Based on Obtained Geometric Entities

3.1 Tangent Line Entity-Based Decision-Making Diagram for Feature Definition

Figure 37

Fig. 37
figure 37

Tangent line entity-based feature definition diagram

3.2 Circular Entity-Based Decision-Making Diagram for Feature Definition

Figure 38

Fig. 38
figure 38

Circular entity-based feature definition diagram

Appendix 4 Structure of ManufFeature Java Class

Appendix 5 Several Examples of Tolerance Factors Defined in this Chapter

Figure 39

Fig. 39
figure 39

Example tolerance factors

Appendix 6 Setup Planning and Sequencing Algorithms

6.1 Nomenclatures

n :

Number of manufacturing faces within a rotational component

\( f_{i} \) :

Manufacturing faces, \( i = 1,2, \cdots ,n \)

K 0 :

Set of manufacturing faces that exist on the stock

K i :

Set of manufacturing faces that exist after the work-piece was machined in the ith setup

X :

Set of manufacturing faces that are suitable for location or clamping

\( {\mathbf{X}}{(}{\mathbf{K}}_{i} {)} \) :

Set of manufacturing faces that are suitable for location or clamping after the work-piece has been machined in the ith setup

C :

Set of manufacturing faces that are cylindrical surfaces

P :

Set of manufacturing faces that are plane surfaces

O :

Set of manufacturing faces that are cone surfaces

A 1 :

Set of manufacturing faces that can be machined from the left side of the component

A 2 :

Set of manufacturing faces that can be machined from the right side of the component

A 3 :

Set of manufacturing faces that can be machined from either the right side or left side of the component

\( {\mathbf{T}} = [t_{ij} ] \) :

Adjacency matrix of the tolerance factor graph, \( i,j = 1,2, \ldots ,n \)

6.2 Mathematical Formulation

Set of manufacturing faces:

$$ {\mathbf{F}} = \left\{ {f_{1} ,f_{2} , \ldots ,f_{n} } \right\} $$

Stock geometry vector:

$$ \begin{aligned} {\mathbf{K}} &= \left\{ {k_{1} ,k_{2} , \ldots ,k_{n} } \right\}\\ k_{i} &= \left\{ {\begin{array}{*{20}l} 1 \hfill & {{\text{if}}\,{\text{face}}\,f_{i} \,{\text{exists}}\,{\text{on}}\,{\text{the}}\,{\text{stock}}} \hfill \\ 0 \hfill & {{\text{otherwise}}\quad i = 1,2, \ldots ,n} \hfill \\ \end{array} } \right. \end{aligned}$$

Fixturing vector:

$$ \begin{aligned} {\mathbf{X}} =& \left\{ {x_{1} ,x_{2} , \ldots ,x_{n} } \right\}\\ x_{i} =& \left\{ {\begin{array}{*{20}l} 1 \hfill & {{\text{if}}\;{\text{face}}\;f_{i} \;{\text{is}}\;{\text{suitable}}\;{\text{for}}\;{\text{locating}}\;{\text{or}}\;{\text{clamping}}} \hfill \\ 0 \hfill & {{\text{otherwise}}} \hfill \\ \end{array} } \right.\\ &\left( {i = 1,2, \ldots ,n} \right) \end{aligned}$$

Cylindrical vector:

$$ \begin{aligned} {\mathbf{C}} =& \left\{ {c_{1} ,c_{2} , \ldots ,c_{n} } \right\} \\ c_{i} =& \left\{ {\begin{array}{ll} 1 \hfill & {{\text{if}}\;{\text{face}}\;f_{i} \;{\text{is}}\;{\text{a}}\;{\text{cylindrical}}\;{\text{surface}}} \hfill \\ 0 \hfill & {{\text{otherwise}}} \\ \end{array} } \right.\\ &\left( {i = 1,2, \ldots ,n} \right) \end{aligned}$$

Plane vector:

$$ \begin{aligned} {\mathbf{P}} = &\left\{ {p_{1} ,p_{2} , \ldots ,p_{n} } \right\} \\ p_{i} =& \left\{ {\begin{array}{*{20}l} 1 \hfill & {{\text{if}}\;{\text{face}}\;f_{i} \;{\text{is}}\;{\text{a}}\;{\text{plane}}\;{\text{surface}}} \hfill \\ 0 \hfill & {{\text{otherwise}}} \hfill \\ \end{array} } \right.\\ &\left( {i = 1,2, \ldots ,n} \right) \end{aligned}$$

Cone vector:

$$ \begin{aligned} {\mathbf{O}} = &\left\{ {o_{1} ,o_{2} , \ldots ,o_{n} } \right\}\\ o_{i} = &\left\{ {\begin{array}{*{20}l} 1 \hfill & {{\text{if}}\;{\text{face}}\;f_{i} \;{\text{is}}\;{\text{a}}\;{\text{cone}}\;{\text{surface}}} \hfill \\ 0 \hfill & {{\text{otherwise}}} \hfill \\ \end{array} } \right.\\ &\left( {i = 1,2, \ldots ,n} \right) \end{aligned}$$

Tool approach vector:

$$ \begin{aligned} {\mathbf {A}} &= \left\{ {{a}_{1} ,{a}_{2} , \ldots ,{a}_{n} } \right\}^{\text{T}}\\ a_{i}& = \left\{ {\begin{array}{*{20}l} {[1,0]} \hfill & {{\text{if}}\;f_{i} \;{\text{can}}\;{\text{be}}\;{\text{machined}}\;{\text{only}}\;{\text{from}}\;{\text{the}}\;{\text{left}}\;{\text{side}}} \hfill \\ {[0,1]} \hfill & {{\text{if}}\;f_{i} \;{\text{can}}\;{\text{be}}\;{\text{machined}}\;{\text{only}}\;{\text{from}}\;{\text{the}}\;{\text{right}}\;{\text{side}}} \hfill \\ {[1,1]} \hfill & {{\text{if}}\;f_{i} \;{\text{can}}\;{\text{be}}\;{\text{machined}}\;{\text{either}}\;{\text{from}}\;{\text{the}}\;{\text{left}}\;{\text{side}}} \hfill \\ {} \hfill & {{\text{or}}\;{\text{from}}\;{\text{the}}\;{\text{right}}\;{\text{side}}} \hfill \\ \end{array} } \right. \end{aligned} $$

Tolerance factor (Relative tolerance):

$$ {\mathbf{T}} = [t_{ij} ],\quad t = \frac{1}{{\sum\nolimits_{i = 1}^{m} {\frac{1}{{t_{i} }}} }} $$

6.3 Setup Planning and Sequencing Algorithm

Appendix 7 Tolerance-Grade Conversion Table with Corresponding Machining Processes

7.1 IT-Numbers Based on Tolerance Coefficients

Grade

Tolerance coefficient

Grade

Tolerance coefficient

IT5

7

IT11

100

IT6

10

IT12

160

IT7

16

IT13

250

IT8

25

IT14

400

IT9

40

IT15

640

IT10

64

IT16

1,000

7.2 Machining Processes Corresponding to IT-Numbers

Appendix 8 Summary of Knowledge Tables for Calculating Machining Parameters

8.1 Material Classifications According to ISO 513

Material

Description

PI

Carbon steels non-alloyed

Carbon cast steels

Carbon tool steels

Low alloyed steels

PII

Alloyed and medium alloyed steels

Low and medium alloyed steels

Alloyed tool steels

Ferritic and martensitic corrosion-resistant steels

MI

Austenitic and Ferritic-Austenitic corrosion-resistant, heat-resistant, and creep-resistant steels

Nonmagnetic and abrasive resistant steels

MII

Special creep-resistant Ni, Co, Fe, and Ti-based alloys

MIII

Heat-treated steels with hardness 48–60 HRC

Hardened ingot-mould iron with hardness 55–85 HSH

KI

Grey cast iron alloyed and non-alloyed

Nodular cast iron

Malleable cast iron

KII

Non-ferrous metals

Al alloys

Cu alloys

8.2 Insert Grades According to ISO 513

Chemical vapour deposition (CVD)

Physical vapour deposition (PVD)

Uncoated

320P

210K

525P

530P

535P

816

836

S10

S20

HF7

HF10

TiC/TiCN/TiN Multi-layer coated

TiN coated

 

8.3 Basic Cutting Speed in Turning

M

Turning

Tool Materials/cutting speed,νc15 (m-min-1)

Type

Grade

320P

210 K

525P

530P

535P

816

S10

S20

836

HT7

HF10

PI

Fine turning

S

340

290

280

–

–

220

210

180

–

–

–

C,W

340

290

280

–

–

220

210

180

–

–

–

T

340

290

260

–

–

220

190

170

–

–

–

D

330

270

260

–

–

210

190

170

–

–

–

V

330

270

260

–

–

200

190

160

–

–

–

R

340

290

280

–

–

220

210

180

–

–

–

Finishing

S

300

250

245

240

–

–

–

–

–

–

–

C,W

300

250

245

240

–

–

–

–

–

–

 

T

290

240

230

225

–

–

–

–

–

–

–

D

280

240

230

225

–

–

–

–

–

–

–

V

290

230

220

210

–

–

–

–

–

–

–

R

300

250

245

240

–

–

–

–

–

–

–

Semi-roughing

S

235

195

180

175

–

–

–

–

–

–

–

C,W

235

195

180

175

–

–

–

–

–

–

–

T

225

185

170

165

–

–

–

–

–

–

–

D

225

185

170

165

–

–

–

–

–

–

–

V

215

175

160

155

–

–

–

–

–

–

–

R

235

195

180

175

–

–

–

–

–

–

–

Roughing

S

165

–

135

130

120

–

–

–

–

–

–

C,W

165

–

135

130

120

–

–

–

–

–

–

T

155

–

125

125

110

–

–

–

–

–

–

D

155

–

125

125

110

–

–

–

–

–

–

V

155

–

125

125

110

–

–

–

–

–

–

R

165

–

135

130

120

–

–

–

–

–

–

PII

Fine turning

S

260

225

210

–

–

165

155

135

–

–

–

C,W

260

225

210

–

–

165

155

135

–

–

–

T

260

225

195

–

–

165

140

125

–

–

–

D

240

210

195

–

–

155

140

125

–

–

–

V

240

210

195

–

–

150

130

115

–

–

–

R

260

225

210

–

–

165

155

135

–

–

–

Finishing

S

230

190

180

175

–

–

–

–

–

–

–

C, W

230

190

180

175

–

–

–

–

–

–

–

T

220

180

170

165

–

–

–

–

–

–

–

D

220

180

170

165

–

–

–

–

–

–

–

V

220

180

165

160

–

–

–

–

–

 

–

R

230

190

180

175

–

–

–

–

–

–

–

M

Turning

Tool Materials/cutting speed,νc15 (m-min-1)

Type

Grade

320P

210 K

525P

530P

535P

816

S10

S20

836

HF7

HF10

PII

Semi-roughing

S

175

145

135

130

–

–

–

–

–

–

–

C,W

175

145

135

130

–

–

–

–

–

–

–

T

170

140

130

125

–

–

–

–

–

–

–

D

170

140

130

125

–

–

–

–

–

–

–

V

160

130

120

115

–

–

–

–

–

–

–

R

175

145

135

130

–

–

–

–

–

–

–

Roughing

S

125

–

100

95

90

–

–

–

–

–

–

C,W

125

–

100

95

90

–

–

–

–

–

–

T

115

–

95

90

85

–

–

–

–

–

–

D

115

–

95

90

85

–

–

–

–

–

–

V

115

–

95

90

85

–

–

–

–

–

–

R

125

–

100

95

90

–

–

–

–

–

–

MI

Fine turning

S

230

–

–

180

–

100

–

–

80

60

45

C,W

230

–

–

180

–

100

–

–

80

60

45

T

210

–

–

170

–

85

–

–

80

60

45

D

210

–

–

170

–

85

–

–

70

55

40

V

200

–

–

160

–

80

–

–

70

55

40

R

230

–

–

180

–

100

–

–

80

60

45

Finishing

S

–

160

–

140

–

100

–

–

80

–

–

C,W

–

160

–

140

–

100

–

–

80

–

–

T

–

155

–

135

–

90

–

–

75

–

–

D

–

150

–

135

–

90

–

–

75

–

–

V

–

150

–

130

–

90

–

–

70

–

–

R

–

160

–

140

–

100

–

–

80

–

–

Semi-roughing

S

–

120

110

105

–

85

–

–

55

–

–

C,W

–

120

110

105

–

85

–

–

55

–

–

T

–

115

100

95

–

80

–

–

50

–

–

D

–

115

100

95

–

80

–

–

50

–

–

V

–

105

95

90

–

75

–

–

45

–

–

R

–

120

110

105

–

85

–

–

55

–

–

Roughing

S

–

–

–

80

–

50

–

–

43

–

–

C, W

–

–

–

80

–

50

–

–

43

–

–

T

–

–

–

75

–

45

–

–

38

–

–

D

–

–

–

75

–

45

–

–

38

–

–

V

–

–

–

75

–

45

–

–

38

–

–

R

–

–

–

80

–

50

–

–

43

–

–

M

Turning

Tool Materials/cutting speed,νc15 (m-min−1)

Type

Grade

320P

210 K

525P

530P

535P

816

S10

S20

836

HF7

HF10

MII

Finishing

S

–

–

–

–

–

50

–

–

45

40

35

C,W

–

–

–

–

–

50

–

–

45

40

35

T

–

–

–

–

–

45

–

–

40

35

30

D

–

–

–

–

–

45

–

–

40

35

30

V

–

–

–

–

–

40

–

–

35

30

25

R

–

–

–

–

–

50

–

–

45

40

35

Semi-roughing

S

–

–

–

–

–

35

–

–

30

27

20

c,w

–

–

–

–

–

35

–

–

30

27

20

T

–

–

–

–

–

30

–

–

25

20

18

D

–

–

–

–

–

30

–

–

25

20

18

V

–

–

–

–

–

25

–

–

20

15

12

R

–

–

–

–

–

35

–

–

30

27

20

Roughing

S

–

–

–

–

–

30

–

–

25

20

18

c,w

–

–

–

–

–

30

–

–

25

20

18

T

–

–

–

–

–

25

–

–

20

18

15

D

–

–

–

–

–

25

–

–

20

18

15

V

–

–

–

–

–

25

–

–

20

18

15

R

–

–

–

–

–

30

–

–

25

20

18

MIII

Finishing

S

–

50

–

–

–

50

–

–

35

45

30

c,w

–

50

–

–

–

50

–

–

35

45

30

T

–

45

–

–

–

45

–

–

35

40

20

D

–

45

–

–

–

45

–

–

35

40

20

V

–

40

–

–

–

40

–

–

30

35

20

R

–

50

–

–

–

50

–

–

35

45

30

Semi-roughing

S

–

35

–

–

–

35

–

–

22

30

18

c,w

–

35

–

–

–

35

–

–

22

30

18

T

–

30

–

–

–

30

–

–

18

25

15

D

–

30

–

–

–

30

–

–

18

25

15

V

–

25

–

–

–

25

–

–

15

20

10

R

–

35

–

–

–

35

–

–

22

30

18

KI

Fine turning

S

–

250

–

210

–

170

–

–

145

140

125

c,w

–

250

–

210

–

170

–

–

145

140

125

T

–

230

–

200

–

160

–

–

135

135

120

D

–

230

–

200

–

160

–

–

135

135

120

V

–

225

–

195

–

155

–

–

130

130

115

R

–

250

–

210

–

170

–

–

145

140

125

M

Turning

Tool Materials/cutting speed,νc15 (m-min−1)

Type

Grade

320P

210 K

525P

530P

535P

816

S10

S20

836

HF7

HF10

KI

Finishing

S

–

220

–

185

–

145

–

–

125

–

–

C, W

–

220

–

185

–

145

–

–

125

–

–

T

–

210

–

175

–

135

–

–

115

–

–

D

–

210

–

175

–

135

–

–

115

–

–

V

–

200

–

160

–

125

–

–

105

–

–

R

–

220

–

185

–

145

–

–

125

–

–

Semi-roughing

S

–

175

–

150

–

120

–

–

105

–

–

C,W

–

175

–

150

–

120

–

–

105

–

–

T

–

165

–

140

–

110

–

–

95

–

–

D

–

165

–

140

–

110

–

–

95

–

–

V

–

155

–

130

–

100

–

–

85

–

–

R

–

175

–

150

–

120

–

–

105

–

–

Roughing

S

–

130

–

115

–

90

–

–

80

–

–

C,W

–

130

–

115

–

90

–

–

80

–

–

T

–

120

–

105

–

80

–

–

70

–

–

D

–

120

–

105

–

80

–

–

70

–

–

R

–

130

–

115

–

90

–

–

80

–

–

KII (Al) HB 100

Finishing

S

–

–

–

–

–

800

–

–

–

680

–

C,W

–

–

–

–

–

800

–

–

–

680

–

T

–

–

–

–

–

800

–

–

–

680

–

D

–

–

–

–

–

750

–

–

–

600

–

V

–

–

–

–

–

700

–

–

–

550

–

R

–

–

–

–

–

800

–

–

–

680

–

Semi-roughing

S

–

–

–

–

–

600

–

–

–

480

–

C,W

–

–

–

–

–

600

–

–

–

480

–

T

–

–

–

–

–

600

–

–

–

480

–

D

–

–

–

–

–

550

–

–

–

450

–

V

–

–

–

–

–

500

–

–

–

400

–

R

–

–

–

–

–

600

–

–

–

480

–

Roughing

S

–

–

–

–

–

400

–

–

–

350

–

C,W

–

–

–

–

–

400

–

–

–

350

–

T

–

–

–

–

–

400

–

–

–

350

–

D

–

–

–

–

–

350

–

–

–

320

–

V

–

–

–

–

–

300

–

–

–

280

–

R

–

–

–

–

–

400

–

–

–

350

–

M

Turning

Tool Materials/cutting speed,νc15 (m-min−1)

Type

Grade

320P

210 K

525P

530P

535P

816

S10

S20

836

HF7

HF10

KI

Finishing

S

–

220

–

185

–

145

–

–

125

–

–

C, W

–

220

–

185

–

145

–

–

125

–

–

T

–

210

–

175

–

135

–

–

115

–

–

D

–

210

–

175

–

135

–

–

115

–

–

V

–

200

–

160

–

125

–

–

105

–

–

R

–

220

–

185

–

145

–

–

125

–

–

Semi-roughing

S

–

175

–

150

–

120

–

–

105

–

–

C,W

–

175

–

150

–

120

–

–

105

–

–

T

–

165

–

140

–

110

–

–

95

–

–

D

–

165

–

140

–

110

–

–

95

–

–

V

–

155

–

130

–

100

–

–

85

–

–

R

–

175

–

150

–

120

–

–

105

–

–

Roughing

S

–

130

–

115

–

90

–

–

80

–

–

C,W

–

130

–

115

–

90

–

–

80

–

–

T

–

120

–

105

–

80

–

–

70

–

–

D

–

120

–

105

–

80

–

–

70

–

–

R

–

130

–

115

–

90

–

–

80

–

–

KII (Al) HB 100

Finishing

S

–

–

–

–

–

800

–

–

–

680

–

C,W

–

–

–

–

–

800

–

–

–

680

–

T

–

–

–

–

–

800

–

–

–

680

–

D

–

–

–

–

–

750

–

–

–

600

–

V

–

–

–

–

–

700

–

–

–

550

–

R

–

–

–

–

–

800

–

–

–

680

–

Semi-roughing

S

–

–

–

–

–

600

–

–

–

480

–

C,W

–

–

–

–

–

600

–

–

–

480

–

T

–

–

–

–

–

600

–

–

–

480

–

D

–

–

–

–

–

550

–

–

–

450

–

V

–

–

–

–

–

500

–

–

–

400

–

R

–

–

–

–

–

600

–

–

–

480

–

Roughing

S

–

–

–

–

–

400

–

–

–

350

–

C,W

–

–

–

–

–

400

–

–

–

350

–

T

–

–

–

–

–

400

–

–

–

350

–

D

–

–

–

–

–

350

–

–

–

320

–

V

–

–

–

–

–

300

–

–

–

280

–

R

–

–

–

–

–

400

–

–

–

350

–

8.4 Feed Rate and Cutting Depth in Turning

Material

Feed rate, f r (mm-rev−1)

Cutting depth, a p (mm)

Fine turning

Finishing

Semi-roughing

Roughing

Fine turning

Finishing

Semi-roughing

Roughing

PI,II

0.05–0.1

0.1–0.2

0.2–0.4

0.4–0.8

0.2–1.0

0.8–2.0

1.5–4.0

4.0–10.0

MI

0.05–0.1

0.1–0.2

0.2–0.4

0.4–0.8

0.2–1.0

0.8–2.0

1.5–4.0

4.0–10.0

MII

–

0.1–0.2

0.2–0.3

0.3–0.4

–

0.05–1.5

1.5–2.5

2.5–3.5

MII

–

0.08–0.2

0.2–0.3

–

–

0.8–1.5′

1.5–2.5

–

KI

0.05–0.1

0.1–0.2

0.2–0.4

0.4–0.8

0.2–1.0

0.8–2.0

1.5–4.0

4.0–10.0

KII

–

0.1–0.2

0.2–0.4

0.4–0.8

–

0.8–2.0

1.5–4.0

4.0–10.0

8.5 Durability Correction Factor (P, M, K Types)

T min

K VT

T min

K VT

10

1.10

30

0.84

15

1.00

45

0.76

20

0.93

60

0.71

8.6 Work-Piece Hardness Correction Factor

8.6.1 P Type

HB

K VHB

HB

K VHB

120

1.18

220

0.90

140

1.12

240

0.86

160

1.05

260

0.82

180

1.00

280

0.80

200

0.95

300

0.77

8.6.2 M Type

HB

K VHB

HB

K VHB

<150

1.40

270–300

0.72

150–180

1.18

300–330

0.68

180–210

1.00

330–360

0.66

210–240

0.87

360–390

0.62

240–270

0.79

  

8.6.3 K Type

HB

K VHB

HB

K VHB

Grey/nodular/malleable cast iron

Heat resistant/special cast iron

160–200

1.26

200–300

0.50

200–240

1.00

300–360

0.40

240–280

0.80

360–450

0.30

280–330

0.60

  

8.7 Optimized Cutting Speed

$$ v_{C} = v_{C15} \times k_{\text{VT}} \times k_{\text{VHB}} $$
(6)

where

\( v_{C} \) :

Optimized cutting speed

\( v_{C15} \) :

Basic cutting speed

\( k_{\text{VHB}} \) :

Hardness correction factor

\( k_{\text{VT}} \) :

Durability correction factor

Appendix 9 Structure of Turning ToolOODB Java Class

Appendix 10 Calculation of Production Time and Cost

10.1 Production Time Factor, Tp

$$ T_{p} = T_{m} + T_{i} \times N_{t} + T_{\text{su}} \times N_{\text{su}} $$
(7)

where

\( T_{m} \) :

Machining time \( \left( {{L \mathord{\left/ {\vphantom {L {\left( {f_{r} \times N} \right)}}} \right. \kern-0pt} {\left( {f_{r} \times N} \right)}}} \right) \)

\( L \) :

Feature length

\( N \) :

Cutting speed in rpm

\( f_{r} \) :

Maximum permissible feed in mm/rev

\( T_{i} \) :

Time to perform an index

\( N_{t} \) :

Number of tools to machine a part

\( T_{\text{su}} \) :

Time to perform a set-up

\( N_{\text{su}} \) :

Number of tools that must be added to the machine’s magazine

10.2 Production Cost Factor, Ct

$$ C_{t} = C_{i} \times N_{t} + C_{\text{su}} \times N_{\text{su}} + \sum\limits_{i = 1}^{n} {C_{t}^{ (i )} } $$
(8)

where

\( C_{i} \) :

Cost of performing an index for a tool, \( (P \times T_{i} ) \)

\( C_{\text{su}} \) :

Cost of performing a set-up for a tool, \( (P \times T_{\text{su}} ) \)

\( N_{\text{su}} \) :

Number of tools that must be added to the machine’s magazine

\( C_{t}^{(i)} \) :

Cost of a tool i

n :

Number of tools required to perform operations

P :

Pay rate

10.3 Rank of Tool Alternatives, Score

$$ {\text{Score}} = \alpha \times C_{t} + \beta \times T_{p} $$
(9)

where

Weighting condition

α

β

Normal condition

0.5

0.5

Cost weighted condition

1.0

0.0

Production time weighted condition

0.0

1.0

Appendix 11 Knowledge Tables and Equation for Calculating the Maximum Power

11.1 Cutting Resistant and Feed Influence Exponent

Material group

\( P_{S 1} \)[MPa]

\( 1 - Z \)

PI

1,760

0.76

PII

1,770

0.75

MI

2,530

0.75

MII

Ni, Co alloys

2,895

0.76

Ti alloys

1,860

0.79

MIII

2,060

0.86

KI

Grey cast iron

1,120

0.78

Malleable cast iron

1,190

0.77

Nodular cast iron

1,430

0.76

KII

Cu alloys

710

0.76

Al alloys

508

0.78

Mg alloy

250

0.78

11.2 Coefficient, \( k_{\text{kr}} \)

Approach angle

\( k_{\text{kr}} \)

90

1.00

80

1.015

70

1.02

60

1.04

55

1.06

50

1.08

45

1.10

11.3 Required Motor Power, P

$$ P = \frac{{a_{p} \cdot f_{r}^{1 - Z} \cdot P_{S1} \cdot k_{\text{kr}} \cdot v_{C} }}{42,000}\left[ {\text{kW}} \right] $$
(10)

where

\( v_{C} \) :

Optimized cutting speed [m/min] [Refer to Eq. (6)]

\( f_{r} \) :

Feed rate [mm/rev]

\( a_{p} \) :

Cutting depth [mm]

\( 1 - Z \) :

Feed influence exponent for different materials machined

\( P_{S1} \) :

Specific cutting resistance (cutting force for feed f = 1 mm/rev at kr = 90)

\( k_{\text{kr}} \) :

Coefficient representing the approach angle kr influence

Appendix 12 Structure of MachineOODB Java Class

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Chung, C., Peng, Q. (2013). Data Representation and Modeling for Process Planning. In: Ma, Y. (eds) Semantic Modeling and Interoperability in Product and Process Engineering. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-4471-5073-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5073-2_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5072-5

  • Online ISBN: 978-1-4471-5073-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics