Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSCONTROL))

Abstract

In this chapter, a rather straightforward procedure is presented to obtain navigation algorithms for a broad class of vehicle models, based on an adapted version of the passivity-based nonlinear MPC examined in [1]. The proposed PB/MPC approach for navigation planning can be seen as a generalization of the well-known DWA developed in [2–4]. Similar to the navigation based on the MPC/CLF [5], the PB/MPC optimization setup guarantees the task completion, which means the vehicle is being able to reach the goal position. However, whereas in the MPC/CLF navigation framework a control action that decreases the Lyapunov function has to be found in advance, which is rather difficult if not impossible for complex vehicle models, the PB/MPC navigation framework gives directly the control action as a consequence of the passivity-based control. Therefore, the PB/MPC can be easily adapted to a variety of vehicle and terrain models providing a straightforward procedure for the navigation of wide range of vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Raff, C. Ebenbauer, F. Allgoewer, Nonlinear Model Predictive Control: Passivity-based Approach (Springer, Berlin, 2007)

    Google Scholar 

  2. R. Simmons, The curvature-velocity method for local obstacle avoidance, in Proceedings of the IEEE International Conference on Robotics and Automation, 1996, pp. 3375–3382

    Google Scholar 

  3. D. Fox, W. Burgard, S. Thrun, The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4, 23–33 (1997)

    Article  Google Scholar 

  4. O. Brock, O. Khatib, High-speed navigation using the global dynamic window approach, in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1. 1999, pp. 341–346

    Google Scholar 

  5. P. Oegren, N.E. Leonard, A convergent dynamic window approach to obstacle avoidance. IEEE Trans. Robot. 21(2), 188–195 (2005)

    Article  Google Scholar 

  6. A. Tahirovic, G. Magnani, P. Rocco, Mobile robot navigation using passivity-based MPC, in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent, Mechatronics, July 2010, pp. 248–488

    Google Scholar 

  7. A. Tahirovic, G. Magnani, General framework for mobile robot navigation using passivity-based MPC. IEEE Trans. Autom. Control 56(1), (2011)

    Google Scholar 

  8. A. Tahirovic, G. Magnani, Passivity-based model predictive control for mobile robot navigation planning in rough terrains, in Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 2010

    Google Scholar 

  9. J. Latombe, Robot Motion Planning (Kluwer, Boston, 1991)

    Google Scholar 

  10. J. Barraquand, B. Langlois, J. Latombe, Numerical potential field techniques for robot path planning. IEEE Trans. Syst. Man Cybern. 22(2), 224–241 (1992)

    Article  MathSciNet  Google Scholar 

  11. E. Rimon, D.E. Koditschek, Exact robot navigation using artificial potential fields. IEEE Trans. Robot. Autom. 8, 501–518 (Oct. 1992)

    Google Scholar 

  12. O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  13. T.M. Howard, A. Kelly, Optimal rough terrain trajectory generation for wheeled mobile robots. Int. J. Robot. Res. 26(2), 141–166 (2007)

    Article  Google Scholar 

  14. K. Iagnemma, S. Shimoda, Z. Shiller, Near-optimal navigation of high speed mobile robots, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2. 2008, pp. 22—26

    Google Scholar 

  15. Z. Shiller, Y.-R. Gwo, Dynamic motion planning of autonomous vehicles. IEEE Trans. Robot. Autom. 7(2), 241–249 (1991)

    Article  Google Scholar 

  16. Z. Shiller, Obstacle traversal for space exploration, in Proceedings of the IEEE International Conference on Robotics and Automation, 2000

    Google Scholar 

  17. S. Singh, R. Simmons, T. Smith, A. Stentz, V. Verma, A. Yahja, K. Schwehr, Recent progress in local and global traversability for planetary rovers, in Proceedings of the IEEE International Conference on Robotics and Automation, 2000

    Google Scholar 

  18. H. Seraji, Fuzzy traversability index: a new concept for terrain-based navigation. J. Robot. Syst. 17(2), 75–91 (2000)

    Article  MATH  Google Scholar 

  19. A. Howard, H. Seraji, Vision-based terrain characterization and traversability assessment. J. Robot. Syst. 18(10), 577–587 (2001)

    Article  MATH  Google Scholar 

  20. K. Iagnemma, S. Dubowsky, Mobile Robots in Rough Terrain: Estimation, Motion Planning and Control with Application to Planetary Rovers (Springer, Berlin, 2004)

    Google Scholar 

  21. A. Tahirovic, G. Magnani, A roughness-based RRT for mobile robot navigation planning, in Proceedings of the 18th IFAC World Congress, 2011, pp. 5944–5949

    Google Scholar 

  22. A. Tahirovic, G. Magnani, Y. Kuwata, An approximate of the cost-to-go map on rough terrains, in Proceedings of the IEEE International Conference on Mechatronics, 2013

    Google Scholar 

  23. A. Stentz, The focussed D* algorithm for real-time replanning, in Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1652–1659, 1995

    Google Scholar 

  24. S. Koenig, M. Likhachev, Fast replanning for navigation in unknown terrain. IEEE Trans. Robot. 21(3), 354–363 (2005)

    Article  Google Scholar 

  25. A. Lacaze, Y. Moscovitz, N. Declaris, K. Murphy, Path planning for autonomous vehicle driving over rough terrain, in Proceedings of the IEEE International Symposium on Intelligent Control (Gaithersburg, MD, 1998), pp. 50–55

    Google Scholar 

  26. M. Pivtoraiko, R.A. Knepper, A. Kelly, Differentially constrained mobile robot motion planning in state lattices. J. Field Robot. 26(3), 308–333 (2009)

    Article  Google Scholar 

  27. T.M. Howard, C.J. Green, A. Kelly, D. Ferguson, State space sampling of feasible motions for high-performance mobile robot navigation in complex environments. J. Field Robot. 25(10), 325–345 (2008)

    Article  Google Scholar 

  28. Y. Yoon, J. Shin, H.J. Kim, Y. Park, S. Sastry, Model-predictive active steering and obstacle avoidance for autonomous ground vehicles. Control Eng. Pract. 17(7), 741–750 (2009)

    Article  Google Scholar 

  29. H.K. Khalil, Nonlinear Systems, 3rd edn. (Prentice Hall, Upper Saddle River, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Tahirovic .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Tahirovic, A., Magnani, G. (2013). PB/MPC Navigation Planner. In: Passivity-Based Model Predictive Control for Mobile Vehicle Motion Planning. SpringerBriefs in Electrical and Computer Engineering(). Springer, London. https://doi.org/10.1007/978-1-4471-5049-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5049-7_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5048-0

  • Online ISBN: 978-1-4471-5049-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics