Single-Site Photocatalysts: Photoactive Species Dispersed on Porous Matrixes

  • Silvia Suárez
Part of the Green Energy and Technology book series (GREEN)


Photocatalytic processes can take place at isolated photoactive centres dispersed on materials with high surface area and pore volume, such as zeolites and mesoporous materials. This special configuration is generally referred to as single-site photocatalyst and, because of its special properties, it should be differentiated from conventional photocatalysts based upon semiconductor materials. Characterisation techniques at atomic scale such as XANES, EXAFS, FTIR, UV-Vis or EPR allows the identification of these unique structures. In this chapter, the main characteristics of single-sites photocatalysts, aspects related to the synthesis routes, the catalytic properties and the benefits of their use in different applications will be analysed and discussed.


Photocatalytic Activity Mesoporous Silica Photocatalytic Application Titanium Oxide Species Titanocene Dichloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alba MD, Luan Z, Klinowski J (1996) Titanosilicate mesoporous molecular sieve MCM-41: synthesis and characterization. J Phys Chem 100(6):2178–2182CrossRefGoogle Scholar
  2. Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E (1985) Photoluminescence and photocatalytic activity of highly dispersed titanium oxide anchored onto porous Vycor glass. J Phys Chem 89(23):5017–5021CrossRefGoogle Scholar
  3. Anpo M, Higashimoto S, Matsuoka M, Zhanpeisov N, Shioya Y, Dzwigaj S, Che M (2003) The effect of the framework structure on the chemical properties of the vanadium oxide species incorporated within zeolites. Catal Today 78(1–4 SPEC.):211–217Google Scholar
  4. Anpo M, Kim TH, Matsuoka M (2009) The design of Ti-, V-, Cr-oxide single-site catalysts within zeolite frameworks and their photocatalytic reactivity for the decomposition of undesirable molecules-The role of their excited states and reaction mechanisms. Catal Today 142(3–4):114–124CrossRefGoogle Scholar
  5. Anpo M, Shioya Y, Yamashita H, Giamello E, Morterra C, Che M, Patterson HH, Webber S, Ouellette S (1994) Preparation and characterization of the Cu +/ZSM-5 catalyst and its reaction with NO under UV irradiation at 275 K. In situ photoluminescence, EPR, and FT-IR investigations. J Phys Chem 98(22):5744–5750CrossRefGoogle Scholar
  6. Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216(1–2):505–516CrossRefGoogle Scholar
  7. Anpo M, Thomas JM (2006) Single-site photocatalytic solids for the decomposition of undesirable molecules. Chem Commun 31:3273–3278CrossRefGoogle Scholar
  8. Anpo M, Zhang SG, Higashimoto S, Matsuoka M, Yamashita H, Ichihashi Y, Matsumura Y, Souma Y (1999) Characterization of the local structure of the vanadium silicalite (VS-2) catalyst and its photocatalytic reactivity for the decomposition of NO into N2 and O2. J Phys Chem B 103(43):9295–9301CrossRefGoogle Scholar
  9. Aramendía MA, Colmenares JC, López-Fernández S, Marinas A, Marinas JM, Urbano FJ (2007) Screening of different zeolite-based catalysts for gas-phase selective photooxidation of propan-2-ol. Catal Today 129(1–2 SPEC. ISS.):102–109Google Scholar
  10. Araújo RS, Costa FS, Maia DAS, Sant`Ana HB, Cavalcante CL (2007) Synthesis and characterization of Al- and Ti-MCM-41 materials: application to oxidation of anthracene. Braz J Chem Eng 24:135–141Google Scholar
  11. Auerbach SM, Carrado KA, Dutta PK (2003) Handbook of zeolite science and technology. Marcel Dekker, Inc., New YorkGoogle Scholar
  12. Ban T, Kondoh S, Ohya Y, Takahashi Y (1999) Degradation reaction of monoethanolamine using TS-1 zeolite as a photocatalyst. Phys Chem Phys 1(24):5745–5752CrossRefGoogle Scholar
  13. Barrer RM (1978) Zeolites and clay minerals as sorbents and molecular sieves. Academic Press (Orig. pub), LondonGoogle Scholar
  14. Blasco T, Corma A, Navarro MT, Pariente JP (1995) Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. J Catal 156(1):65–74CrossRefGoogle Scholar
  15. Breck DW (1974) Zeolite molecular sieves: structure, chemistry and use. Wiley, New YorkGoogle Scholar
  16. Casci JL (1994) The preparation and potential applications of ultra-large pore molecular sieves: a review. Stud Surf Sci Catal 85:329–356Google Scholar
  17. Corma A, Garcia H (2004) Zeolite-based photocatalysts. Chem Commun 10(13):1443–1459CrossRefGoogle Scholar
  18. Corrent S, Cosa G, Scaiano JC, Galletero MS, Alvaro M, Garcia H (2001) Intrazeolite photochemistry. 26. Photophysical properties of nanosized TiO2 clusters included in zeolites Y, β, and mordenite. Chem Mater 13(3):715–722CrossRefGoogle Scholar
  19. Danon A, Stair PC, Weitz E (2011) Mechanistic and adsorption studies of relevance to photocatalysts on titanium grafted mesoporous silicalites. Catal Lett 141(8):1057–1066CrossRefGoogle Scholar
  20. Davis ME, Lobo RF (1992) Zeolite and molecular sieve synthesis. Chem Mater 4(4):756–768CrossRefGoogle Scholar
  21. Davydov L, Reddy EP, France P, Smirniotis PG (2001) Transition-metal-substituted titania-loaded MCM-41 as photocatalysts for the degradation of aqueous organics in visible light. J Catal 203(1):157–167CrossRefGoogle Scholar
  22. Díaz I (2001) Sintesis, caracterización y propiedades catalíticas de materiales mesoporosos ordenados funcionalizados con grupos ácidos. PhD thesis. Universidad Autónoma de Madrid, Instituto de Catálisis y Petroleoquímica (CSIC), MadridGoogle Scholar
  23. Domenech X, Peral J (1989) Cyanide photo-oxidation using a TiO2-coated zeolite. Chem Ind 606Google Scholar
  24. Dyer A (1988) An introduction to zeolite molecular sieves. Wiley, BathGoogle Scholar
  25. García H, Roth HD (2002) Generation and reactions of organic radical cations in zeolites. Chem Rev 102(11):3947–4007CrossRefGoogle Scholar
  26. Hamdy MS, Berg O, Jansen JC, Maschmeyer T, Arafat A, Moulijn JA, Mul G (2006) Chromium-incorporated TUD-1 as a new visible light-sensitive photo-catalyst for selective oxidation of propane. Catal Today 117(1–3):337–342CrossRefGoogle Scholar
  27. Hari Prasad Rao PR, Ramaswamy AV, Ratnasamy P (1992) Synthesis and catalytic properties of crystalline, microporous vanadium silicates with MEL structure. J Catal 137(1):225–231CrossRefGoogle Scholar
  28. Hashimoto S (2003) Zeolite photochemistry: impact of zeolites on photochemistry and feedback from photochemistry to zeolite science. J Photochem Photobiol C 4(1):19–49CrossRefGoogle Scholar
  29. Hernandez-Alonso MD, Fresno F, Suarez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy & Environmental Science 2(12):1231–1257Google Scholar
  30. Hewer TLR, Suárez S, Coronado JM, Portela R, Avila P, Sanchez B (2009) Hybrid photocatalysts for the degradation of trichloroethylene in air. Catal Today 13(3–4):302–308CrossRefGoogle Scholar
  31. Higashimoto S, Matsuoka M, Yamashita H, Anpo M, Kitao O, Hidaka H, Che M, Giamello E (2000) Effect of the Si/Al ratio on the local structure of V Oxide/ZSM-5 catalysts prepared by solid-state reaction and their photocatalytic reactivity for the decomposition of NO in the absence and presence of propane. J Phys Chem B 104(44):10288–10292CrossRefGoogle Scholar
  32. Horiuchi Y, Yamashita H (2011) Design of mesoporous silica thin films containing single-site photocatalysts and their applications to superhydrophilic materials. Appl Catal A 400(1–2):1–8Google Scholar
  33. Hu Y, Martra G, Zhang J, Higashimoto S, Coluccia S, Anpo M (2006) Characterization of the local structures of Ti-MCM-41 and their photocatalytic reactivity for the decomposition of NO into N2 and O2. J Phys Chem B 110(4):1680–1685CrossRefGoogle Scholar
  34. Hu Y, Wada N, Matsuoka M, Anpo M (2004) Photo-assisted synthesis of V-MCM-41 under UV light irradiation. Catal Lett 97(1–2):49–52CrossRefGoogle Scholar
  35. Hu Y, Wada N, Tsujimaru K, Anpo M (2007) Photo-assisted synthesis of V and Ti-containing MCM-41 under UV light irradiation and their reactivity for the photooxidation of propane. Catal Today 120(2):139–144CrossRefGoogle Scholar
  36. Hwang JS, Chang JS, Park SE, Ikeue K, Anpo M (2005) Photoreduction of carbon dioxide on surface functionalized nanoporous catalysts. Top Catal 35(3–4):311–319CrossRefGoogle Scholar
  37. Ikeue K, Yamashita H, Anpo M, Takewaki T (2001) Photocatalytic reduction of CO2 with H2O on Ti-β zeolite photocatalysts: Effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105(35):8350–8355CrossRefGoogle Scholar
  38. Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci 2(7):745–758CrossRefGoogle Scholar
  39. Kalyanasundaram K (1987) Photochemistry in microheterogeneous systems. Academic Press, New YorkGoogle Scholar
  40. Kerc A, Bekbolet M, Saatci AM (2003) Sequential oxidation of humic acids by ozonation and photocatalysis. Ozone: Sci Eng 25(6):497–504Google Scholar
  41. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712Google Scholar
  42. Lee GD, Jung SK, Jeong YJ, Park JH, Lim KT, Ahn BH, Hong SS (2003) Photocatalytic decomposition of 4-nitrophenol over titanium silicalite (TS-1) catalysts. Appl Catal A 239(1–2):197–208Google Scholar
  43. Lin W, Frei H (2005) Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(l)-MCM-41 silicate sieve. J Am Chem Soc 127(6):1610–1611CrossRefGoogle Scholar
  44. Lin W, Han H, Frei H (2004) CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. J Phys Chem B 108(47):18269–18273CrossRefGoogle Scholar
  45. Liu X, Iu K, Thomas JK (1993) Preparation, characterization and photoreactivity of titanium(IV) oxide encapsulated in zeolites. J Chem Soc Faraday Trans 89(11):1861–1865CrossRefGoogle Scholar
  46. López HH, Martínez A (2002) Selective photo-assisted oxidation of methane into formaldehyde on mesoporous VOx/SBA-15 catalysts. Catal Lett 83(1–2):37–41CrossRefGoogle Scholar
  47. Louis C, Che M, Anpo M (1993) Characterization and modelling of the Mo species in grafted Mo/SiO2 catalysts after redox thermal treatments. J Catal 141(2):453–464CrossRefGoogle Scholar
  48. Maschmeyer T, Rey F, Sankar G, Thomas JM (1995) Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 378(6553):159–162CrossRefGoogle Scholar
  49. Matsuoka M, Anpo M (2003a) Local structures, excited states, and photocatalytic reactivities of highly dispersed catalysts constructed within zeolites. J Photochem Photobiol C 3(3):225–252CrossRefGoogle Scholar
  50. Matsuoka M, Anpo M (2003b) Photoluminescence properties and photocatalytic reactivities of Cu+/zeolite and Ag+/zeolite catalysts prepared by the ion-exchange method. Curr Opin Solid State Mater Sci 7(6):451–459CrossRefGoogle Scholar
  51. Matsuoka M, Matsuda E, Tsuji K, Yamashita H, Anpo M (1996) The photocatalytic decomposition of nitric oxide on Ag+/ZSM-5 catalyst prepared by ion-exchange. J Mol Catal A: Chem 107(1–3):399–403CrossRefGoogle Scholar
  52. Morishita M, Shiraishi Y, Hirai T (2006) Ti-containing mesoporous organosilica as a photocatalyst for selective olefin epoxidation. J Phys Chem B 110(36):17898–17905CrossRefGoogle Scholar
  53. Mul G, Wasylenko W, Hamdy MS, Frei H (2008) Cyclohexene photo-oxidation over vanadia catalyst analyzed by time resolved ATR-FT-IR spectroscopy. Phys Chem Chem Phys 10(21):3131–3137CrossRefGoogle Scholar
  54. Park SE, Hwang JS, Chang JS, Kim JM, S., K, Chai HS (2003) Titania photocatalyst and its preparing method US 6566300B2Google Scholar
  55. Portela R, Canela MC, Sanchez B, Marques FC, Stumbo AM, Tessinari RF, Coronado JM, Suarez S (2008) H2S photodegradation by TiO2/M-MCM-41 (M = Cr or Ce): deactivation and by-product generation under UV-A and visible light. Appl Catal B 84(3–4):643–650Google Scholar
  56. Ramamurphy V (1991) Photochemistry in organized and constrained media. VCH, New YorkGoogle Scholar
  57. Reddy EP, Davydov L, Smirniotis P (2003) TiO2-loaded zeolites and mesoporous materials in the sonophotocatalytic decomposition of aqueous organic pollutants: The role of the support. Appl Catal B 42(1):1–11CrossRefGoogle Scholar
  58. Rey F, Sankar G, Maschmeyer T, Thomasl JM, Bell RG, Neville Greaves G (1996) Synthesis and characterisation by x-ray absorption spectroscopy of a suite of seven mesoporous catalysts containing metal ions in framework sites. Top Catal 3(1–2):121–134CrossRefGoogle Scholar
  59. Rodrigues S, Ranjit KT, Uma S, Martyanov IN, Klabunde KJ (2005) Visible-light photooxidation of trichloroethylene by Cr-Al-MCM-41. J Catal 230(1):158–165CrossRefGoogle Scholar
  60. Rodrigues S, Uma S, Martyanov IN, Klabunde KJ (2004) Visible light induced photocatalytic activity for degradation of acetaldehyde using transition metal incorporated A1-MCM-41 (aluminum doped silica zeolitic material). J Photochem Photobiol A 165(1–3):51–58CrossRefGoogle Scholar
  61. Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization or direct transitions in this indirect semiconductor? J Phys Chem 99(45):16646–16654CrossRefGoogle Scholar
  62. Shiraishi Y, Morishita M, Hirai T (2005) Acetonitrile-assisted highly selective photocatalytic epoxidation of olefins on Ti-containing silica with molecular oxygen. Chem Commun 48:5977–5979CrossRefGoogle Scholar
  63. Shiraishi Y, Ohara H, Hirai T (2008) Visible light-induced partial oxidation of cyclohexane on hydrophobically modified chromium-containing mesoporous silica with molecular oxygen. J Catal 254(2):365–373CrossRefGoogle Scholar
  64. Shironita S, Mori K, Ohmichi T, Eiji T, Hirotaro M, Yamashit H (2009) Synthesis of highly dispersed platinum nanoparticles on Ti-containing mesoporous silica using photo-assisted deposition. J Nanosci Nanotechnol 9(1):557–561CrossRefGoogle Scholar
  65. Shironita S, Mori K, Shimizu T, Ohmichi T, Mimura N, Yamashita H (2008) Preparation of nano-sized platinum metal catalyst using photo-assisted deposition method on mesoporous silica including single-site photocatalyst. Appl Surf Sci 254(23):7604–7607CrossRefGoogle Scholar
  66. Suárez S, Coronado JM, Portela R, Martín JC, Yates M, Ávila P, Sánchez B (2008) On the preparation of TiO2-sepiolite hybrid materials for the photocatalytic degradation of TCE: influence of TiO2 distribution in the mineralization. Environ Sci Technol 42(16):5892–5896CrossRefGoogle Scholar
  67. Takeuchi M, Sakai S, Ebrahimi A, Matsuoka M, Anpo M (2009) Application of highly functional Ti-oxide-based photocatalysts in clean technologies. Top Catal 52(12):1651–1659CrossRefGoogle Scholar
  68. Tanev PT, Chibwe M, Pinnavaia TJ (1994) Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 368(6469):321–323CrossRefGoogle Scholar
  69. Taramasso M, Perego G, Notari B (1983) Preparation of porous crystalline synthetic materials composed of silicon and titanium oxides. US 4410501Google Scholar
  70. Tel’biz G, Shwets A, Gun’ko V, Stoch J, Tamulajtis G, Kukhtarev N, J Weitkamp, H.G.K.H.P.a.W.H.l. 1994. Preparation and Properties Quantized Semiconductor Particles in Zeolites. In Stud Surf Sci Catal 84:1099–1106 (Elsevier)Google Scholar
  71. Thomas JM, Raja R, Lewis DW (2005) Single-site heterogeneous catalysts. Angew Chemie Int Ed 44(40):6456–6482CrossRefGoogle Scholar
  72. Ulagappan N, Frei H (2000) Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy. J Phys Chem A 104(33):7834–7839CrossRefGoogle Scholar
  73. van Bekkum H, Flanigen EM, Jansen JC (1991) Introduction to zeolite science and practice. Elsevier, AmsterdamGoogle Scholar
  74. Vartuli JC, Roth WJ, Beck JS, McCullen SB, Kresge CT (1998) Molecular sieves—science and technology. Springer, Berlin, p 97Google Scholar
  75. Wang J, Leeman H, Schoonheydt RA (2006) SiO2/Cr monolayers and formation of polyethylene films. J Colloid Interface Sci 299(2):713–718CrossRefGoogle Scholar
  76. Wang Z, Ci X, Dai H, Yin L, Shi H (2012) One-step synthesis of highly active Ti-containing Cr-modified MCM-48 mesoporous material and the photocatalytic performance for decomposition of H2S under visible light. Appl Surf Sci 258(20):8258–8263CrossRefGoogle Scholar
  77. Weitkamp J (2000) Zeolites and catalysis. Solid State Ionics 131(1–2):175–188CrossRefGoogle Scholar
  78. Wu C-G, Bein T (1996) Microwave synthesis of molecular sieve MCM-41. Chem Commun 8:925–926CrossRefGoogle Scholar
  79. Yamamoto K, Garcia SEB, Saito F, Muramatsu A (2006) Synthesis of titanosilicate zeolite from bulk titania via mechanochemical route. Chem Lett 35(6):570–571CrossRefGoogle Scholar
  80. Yamashita H, Chiyoda O, Masui Y, Ohshiro S, Kida K, Anpo M (2005) Design of visible light sensitive (Cr,Ti)-containing mesoporous silica photocatalyst using a photo-assisted deposition (PAD) method. In Stud Surf Sci Catal 158:43–50Google Scholar
  81. Yamashita H, Fujii Y, Ichihashi Y, Zhang SG, Ikeue K, Park DR, Koyano K, Tatsumi T, Anpo M (1998) Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal Today 45(1–4):221–227CrossRefGoogle Scholar
  82. Yamashita H, Horiuchi Y, Imaoka S, Nishio S, Nishiyama N, Mori K (2008a) Surface hydrophilic-hydrophobic property on transparent mesoporous silica thin films containing chromium oxide single-site photocatalyst. Catal Today 132(1–4):146–152CrossRefGoogle Scholar
  83. Yamashita H, Miura Y, Mori K, Ohmichi T, Sakata M, Mori H (2007) Synthesize of nano-sized Pd metal catalyst on Ti-containing zeolite using a photo-assisted deposition (PAD) method. Catal Lett 114(1–2):75–78CrossRefGoogle Scholar
  84. Yamashita H, Mori K (2007) Applications of single-site photocatalysts implanted within the silica matrixes of zeolite and mesoporous silica. Chem Lett 36(3):348–353CrossRefGoogle Scholar
  85. Yamashita H, Mori K, Shironita S, Horiuchi Y (2008b) Applications of single-site photocatalysts to the design of unique surface functional materials. Catal Surv Asia 12(2):88–100CrossRefGoogle Scholar
  86. Yamashita H, Nishio S, Katayama I, Nishiyama N, Fujii H (2006) Photo-induced super-hydrophilic property and photocatalysis on transparent Ti-containing mesoporous silica thin films. Catal Today 111(3–4):254–258CrossRefGoogle Scholar
  87. Yamashita H, Yoshizawa K, Ariyuki M, Higashimoto S, Anpo M, Che M (2001) Photocatalytic reactions on chromium containing mesoporous silica molecular sieves (Cr-HMS) under visible light irradiation: decomposition of NO and partial oxidation of propane Chem Commun 5:435–436Google Scholar
  88. Zama K, Fukuoka A, Sasaki Y, Inagaki S, Fukushima Y, Ichikawa M (2000) Selective hydroxylation of benzene to phenol by photocatalysis of molybdenum complexes grafted on mesoporous FSM-16. Catal Lett 66(4):251–253CrossRefGoogle Scholar
  89. Zhang J, Hu Y, Matsuoka M, Yamashita H, Minagawa M, Hidaka H, Anpo M (2001) Relationship between the local structures of titanium oxide photocatalysts and their reactivities in the decomposition of NO. J Phys Chem B 105(35):8395–8398CrossRefGoogle Scholar
  90. Zhang J, Minagawa M, Matsuoka M, Yamashita H, Anpo M (2000) Photocatalytic decomposition of NO on Ti-HMS mesoporous zeolite catalysts. Catal Lett 66(4):241–243CrossRefGoogle Scholar
  91. Zhang W, Frába M, Wang J, Tanev PT, Wong J, Pinnavaia TJ (1996) Mesoporous titanosilicate molecular sieves prepared at ambient temperature by electrostatic (S+I, S+XI+) and neutral (S°I°) assembly pathways: a comparison of physical properties and catalytic activity for peroxide oxidations. J Am Chem Soc 118(38):9164–9171CrossRefGoogle Scholar
  92. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores. Science 279(5350):548–552CrossRefGoogle Scholar
  93. Zhao XS, Lu GQ, Millar GJ (1996) Advances in mesoporous molecular sieve MCM-41. Ind Eng Chem Res 35(7):2075–2090CrossRefGoogle Scholar
  94. Zhuang Y, Song HY, Li G, Xu YJ (2010) Ti-HMS as a single-site photocatalyst for the gas-phase degradation of benzene. Mater Lett 64(22):2491–2493CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.División de Energías Renovables, AvdaGrupo de Tratamiento Fotocatalítico de Contaminantes en AireMadridSpain

Personalised recommendations