Skip to main content

Single-Site Photocatalysts: Photoactive Species Dispersed on Porous Matrixes

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Photocatalytic processes can take place at isolated photoactive centres dispersed on materials with high surface area and pore volume, such as zeolites and mesoporous materials. This special configuration is generally referred to as single-site photocatalyst and, because of its special properties, it should be differentiated from conventional photocatalysts based upon semiconductor materials. Characterisation techniques at atomic scale such as XANES, EXAFS, FTIR, UV-Vis or EPR allows the identification of these unique structures. In this chapter, the main characteristics of single-sites photocatalysts, aspects related to the synthesis routes, the catalytic properties and the benefits of their use in different applications will be analysed and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alba MD, Luan Z, Klinowski J (1996) Titanosilicate mesoporous molecular sieve MCM-41: synthesis and characterization. J Phys Chem 100(6):2178–2182

    Article  Google Scholar 

  • Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E (1985) Photoluminescence and photocatalytic activity of highly dispersed titanium oxide anchored onto porous Vycor glass. J Phys Chem 89(23):5017–5021

    Article  Google Scholar 

  • Anpo M, Higashimoto S, Matsuoka M, Zhanpeisov N, Shioya Y, Dzwigaj S, Che M (2003) The effect of the framework structure on the chemical properties of the vanadium oxide species incorporated within zeolites. Catal Today 78(1–4 SPEC.):211–217

    Google Scholar 

  • Anpo M, Kim TH, Matsuoka M (2009) The design of Ti-, V-, Cr-oxide single-site catalysts within zeolite frameworks and their photocatalytic reactivity for the decomposition of undesirable molecules-The role of their excited states and reaction mechanisms. Catal Today 142(3–4):114–124

    Article  Google Scholar 

  • Anpo M, Shioya Y, Yamashita H, Giamello E, Morterra C, Che M, Patterson HH, Webber S, Ouellette S (1994) Preparation and characterization of the Cu +/ZSM-5 catalyst and its reaction with NO under UV irradiation at 275 K. In situ photoluminescence, EPR, and FT-IR investigations. J Phys Chem 98(22):5744–5750

    Article  Google Scholar 

  • Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216(1–2):505–516

    Article  Google Scholar 

  • Anpo M, Thomas JM (2006) Single-site photocatalytic solids for the decomposition of undesirable molecules. Chem Commun 31:3273–3278

    Article  Google Scholar 

  • Anpo M, Zhang SG, Higashimoto S, Matsuoka M, Yamashita H, Ichihashi Y, Matsumura Y, Souma Y (1999) Characterization of the local structure of the vanadium silicalite (VS-2) catalyst and its photocatalytic reactivity for the decomposition of NO into N2 and O2. J Phys Chem B 103(43):9295–9301

    Article  Google Scholar 

  • Aramendía MA, Colmenares JC, López-Fernández S, Marinas A, Marinas JM, Urbano FJ (2007) Screening of different zeolite-based catalysts for gas-phase selective photooxidation of propan-2-ol. Catal Today 129(1–2 SPEC. ISS.):102–109

    Google Scholar 

  • Araújo RS, Costa FS, Maia DAS, Sant`Ana HB, Cavalcante CL (2007) Synthesis and characterization of Al- and Ti-MCM-41 materials: application to oxidation of anthracene. Braz J Chem Eng 24:135–141

    Google Scholar 

  • Auerbach SM, Carrado KA, Dutta PK (2003) Handbook of zeolite science and technology. Marcel Dekker, Inc., New York

    Google Scholar 

  • Ban T, Kondoh S, Ohya Y, Takahashi Y (1999) Degradation reaction of monoethanolamine using TS-1 zeolite as a photocatalyst. Phys Chem Phys 1(24):5745–5752

    Article  Google Scholar 

  • Barrer RM (1978) Zeolites and clay minerals as sorbents and molecular sieves. Academic Press (Orig. pub), London

    Google Scholar 

  • Blasco T, Corma A, Navarro MT, Pariente JP (1995) Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. J Catal 156(1):65–74

    Article  Google Scholar 

  • Breck DW (1974) Zeolite molecular sieves: structure, chemistry and use. Wiley, New York

    Google Scholar 

  • Casci JL (1994) The preparation and potential applications of ultra-large pore molecular sieves: a review. Stud Surf Sci Catal 85:329–356

    Google Scholar 

  • Corma A, Garcia H (2004) Zeolite-based photocatalysts. Chem Commun 10(13):1443–1459

    Article  Google Scholar 

  • Corrent S, Cosa G, Scaiano JC, Galletero MS, Alvaro M, Garcia H (2001) Intrazeolite photochemistry. 26. Photophysical properties of nanosized TiO2 clusters included in zeolites Y, β, and mordenite. Chem Mater 13(3):715–722

    Article  Google Scholar 

  • Danon A, Stair PC, Weitz E (2011) Mechanistic and adsorption studies of relevance to photocatalysts on titanium grafted mesoporous silicalites. Catal Lett 141(8):1057–1066

    Article  Google Scholar 

  • Davis ME, Lobo RF (1992) Zeolite and molecular sieve synthesis. Chem Mater 4(4):756–768

    Article  Google Scholar 

  • Davydov L, Reddy EP, France P, Smirniotis PG (2001) Transition-metal-substituted titania-loaded MCM-41 as photocatalysts for the degradation of aqueous organics in visible light. J Catal 203(1):157–167

    Article  Google Scholar 

  • Díaz I (2001) Sintesis, caracterización y propiedades catalíticas de materiales mesoporosos ordenados funcionalizados con grupos ácidos. PhD thesis. Universidad Autónoma de Madrid, Instituto de Catálisis y Petroleoquímica (CSIC), Madrid

    Google Scholar 

  • Domenech X, Peral J (1989) Cyanide photo-oxidation using a TiO2-coated zeolite. Chem Ind 606

    Google Scholar 

  • Dyer A (1988) An introduction to zeolite molecular sieves. Wiley, Bath

    Google Scholar 

  • García H, Roth HD (2002) Generation and reactions of organic radical cations in zeolites. Chem Rev 102(11):3947–4007

    Article  Google Scholar 

  • Hamdy MS, Berg O, Jansen JC, Maschmeyer T, Arafat A, Moulijn JA, Mul G (2006) Chromium-incorporated TUD-1 as a new visible light-sensitive photo-catalyst for selective oxidation of propane. Catal Today 117(1–3):337–342

    Article  Google Scholar 

  • Hari Prasad Rao PR, Ramaswamy AV, Ratnasamy P (1992) Synthesis and catalytic properties of crystalline, microporous vanadium silicates with MEL structure. J Catal 137(1):225–231

    Article  Google Scholar 

  • Hashimoto S (2003) Zeolite photochemistry: impact of zeolites on photochemistry and feedback from photochemistry to zeolite science. J Photochem Photobiol C 4(1):19–49

    Article  Google Scholar 

  • Hernandez-Alonso MD, Fresno F, Suarez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy & Environmental Science 2(12):1231–1257

    Google Scholar 

  • Hewer TLR, Suárez S, Coronado JM, Portela R, Avila P, Sanchez B (2009) Hybrid photocatalysts for the degradation of trichloroethylene in air. Catal Today 13(3–4):302–308

    Article  Google Scholar 

  • Higashimoto S, Matsuoka M, Yamashita H, Anpo M, Kitao O, Hidaka H, Che M, Giamello E (2000) Effect of the Si/Al ratio on the local structure of V Oxide/ZSM-5 catalysts prepared by solid-state reaction and their photocatalytic reactivity for the decomposition of NO in the absence and presence of propane. J Phys Chem B 104(44):10288–10292

    Article  Google Scholar 

  • Horiuchi Y, Yamashita H (2011) Design of mesoporous silica thin films containing single-site photocatalysts and their applications to superhydrophilic materials. Appl Catal A 400(1–2):1–8

    Google Scholar 

  • Hu Y, Martra G, Zhang J, Higashimoto S, Coluccia S, Anpo M (2006) Characterization of the local structures of Ti-MCM-41 and their photocatalytic reactivity for the decomposition of NO into N2 and O2. J Phys Chem B 110(4):1680–1685

    Article  Google Scholar 

  • Hu Y, Wada N, Matsuoka M, Anpo M (2004) Photo-assisted synthesis of V-MCM-41 under UV light irradiation. Catal Lett 97(1–2):49–52

    Article  Google Scholar 

  • Hu Y, Wada N, Tsujimaru K, Anpo M (2007) Photo-assisted synthesis of V and Ti-containing MCM-41 under UV light irradiation and their reactivity for the photooxidation of propane. Catal Today 120(2):139–144

    Article  Google Scholar 

  • Hwang JS, Chang JS, Park SE, Ikeue K, Anpo M (2005) Photoreduction of carbon dioxide on surface functionalized nanoporous catalysts. Top Catal 35(3–4):311–319

    Article  Google Scholar 

  • Ikeue K, Yamashita H, Anpo M, Takewaki T (2001) Photocatalytic reduction of CO2 with H2O on Ti-β zeolite photocatalysts: Effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105(35):8350–8355

    Article  Google Scholar 

  • Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci 2(7):745–758

    Article  Google Scholar 

  • Kalyanasundaram K (1987) Photochemistry in microheterogeneous systems. Academic Press, New York

    Google Scholar 

  • Kerc A, Bekbolet M, Saatci AM (2003) Sequential oxidation of humic acids by ozonation and photocatalysis. Ozone: Sci Eng 25(6):497–504

    Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712

    Google Scholar 

  • Lee GD, Jung SK, Jeong YJ, Park JH, Lim KT, Ahn BH, Hong SS (2003) Photocatalytic decomposition of 4-nitrophenol over titanium silicalite (TS-1) catalysts. Appl Catal A 239(1–2):197–208

    Google Scholar 

  • Lin W, Frei H (2005) Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(l)-MCM-41 silicate sieve. J Am Chem Soc 127(6):1610–1611

    Article  Google Scholar 

  • Lin W, Han H, Frei H (2004) CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. J Phys Chem B 108(47):18269–18273

    Article  Google Scholar 

  • Liu X, Iu K, Thomas JK (1993) Preparation, characterization and photoreactivity of titanium(IV) oxide encapsulated in zeolites. J Chem Soc Faraday Trans 89(11):1861–1865

    Article  Google Scholar 

  • López HH, Martínez A (2002) Selective photo-assisted oxidation of methane into formaldehyde on mesoporous VOx/SBA-15 catalysts. Catal Lett 83(1–2):37–41

    Article  Google Scholar 

  • Louis C, Che M, Anpo M (1993) Characterization and modelling of the Mo species in grafted Mo/SiO2 catalysts after redox thermal treatments. J Catal 141(2):453–464

    Article  Google Scholar 

  • Maschmeyer T, Rey F, Sankar G, Thomas JM (1995) Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 378(6553):159–162

    Article  Google Scholar 

  • Matsuoka M, Anpo M (2003a) Local structures, excited states, and photocatalytic reactivities of highly dispersed catalysts constructed within zeolites. J Photochem Photobiol C 3(3):225–252

    Article  Google Scholar 

  • Matsuoka M, Anpo M (2003b) Photoluminescence properties and photocatalytic reactivities of Cu+/zeolite and Ag+/zeolite catalysts prepared by the ion-exchange method. Curr Opin Solid State Mater Sci 7(6):451–459

    Article  Google Scholar 

  • Matsuoka M, Matsuda E, Tsuji K, Yamashita H, Anpo M (1996) The photocatalytic decomposition of nitric oxide on Ag+/ZSM-5 catalyst prepared by ion-exchange. J Mol Catal A: Chem 107(1–3):399–403

    Article  Google Scholar 

  • Morishita M, Shiraishi Y, Hirai T (2006) Ti-containing mesoporous organosilica as a photocatalyst for selective olefin epoxidation. J Phys Chem B 110(36):17898–17905

    Article  Google Scholar 

  • Mul G, Wasylenko W, Hamdy MS, Frei H (2008) Cyclohexene photo-oxidation over vanadia catalyst analyzed by time resolved ATR-FT-IR spectroscopy. Phys Chem Chem Phys 10(21):3131–3137

    Article  Google Scholar 

  • Park SE, Hwang JS, Chang JS, Kim JM, S., K, Chai HS (2003) Titania photocatalyst and its preparing method US 6566300B2

    Google Scholar 

  • Portela R, Canela MC, Sanchez B, Marques FC, Stumbo AM, Tessinari RF, Coronado JM, Suarez S (2008) H2S photodegradation by TiO2/M-MCM-41 (M = Cr or Ce): deactivation and by-product generation under UV-A and visible light. Appl Catal B 84(3–4):643–650

    Google Scholar 

  • Ramamurphy V (1991) Photochemistry in organized and constrained media. VCH, New York

    Google Scholar 

  • Reddy EP, Davydov L, Smirniotis P (2003) TiO2-loaded zeolites and mesoporous materials in the sonophotocatalytic decomposition of aqueous organic pollutants: The role of the support. Appl Catal B 42(1):1–11

    Article  Google Scholar 

  • Rey F, Sankar G, Maschmeyer T, Thomasl JM, Bell RG, Neville Greaves G (1996) Synthesis and characterisation by x-ray absorption spectroscopy of a suite of seven mesoporous catalysts containing metal ions in framework sites. Top Catal 3(1–2):121–134

    Article  Google Scholar 

  • Rodrigues S, Ranjit KT, Uma S, Martyanov IN, Klabunde KJ (2005) Visible-light photooxidation of trichloroethylene by Cr-Al-MCM-41. J Catal 230(1):158–165

    Article  Google Scholar 

  • Rodrigues S, Uma S, Martyanov IN, Klabunde KJ (2004) Visible light induced photocatalytic activity for degradation of acetaldehyde using transition metal incorporated A1-MCM-41 (aluminum doped silica zeolitic material). J Photochem Photobiol A 165(1–3):51–58

    Article  Google Scholar 

  • Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization or direct transitions in this indirect semiconductor? J Phys Chem 99(45):16646–16654

    Article  Google Scholar 

  • Shiraishi Y, Morishita M, Hirai T (2005) Acetonitrile-assisted highly selective photocatalytic epoxidation of olefins on Ti-containing silica with molecular oxygen. Chem Commun 48:5977–5979

    Article  Google Scholar 

  • Shiraishi Y, Ohara H, Hirai T (2008) Visible light-induced partial oxidation of cyclohexane on hydrophobically modified chromium-containing mesoporous silica with molecular oxygen. J Catal 254(2):365–373

    Article  Google Scholar 

  • Shironita S, Mori K, Ohmichi T, Eiji T, Hirotaro M, Yamashit H (2009) Synthesis of highly dispersed platinum nanoparticles on Ti-containing mesoporous silica using photo-assisted deposition. J Nanosci Nanotechnol 9(1):557–561

    Article  Google Scholar 

  • Shironita S, Mori K, Shimizu T, Ohmichi T, Mimura N, Yamashita H (2008) Preparation of nano-sized platinum metal catalyst using photo-assisted deposition method on mesoporous silica including single-site photocatalyst. Appl Surf Sci 254(23):7604–7607

    Article  Google Scholar 

  • Suárez S, Coronado JM, Portela R, Martín JC, Yates M, Ávila P, Sánchez B (2008) On the preparation of TiO2-sepiolite hybrid materials for the photocatalytic degradation of TCE: influence of TiO2 distribution in the mineralization. Environ Sci Technol 42(16):5892–5896

    Article  Google Scholar 

  • Takeuchi M, Sakai S, Ebrahimi A, Matsuoka M, Anpo M (2009) Application of highly functional Ti-oxide-based photocatalysts in clean technologies. Top Catal 52(12):1651–1659

    Article  Google Scholar 

  • Tanev PT, Chibwe M, Pinnavaia TJ (1994) Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 368(6469):321–323

    Article  Google Scholar 

  • Taramasso M, Perego G, Notari B (1983) Preparation of porous crystalline synthetic materials composed of silicon and titanium oxides. US 4410501

    Google Scholar 

  • Tel’biz G, Shwets A, Gun’ko V, Stoch J, Tamulajtis G, Kukhtarev N, J Weitkamp, H.G.K.H.P.a.W.H.l. 1994. Preparation and Properties Quantized Semiconductor Particles in Zeolites. In Stud Surf Sci Catal 84:1099–1106 (Elsevier)

    Google Scholar 

  • Thomas JM, Raja R, Lewis DW (2005) Single-site heterogeneous catalysts. Angew Chemie Int Ed 44(40):6456–6482

    Article  Google Scholar 

  • Ulagappan N, Frei H (2000) Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy. J Phys Chem A 104(33):7834–7839

    Article  Google Scholar 

  • van Bekkum H, Flanigen EM, Jansen JC (1991) Introduction to zeolite science and practice. Elsevier, Amsterdam

    Google Scholar 

  • Vartuli JC, Roth WJ, Beck JS, McCullen SB, Kresge CT (1998) Molecular sieves—science and technology. Springer, Berlin, p 97

    Google Scholar 

  • Wang J, Leeman H, Schoonheydt RA (2006) SiO2/Cr monolayers and formation of polyethylene films. J Colloid Interface Sci 299(2):713–718

    Article  Google Scholar 

  • Wang Z, Ci X, Dai H, Yin L, Shi H (2012) One-step synthesis of highly active Ti-containing Cr-modified MCM-48 mesoporous material and the photocatalytic performance for decomposition of H2S under visible light. Appl Surf Sci 258(20):8258–8263

    Article  Google Scholar 

  • Weitkamp J (2000) Zeolites and catalysis. Solid State Ionics 131(1–2):175–188

    Article  Google Scholar 

  • Wu C-G, Bein T (1996) Microwave synthesis of molecular sieve MCM-41. Chem Commun 8:925–926

    Article  Google Scholar 

  • Yamamoto K, Garcia SEB, Saito F, Muramatsu A (2006) Synthesis of titanosilicate zeolite from bulk titania via mechanochemical route. Chem Lett 35(6):570–571

    Article  Google Scholar 

  • Yamashita H, Chiyoda O, Masui Y, Ohshiro S, Kida K, Anpo M (2005) Design of visible light sensitive (Cr,Ti)-containing mesoporous silica photocatalyst using a photo-assisted deposition (PAD) method. In Stud Surf Sci Catal 158:43–50

    Google Scholar 

  • Yamashita H, Fujii Y, Ichihashi Y, Zhang SG, Ikeue K, Park DR, Koyano K, Tatsumi T, Anpo M (1998) Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal Today 45(1–4):221–227

    Article  Google Scholar 

  • Yamashita H, Horiuchi Y, Imaoka S, Nishio S, Nishiyama N, Mori K (2008a) Surface hydrophilic-hydrophobic property on transparent mesoporous silica thin films containing chromium oxide single-site photocatalyst. Catal Today 132(1–4):146–152

    Article  Google Scholar 

  • Yamashita H, Miura Y, Mori K, Ohmichi T, Sakata M, Mori H (2007) Synthesize of nano-sized Pd metal catalyst on Ti-containing zeolite using a photo-assisted deposition (PAD) method. Catal Lett 114(1–2):75–78

    Article  Google Scholar 

  • Yamashita H, Mori K (2007) Applications of single-site photocatalysts implanted within the silica matrixes of zeolite and mesoporous silica. Chem Lett 36(3):348–353

    Article  Google Scholar 

  • Yamashita H, Mori K, Shironita S, Horiuchi Y (2008b) Applications of single-site photocatalysts to the design of unique surface functional materials. Catal Surv Asia 12(2):88–100

    Article  Google Scholar 

  • Yamashita H, Nishio S, Katayama I, Nishiyama N, Fujii H (2006) Photo-induced super-hydrophilic property and photocatalysis on transparent Ti-containing mesoporous silica thin films. Catal Today 111(3–4):254–258

    Article  Google Scholar 

  • Yamashita H, Yoshizawa K, Ariyuki M, Higashimoto S, Anpo M, Che M (2001) Photocatalytic reactions on chromium containing mesoporous silica molecular sieves (Cr-HMS) under visible light irradiation: decomposition of NO and partial oxidation of propane Chem Commun 5:435–436

    Google Scholar 

  • Zama K, Fukuoka A, Sasaki Y, Inagaki S, Fukushima Y, Ichikawa M (2000) Selective hydroxylation of benzene to phenol by photocatalysis of molybdenum complexes grafted on mesoporous FSM-16. Catal Lett 66(4):251–253

    Article  Google Scholar 

  • Zhang J, Hu Y, Matsuoka M, Yamashita H, Minagawa M, Hidaka H, Anpo M (2001) Relationship between the local structures of titanium oxide photocatalysts and their reactivities in the decomposition of NO. J Phys Chem B 105(35):8395–8398

    Article  Google Scholar 

  • Zhang J, Minagawa M, Matsuoka M, Yamashita H, Anpo M (2000) Photocatalytic decomposition of NO on Ti-HMS mesoporous zeolite catalysts. Catal Lett 66(4):241–243

    Article  Google Scholar 

  • Zhang W, Frába M, Wang J, Tanev PT, Wong J, Pinnavaia TJ (1996) Mesoporous titanosilicate molecular sieves prepared at ambient temperature by electrostatic (S+I, S+XI+) and neutral (S°I°) assembly pathways: a comparison of physical properties and catalytic activity for peroxide oxidations. J Am Chem Soc 118(38):9164–9171

    Article  Google Scholar 

  • Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores. Science 279(5350):548–552

    Article  Google Scholar 

  • Zhao XS, Lu GQ, Millar GJ (1996) Advances in mesoporous molecular sieve MCM-41. Ind Eng Chem Res 35(7):2075–2090

    Article  Google Scholar 

  • Zhuang Y, Song HY, Li G, Xu YJ (2010) Ti-HMS as a single-site photocatalyst for the gas-phase degradation of benzene. Mater Lett 64(22):2491–2493

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Suárez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Suárez, S. (2013). Single-Site Photocatalysts: Photoactive Species Dispersed on Porous Matrixes. In: Coronado, J., Fresno, F., Hernández-Alonso, M., Portela, R. (eds) Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5061-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5061-9_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5060-2

  • Online ISBN: 978-1-4471-5061-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics