Decision Environment of Renewable Energy: The Case of Geothermal Energy

  • Alberto Gemelli
  • Adriano Mancini
  • Claudia Diamantini
  • Sauro Longhi
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


The exploitation of low temperature geothermal energy (LTGE) for thermoregulation is an expanding activity with various applications. The production of LTGE, although it is an efficient process, it has a cost benefit varying from one site to another depending, but not only, of natural factors. For local administrations and for those who invest in the provision of energy services, a regional model of the distribution of the LTGE resource is necessary for planning production, incentives, and investment. Also, the factors that influence the cost benefit of the resource must be studied in the spatial dimension. The construction of spatial models is a process requiring the acquisition of large amounts of data, the use of computer technology, and a substantial process design effort. In this chapter, the emphasis is placed on the support of Geographic Information System (GIS) in spatial modeling of LTGE cost benefit. The techniques for collecting spatial data on a large geographic scale are introduced. The technical and organizational aspects discussed delineate an information environment aimed to providing decision support in the regional development of LTGE.


Geographic Information System Renewable Energy Heat Pump Thermal Inertia Green Economy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Banks D (2008) An introduction to thermogeology. Blackwell, OxfordGoogle Scholar
  2. Bertani R (2012) Geothermal power generation in the world 2005–2010 update report. Geothermics vol 41:1–29CrossRefGoogle Scholar
  3. Biberacher M, Gadocha S and Zocher D (2008) GIS based model to optimize possible self-sustaining regions in the context of a renewable energy supply. In: International congress on environmental modelling and software. Barcelona, SpainGoogle Scholar
  4. Blum P, Campillo G, Muench W, Koelbel T (2010) CO2 savings of ground source heat pump systems-a regional analysis. Renew Energy 35:122–127CrossRefGoogle Scholar
  5. Chapuis S and Bernier M (2008) Étude préliminaire sur le stockage solaire saisonnier par puits géothermiques. In: Canadian solar buildings conference. Fredericton, Canada, pp 14–23Google Scholar
  6. Dickson MH and Fanelli M (2005) Geothermal energy: utilization and technology. Routledge, LondonGoogle Scholar
  7. Drury SA (2001) Image interpretation in geology, Routledge, LondonGoogle Scholar
  8. Eslami-Nejad P, Langlois A, Chapuis S, Bernier M, and Faraj W (2009) Solar heat injection into boreholes. In: Canadian solar buildings conference. Toronto, CanadaGoogle Scholar
  9. Gemelli A, Mancini A, Longhi S (2011) GIS-based energy-economic model of low temperature geothermal resources: a case study in the Italian Marche region. Renew Energy 36:2474–2483CrossRefGoogle Scholar
  10. Haehnlein S, Bayer P, Blum P (2010) International legal status of the use of shallow geothermal energy. Renew Sustain Energy Rev 14:2611–2625CrossRefGoogle Scholar
  11. Johnston IW, Narsilio GA, Colls S (2011) Emerging geothermal energy technologies. KSCE J Civil Eng 15(4):643–653CrossRefGoogle Scholar
  12. Kahle AB, Alley RE (1985) Calculation of thermal inertia from day-night measurements separated by days or weeks. Photogram Eng Remote Sens 51:73–75Google Scholar
  13. Killip G (2005) Emission factors and the future of fuel, environmental change institute. University of Oxford, OxfordGoogle Scholar
  14. Longhi S, Cavalletti M, Gemelli A, Kidiamboko S and Mancini A (2009) Low depth geothermal energy: a framework for the design and simulation of U and spiral probes. In: Advanced manufacturing systems for geothermal energy, energy resources. Ancona, ItalyGoogle Scholar
  15. Lund JW, Freeston DH and Boyd TL (2010) Direct utilization of geothermal energy 2010 worldwide review. In: World geothermal congress, international geothermal association. Bali, IndonesiaGoogle Scholar
  16. Menichetti M, Renzulli A, Piscaglia F and Blasi A (2009) Low enthalpy geo-thermal resources: underground temperatures and thermal conductivity, in Advanced manufacturing systems for geothermal energy. Energy Resources, Ancona, ItalyGoogle Scholar
  17. Mladenic D, Lavrac N, Bohanec M and Moyle S (2003) Data mining and decision support: integration and collaboration. Springer, New YorkGoogle Scholar
  18. Nasipuri P, Mitra DS, Majumdar TJ (2005) Generation of thermal inertia image over a part of Gujarat a new tool for geological mapping. Int J Appl Earth Obs Geoinf 7:129–139CrossRefGoogle Scholar
  19. Nasipuri P, Majumdar TJ, Mitra DS (2006) Study of high-resolution thermal inertia over western India oil fields using ASTER data. Acta Astronaut 58:270–278CrossRefGoogle Scholar
  20. Nyerges TL, Jankowski P (2009) Regional and urban GIS: a decision support approach. Guilford Press, New YorkGoogle Scholar
  21. Ondreka J, Rusgen MI, Stoberb I, Czurda K (2007) GIS-supported map-ping of shallow geothermal potential of representative areas in south-western Germany—Possibilities and limitations. Renew Energy 32(13):2186–2200CrossRefGoogle Scholar
  22. Sage AP (1991) Decision support system engineering, Wiley, NewYorkGoogle Scholar
  23. Signorelli S, Kohl T (2004) Regional ground surface temperature mapping from meteorological data. Glob Planet Change 40(3):267–284CrossRefGoogle Scholar
  24. Sudhakar R, Painuly JP (2004) Diffusion of renewable energy technologies: barriers and stakeholders’ perspectives. Renew Energy 29:1431–1447CrossRefGoogle Scholar
  25. Trillat V, Souyri B, and Achard G (2006) Numerical simulations of ground–coupled heat pumps combined with thermal solar collectors. In: Conference on passive and low energy architecture (PLEA2006). Geneva, SwitzerlandGoogle Scholar
  26. Van der Meer FD, Van der Werff HMA, Van Ruitenbeek FJA, Hecker CA, Bakker WH, Noomen MF, Van der Meijde M, Carranza EJM, de Smeth JB, Woldai T (2012) Multi––and hyperspectral geologic remote sensing: a review. Int J Appl Earth Obs Geoinformation 14(1):112–128CrossRefGoogle Scholar
  27. Verein Deutscher Ingenieure (2001) Thermische Nutzung des Untergrundes–Blatt 2:erdgekoppelte Warmepumpenanlagen. Beuth Verlag, VDI-Richtlinie 4640Google Scholar
  28. Vine E (2005) An international survey of the energy service company (ESCO) industry. Energy Policy 33(5):691–704CrossRefGoogle Scholar
  29. Watson K (1975) Geologic applications of thermal infrared images. In: Proceedings of IEEE, vol 63. Washington D.C., USA, pp 128–137Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Alberto Gemelli
    • 1
  • Adriano Mancini
    • 1
  • Claudia Diamantini
    • 2
  • Sauro Longhi
    • 2
  1. 1.AnconaItaly
  2. 2.Università Politecnica delle MarcheAnconaItaly

Personalised recommendations