Skip to main content

Real-Time Approaches to Computational Economics: Self Adaptive Economic Systems

  • Chapter
  • First Online:
Economic Modeling Using Artificial Intelligence Methods

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

  • 2761 Accesses

Abstract

This chapter examines modelling of financial movement direction with Learn++ by forecasting the daily movement direction of the Dow Jones. The Learn++ approach is implemented using a multi-layer perceptron as a weak-learner, where this weak-learner is improved by making use of the Learn++ algorithm. In addition, the Learn++ algorithm introduces the concept of on-line incremental learning, which means that the proposed framework is able to adapt to new data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almaksour A, Anquetil E (2009) Fast incremental learning strategy driven by confusion reject for on-line handwriting recognition. In: Proceedings of the international conference on document analysis and recognition, Barcelona, 2009, pp 81–85

    Google Scholar 

  • Austin PC, Lee DS, Steyerberg EW, Tu JV (2012) Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods? Biom J 54:657–673

    Article  MathSciNet  MATH  Google Scholar 

  • Baraldi P, Razavi-Far R, Zio E (2011) Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational conditions. Reliab Eng Syst Saf 96:480–488

    Article  Google Scholar 

  • Bishop C (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  • Bouchachia A (2011) Incremental learning with multi-level adaptation. Neurocomputing 74:1785–1799

    Article  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

    MathSciNet  MATH  Google Scholar 

  • Carpenter G, Grossberg S, Marhuzon N, Reynolds J, Rosen D (1992) ARTMAP: a neural network architecture for incremental learning supervised learning of analog multi-dimensional maps. IEEE Trans Neural Netw 3:678–713

    Article  Google Scholar 

  • Chen Y, Wong ML (2011) Optimizing stacking ensemble by an ant colony optimization approach. In: Proceedings of the genetic and evolutionary computation conference, Dublin, 2011, pp 7–8

    Google Scholar 

  • Cho Y, Seong J-K, Jeong Y, Shin SY (2012) Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 59:2217–2230

    Article  Google Scholar 

  • Ebrahimpour R, Babakhani K, AbbaszadehArani SAA, Masoudnia S (2012) Epileptic seizure detection using a neural network ensemble method and wavelet transform. Neural Netw World 22:291–310

    Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Erdem Z, Polikar R, Gurgen F, Yumusak N (2005) Reducing the effect of out-voting problem in ensemble based incremental support vector machines. Lect Note Comput Sci 3697:607–612

    Google Scholar 

  • Folly KA (2011) Performance evaluation of power system stabilizers based on population-based incremental learning (PBIL) algorithm. Int J Electr Power Energy Syst 33:1279–1287

    Article  Google Scholar 

  • Freund Y, Schapire R (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119–139

    Article  MathSciNet  MATH  Google Scholar 

  • Fu L, Hsu HH, Principe JC (1996) Incremental backpropagation networks. IEEE Trans Neural Netw 7:757–761

    Article  Google Scholar 

  • Ghimire B, Rogan J, Galiano V, Panday P, Neeti N (2012) An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA. GISci Remote Sens 49:623–643

    Article  Google Scholar 

  • Halawani SM, Ahmad A (2012) Ensemble methods for prediction of Parkinson disease. Lect Note Comput Sci 7435:516–521

    Article  Google Scholar 

  • Hannah LA, Dunson DB (2012) Ensemble methods for convex regression with applications to geometric programming based circuit design. In: Proceedings of the 29th international conference on machine learning, Edinburgh, 2012, pp 369–376

    Google Scholar 

  • Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 12:993–1001

    Article  Google Scholar 

  • Higgins CH, Goodman RM (1991) Incremental learning for rule based neural network. In: Proceedings of the international joint conference on neural networks, Seattle, 1991, pp 875–880

    Google Scholar 

  • Huang D, Yi Z, Pu X (2009) A new incremental PCA algorithm with application to visual learning and recognition. Neural Process Lett 30:171–185

    Article  Google Scholar 

  • Hulley G, Marwala T (2007) Genetic algorithm based incremental learning for optimal weight and classifier selection. In: Proceedings of the AIP conference, Sydney, Australia, pp 258–267

    Google Scholar 

  • Jordan MJ, Jacobs RA (1994) Hierarchical mixtures of experts and the EM algorithm. Neural Comput 6:181–214

    Article  Google Scholar 

  • Khreich W, Granger E, Miri A, Sabourin RA (2009) A comparison of techniques for on-line incremental learning of HMM parameters in anomaly detection. In: Proceedings of the IEEE symposium on computational intelligence for security and defense applications, Ottawa,2009, pp 1–8

    Google Scholar 

  • Khreich W, Granger E, Miri A, Sabourin R (2012) A survey of techniques for incremental learning of HMM parameters. Inf Sci 197:105–130

    Article  Google Scholar 

  • Kuncheva LI, Bezdek JC, Duin R (2001) Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognit 34:299–314

    Article  MATH  Google Scholar 

  • La L, Guo Q, Yang D, Cao Q (2012) Multiclass boosting with adaptive group-based k-NN and its application in text categorization. Math Probl Eng 2012:1--24

    Google Scholar 

  • Leung M, Daouk H, Chen A (2000) Forecasting stock indices: a comparison of classification and level estimation models. Int J Forecast 16:173–190

    Article  Google Scholar 

  • Li H, Shen C (2008) Boosting the minimum margin: LP boost vs. ada boost. In: Proceedings of the digital image computing: techniques and applications, Canberra, Australia, pp 533–539

    Google Scholar 

  • Li H, Zhang T, Qiu R, Ma L (2012) Grammar-based semi-supervised incremental learning in automatic speech recognition and labeling. Energy Procedia 17:1843–1849

    Article  Google Scholar 

  • Lienemann K, Plötz T, Fink GA (2009) Stacking for ensembles of local experts in metabonomic applications. Lect Note Comput Sci 5519:498–508

    Article  Google Scholar 

  • Louzada F, Ara A (2012) Bagging k-dependence probabilistic networks: an alternative powerful fraud detection tool. Expert Syst Appl 39:11583–11592

    Article  Google Scholar 

  • Lu G-F, Zou J, Wang Y (2012) Incremental learning of complete linear discriminant analysis for face recognition. Knowl-Based Syst 31:19–27

    Article  Google Scholar 

  • Lunga D, Marwala T (2006a) Time series analysis using fractal theory and on-line ensemble classifiers. Lect Note Comput Sci 4304:312–321

    Article  Google Scholar 

  • Lunga D, Marwala T (2006b) On-line forecasting of stock market movement direction using the improved incremental algorithm. Lect Note Comput Sci 4234:440–449

    Article  Google Scholar 

  • Martínez-Rego D, Pérez-Sánchez B, Fontenla-Romero O, Alonso-Betanzos A (2011) A robust incremental learning method for non-stationary environments. Neurocomputing 74:1800–1808

    Article  Google Scholar 

  • Marwala T (2007) Computational intelligence for modelling complex systems. Research India Publications, New Delhi

    Google Scholar 

  • Marwala T (2009) Computational intelligence for missing data imputation, estimation and management: knowledge optimization techniques. IGI Global Publications, New York

    Book  Google Scholar 

  • Marwala T (2012) Condition monitoring using computational intelligence methods. Springer, London

    Book  Google Scholar 

  • Marwala T, Lagazio M (2011) Militarized conflict modeling using computational intelligence techniques. Springer, London

    Book  Google Scholar 

  • McCloskey M, Cohen N (1989) Catastrophic interference connectionist networks: the sequential learning problem. Psychol Learn Motiv 24:109–164

    Article  Google Scholar 

  • McNelis PD (2005) Neural networks in finance: gaining the predictive edge in the market. Elsevier Academic Press, Oxford

    Google Scholar 

  • Mohamed S, Rubin D, Marwala T (2006) Multi-class protein sequence classification using fuzzy ARTMAP. In: Proceedings of the IEEE international conference on systems, man, and cybernetics, Taipei, 2006, pp 1676–1681

    Google Scholar 

  • Mohamed S, Rubin D, Marwala T (2007) Incremental learning for classification of protein sequences. In: Proceedings of the IEEE international joint conference on neural networks, Orlando, 2007, pp 19–24

    Google Scholar 

  • Muhlbaier M, Topalis A, Polikar R (2004) Learn++.MT: a new approach to incremental learning. In: Proceedings of the 5th international workshop on multiple classifier systems, Cagliari, 2004, pp 52–61

    Google Scholar 

  • Nelwamondo FV, Marwala T (2007) Handling missing data from heteroskedastic and nonstationary data. Lect Note Comput Sci 4491:1293–1302

    Article  Google Scholar 

  • Nock R, Piro P, Nielsen F, Bel Haj Ali W, Barlaud M (2012) Boosting k-NN for categorization of natural scenes. Int J Comput Vis 100:294–314

    Article  MathSciNet  MATH  Google Scholar 

  • Okada S, Kobayashi Y, Ishibashi S, Nishida T (2009) Incremental learning of gestures for human-robot interaction. AI Soc 25:155–168

    Article  Google Scholar 

  • Perez M, Featherston J, Marwala T, Scott LE, Stevens DM (2010) A population-based incremental learning approach to microarray gene expression feature selection. In: Proceedings of the IEEE 26th convention of electrical and electronic engineers, Eilat, 2010, pp 10–14

    Google Scholar 

  • Polikar R (2000) Algorithms for enhancing pattern separability, feature selection and incremental learning with applications to gas sensing electronic noise systems. Ph.D. thesis, Iowa State University, Ames

    Google Scholar 

  • Polikar R (2006) Ensemble based systems in decision making. IEEE Circuit Syst Mag 6:21–45

    Article  Google Scholar 

  • Polikar R, Byorick J, Krause S, Marino A, Moreton M (2002) Learn++: a classifier independent incremental learning algorithm for supervised neural network. Proc Int Jt Conf Neural Netw 2:1742–1747

    Google Scholar 

  • Polikar R, Udpa L, Udpa S, Honavar V (2004) An incremental learning algorithm with confidence estimation for automated identification of NDE signals. Trans Ultrason Ferroelectr Freq Control 51:990–1001

    Article  Google Scholar 

  • Rogova G (1994) Combining the results of several neural network classifiers. Neural Netw 7:777–781

    Article  Google Scholar 

  • Schapire RE (1990) The strength of weak learnability. Mach Learn 5:197–227

    Google Scholar 

  • Schapire RE, Freund Y, Bartlett P, Lee WS (1998) Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat 26:51–1686

    MathSciNet  Google Scholar 

  • Sulzmann J-N, Fürnkranz J (2011) Rule stacking: an approach for compressing an ensemble of rule sets into a single classifier. Lect Note Comput Sci 6926:323–334

    Article  Google Scholar 

  • Syarif I, Zaluska E, Prugel-Bennett A, Wills G (2012) Application of bagging, boosting and stacking to intrusion detection. Lect Note Comput Sci 7376:593–602

    Article  Google Scholar 

  • Tang J, Shi Y, Zhou L, Zhang W (2008) Analog circuit fault diagnosis using Ada boost and SVM. In: Proceedings of the international conference on communications, circuits and systems, Fujian, China, pp 1184–1187

    Google Scholar 

  • Tangruamsub S, Takada K, Hasegawa O (2012) A fast on-line incremental learning method for object detection and pose classification using voting and combined appearance modelling. Signal Process Image Commun 27:75–82

    Article  Google Scholar 

  • Tong J, Hu BX, Yang J (2012) Data assimilation methods for estimating a heterogeneous conductivity field by assimilating transient solute transport data via ensemble Kalman filter. Hydrol Process. doi:10.1002/hyp.9523

    Google Scholar 

  • Topalov AV, Oniz Y, Kayacan E, Kaynak O (2011) Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm. Neurocomputing 74:1883–1893

    Article  Google Scholar 

  • Tscherepanow M, Kortkamp M, Kammer M (2011) A hierarchical ART network for the stable incremental learning of topological structures and associations from noisy data. Neural Netw 24:906–916

    Google Scholar 

  • Vasquez D, Fraichard T, Laugier C (2009) Growing hidden markov models: an incremental tool for learning and predicting human and vehicle motion. Int J Robot Res 28:1486–1506

    Article  Google Scholar 

  • Vilakazi B (2007) Machine condition monitoring using artificial intelligence: the incremental learning and multi-agent system approach. M.Sc. thesis, University of the Witwatersrand, Johannesburg

    Google Scholar 

  • Vilakazi CB, Marwala T (2007a) Incremental learning and its application to bushing condition monitoring. Lect Note Comput Sci 4491:1237–1246

    Article  Google Scholar 

  • Vilakazi CB, Marwala T (2007b) On-line incremental learning for high voltage bushing condition monitoring. In: Proceedings of the international joint conference on neural networks, Orlando, 2007, pp 2521–2526

    Google Scholar 

  • Vilakazi B, Marwala T, Mautla R, Moloto E (2006) On-line bushing condition monitoring using computational intelligence. WSEAS Trans Power Syst 1:280–287

    Google Scholar 

  • Wolpert DH (1992) Stacked generalization. Neural Netw 5:241–259

    Article  Google Scholar 

  • Xia H, Wu P, Hoi SCH, Jin R (2012) Boosting multi-kernel locality-sensitive hashing for scalable image retrieval. In: Proceedings of the international ACM SIGIR conference on research and development in information retrieval, Portland, Oregon, pp 55–64

    Google Scholar 

  • Yamaguchi K, Yamaguchi N, Ishii N (1999) Incremental learning method with retrieving of interfered patterns. IEEE Trans Neural Netw 10:1351–1365

    Article  Google Scholar 

  • Yang S, Wang M, Jiao L (2011) Extreme and incremental learning based single-hidden-layer regularization ridgelet network. Neurocomputing 74:1809–1814

    Article  Google Scholar 

  • Zhang Y-X, Wang X-D, Yao X, Bi K (2012) HRRP recognition for polarization radar based on bagging-SVM dynamic ensemble. Syst Eng Electron 34:1366–1371

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Marwala, T. (2013). Real-Time Approaches to Computational Economics: Self Adaptive Economic Systems. In: Economic Modeling Using Artificial Intelligence Methods. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-4471-5010-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5010-7_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5009-1

  • Online ISBN: 978-1-4471-5010-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics