Skip to main content

Creating Illusion Effects Using Transformation Optics

  • Chapter
  • First Online:
  • 4503 Accesses

Abstract

In this chapter, we show how to create illusion effects using metamaterials. We will see that a passive metamaterial device can be designed such that when it is placed next to or covering an object, the scattered fields of the object and the device together will be changed to be exactly the same as the scattered fields due to another object. Simply put, we can turn an object optically and stereoscopically into another one. For instance, an apple can be made to look like a banana. If we make a measurement of the electromagnetic fields at the designed working frequency, there is no way to distinguish optically between the true object and the illusion. The theory on realizing such an optical illusion effect is called illusion optics. Invisibility can be regarded as a special case of the illusion effect, in which the object is turned optically to a volume of free space. A metamaterial does not need to encircle the object to create the illusion effect. Furthermore, if we use this method to implement invisibility, the “cloaked” object will not be blinded by the cloak as in the cases of normal invisibility cloaks. The design of illusion optics is based on the replacement of optical spaces, where the material parameters are determined using the technique of transformation optics. One unique route to achieve illusion effects is to employ the idea of “complementary media”. Materials designed using “complementary media” typically contain negative refractive index components, and no extreme constitutive parameters values are needed. Slight variations of the scheme can create a variety of interesting illusion effects. For example, we can make an object appear larger in size, rotated, or located at other positions. Illusion optics may lead to some plausible applications, such as small or reduced form-factor optical devices that exhibit the same optical functions as much larger instruments or even “super-absorbers” that can absorb significantly more than their geometric cross-sections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References:

  1. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ε and μ. Sov Phys Usp 10:509

    Article  Google Scholar 

  2. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47:2075

    Article  Google Scholar 

  3. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77

    Article  Google Scholar 

  4. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184

    Article  Google Scholar 

  5. Yao J, Liu ZW, Liu YM, Wang Y, Sun G, Bartal G, Stacy AM, Zhang X (2008) Optical negative refraction in bulk metamaterials of nanowires. Science 321:930

    Article  Google Scholar 

  6. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376

    Article  Google Scholar 

  7. Xiao SM, Drachev VP, Kildishev AV, Ni XJ, Chettiar UK, Yuan HK, Shalaev VM (2010) Loss-free and active optical negative-index metamaterials. Nature 466:735

    Article  Google Scholar 

  8. Leonhardt U (2006) Optical conformal mapping. Science 312:1777

    Article  MathSciNet  MATH  Google Scholar 

  9. Pendry JB, Shurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780

    Article  MathSciNet  MATH  Google Scholar 

  10. Leonhardt U, Philbin TG (2006) General relativity in electrical engineering. New J Phys 8:247

    Article  Google Scholar 

  11. Milton GW, Nicorovici NAP, McPhedran RC, Cherednichenko K, Jacob Z (2008) Solutions in folded geometries, and associated cloaking due to anomalous resonance. New J Phys 10:115021

    Article  Google Scholar 

  12. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966

    Article  Google Scholar 

  13. Pendry JB, Ramakrishna SA (2002) Near field lenses in two dimensions. J Phys: Condens Matter 14:8463

    Article  Google Scholar 

  14. Pendry JB, Ramakrishna SA (2002) Focusing light using negative refraction. J Phys: Condens Matter 15:6345

    Article  Google Scholar 

  15. Greenleaf A, Lassas M, Uhlmann G (2003) Anisotropic conductivities that cannot be detected by EIT. Physiol Meas 24:413–419

    Article  Google Scholar 

  16. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977

    Article  Google Scholar 

  17. Li J, Pendry JB (2008) Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 101:203901

    Article  Google Scholar 

  18. Zhang BL, Luo Y, Liu XG, Barbastathis G (2011) Macroscopic invisibility cloak for visible light. Phys Rev Lett 106:033901

    Article  Google Scholar 

  19. Chen XZ, Luo Y, Zhang JJ, Jiang K, Pendry JB, Zhang S (2011) Macroscopic invisibility cloaking of visible light. Nat Comm 2:176

    Article  Google Scholar 

  20. Lai Y, Chen HY, Zhang ZQ, Chan CT (2009) Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys Rev Lett 102:093901

    Article  Google Scholar 

  21. Milton GW, Nicorovici NAP (2006) On the cloaking effects associated with anomalous localized resonance. Proc R Soc A 462:3027–3059

    Article  MathSciNet  MATH  Google Scholar 

  22. Dong JW, Zheng HH, Lai Y, Wang HZ, Chan CT (2011) Metamaterial slab as a lens, a cloak, or an intermediate. Phys Rev B 83:115124

    Article  Google Scholar 

  23. Lai Y, Ng J, Chen HY, Zhang ZQ, Chan CT (2010) Illusion optics. Front Phys China 5:308–318

    Article  Google Scholar 

  24. Lai Y, Ng J, Chen HY, Han DZ, Xiao JJ, Zhang ZQ, Chan CT (2009) Illusion optics: the optical transformation of an object into another object. Phys Rev Lett 102:253902

    Article  Google Scholar 

  25. Rahm M, Schurig D, Roberts DA, Cummer SA, Smith DR, Pendry JB (2008) Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photo Nano Funda Appl 6:87–95

    Article  Google Scholar 

  26. Zhu XF, Liang B, Kan WW, Zhou XY, Cheng JC (2011) Acoustic cloaking by a superlens with single-negative materials. Phys Rev Lett 106:014301

    Article  Google Scholar 

  27. Alu A, Engheta N (2005) Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 72:016623

    Article  Google Scholar 

  28. Jiang WX, Ma HF, Cheng Q, Cui TJ (2010) Illusion media: generating virtual objects using realizable metamaterials. Appl Phys Lett 96:121910

    Article  Google Scholar 

  29. Yang T, Chen HY, Luo XD, Ma HR (2008) Superscatterer: enhancement of scattering with complementary media. Opt Express 16:18545

    Article  Google Scholar 

  30. Chen HY, Chan CT, Liu SY, Lin ZF (2009) A simple route to a tunable electromagnetic gateway. New J Phys 11:083102

    Google Scholar 

  31. Ng J, Chen HY, Chan CT (2009) Metamaterial frequency-selective superabsorber. Opt Lett 34:644

    Article  Google Scholar 

  32. Wu KD, Wang GP (2010) Hiding objects and creating illusions above a carpet filter using a Fourier optics approach. Opt Express 18:19894

    Article  Google Scholar 

  33. Chen HY, Chan CT (2007) Transformation media that rotate electromagnetic fields. App Phys Lett 90:241105

    Article  Google Scholar 

  34. Chen HY, Zhang XH, Luo XD, Ma HR, Chan CT (2008) Reshaping the perfect electrical conductor cylinder arbitrarily. New J Phys 10:113016

    Article  Google Scholar 

  35. Jiang WX, Cui TJ (2010) Moving targets virtually via composite optical transformation. Opt Express 18:5161

    Article  Google Scholar 

  36. Jiang WX, Ma HF, Cheng Q, Cui TJ (2010) Virtual conversion from metal object to dielectric object using metamaterials. Opt Express 18:11276

    Article  Google Scholar 

  37. Chen HY, Luo XD, Ma HR, Chan CT (2008) The anti-cloak. Opt Express 16:14603

    Article  Google Scholar 

  38. Liang ZX, Lin XL, Jiang XY (2010) Remote control of light behavior by transformation optical devices. Opt Express 18:2049

    Article  Google Scholar 

  39. Liu R, Ji C, Mock JJ, Chin JY, Cui TJ, Smith DR (2009) Broadband ground-plane cloak. Science 323:366

    Article  Google Scholar 

  40. Valentine J, Li J, Zentgraf T, Bartal G, Zhang X (2009) An optical cloak made of dielectrics. Nat Mater 8:568

    Article  Google Scholar 

  41. Gabrielli LH, Cardenas J, Poitras CB, Lipson M (2009) Silicon nanostructure cloak operating at optical frequencies. Nat Photon 3:461

    Article  Google Scholar 

  42. Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M (2010) Three-dimensional invisibility cloak at optical wavelengths. Science 328:337

    Article  Google Scholar 

  43. Ma HF, Cui TJ (2010) Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Comm 1:21

    Google Scholar 

  44. Li C, Meng XK, Liu X, Li F, Fang GY, Chen HY, Chan CT (2010) Experimental realization of a circuit-based broadband illusion-optics analogue. Phys Rev Lett 105:233906

    Article  Google Scholar 

  45. Jiang WX, Cui TJ (2011) Radar illusion via metamaterials. Phys Rev E 83:026601

    Article  Google Scholar 

  46. Li C, Liu X, Liu GG, Li F, Fang GY (2011) Experimental demonstration of illusion optics with “external cloaking” effects. Appl Phys Lett 84:084104

    Article  Google Scholar 

  47. Chen HY, Chan CT, Sheng P (2010) Transformation optics and metamaterials. Nat Mater 9:387

    Article  Google Scholar 

  48. Kundtz NB, Smith DR, Pendry JB (2011) Electromagnetic design with transformation optics. Proc IEEE 99:1622

    Article  Google Scholar 

  49. Wegener M, Linden S (2010) Shaping optical space with metamaterials. Phys Today 63:32

    Article  Google Scholar 

  50. Liu YM, Zhang X (2011) Metamaterials: a Frontier of science and technology. Chem Soc Rev 40:2494

    Article  Google Scholar 

  51. Pendry JB (2009) All smoke and metamaterials. Nature 460:579

    Article  Google Scholar 

  52. Leonhardt U, Tyc T (2009) Broadband invisibility by non-euclidean cloaking. Science 323:110

    Article  Google Scholar 

  53. Genov DA, Zhang S, Zhang X (2009) Mimicking celestial mechanics in metamaterials. Nat Phys 5:687–692

    Article  Google Scholar 

  54. Greenleaf A, Kurylev Y, Lassas M, Uhlmann G (2007) Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys Rev Lett 99:183901

    Article  Google Scholar 

  55. Milton GW, Briane M, Willis JR (2006) On cloaking for elasticity and physical equations with a transformation invariant form. New J Phys 8:248

    Article  Google Scholar 

  56. Chen HY, Chan CT (2010) Acoustic cloaking and transformation acoustics. J Phys Conden Phys 43:113001

    Article  MathSciNet  Google Scholar 

  57. Zhang S, Xia CG, Fang N (2011) Broadband acoustic cloak for ultrasound waves. Phys Rev Lett 106:024301

    Article  Google Scholar 

  58. Popa BI, Zigoneanu L, Cummer SA (2011) Experimental acoustic ground cloak in air. Phys Rev Lett 106:253901

    Article  Google Scholar 

  59. Farhat M, Guenneau S, Enoch S (2009) Ultrabroadband elastic cloaking in thin plates. Phys Rev Lett 103:024301

    Article  Google Scholar 

  60. Stenger N, Wilhelm M, Wegener M (2012) Experiments on elastic cloaking in thin plates. Phys Rev Lett 108:014301

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Hong Kong CRF grant HKUST2/CRF/11G. LY is supported by the State Key Program for Basic Research of China (No. 2012CB921501), National Natural Science Foundation of China (No. 11104196), Natural Science Foundation of Jiangsu Province (Grant No. BK2011277), Program for New Century Excellent Talents in University (NCET), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Lai, Y., Ng, J., Chan, C.T. (2014). Creating Illusion Effects Using Transformation Optics . In: Werner, D., Kwon, DH. (eds) Transformation Electromagnetics and Metamaterials. Springer, London. https://doi.org/10.1007/978-1-4471-4996-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4996-5_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4995-8

  • Online ISBN: 978-1-4471-4996-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics