Skip to main content

Design for Simplified Materials in Transformation Electromagnetics

  • Chapter
  • First Online:
Transformation Electromagnetics and Metamaterials
  • 4489 Accesses

Abstract

In this chapter we review some of the common methods used to simplify the design of transformation electromagnetics devices. One of the major challenges is the complexity of the needed material parameters, and a variety of analytical, numerical, and approximation techniques can be used to create devices that still perform well, although not ideally, but are much easier to fabricate. All of these techniques are a manifestation of the general concept that transformation electromagnetics designs are relatively robust to material perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  2. Schurig D, Pendry JB, Smith DR (2006) Calculation of material properties and ray tracing in transformation media. Opt Express 14:9794–9804

    Article  Google Scholar 

  3. Padilla WJ, Basov DN, Smith DR (2006) Negative refractive index metamaterials. Mater Today 9:28

    Google Scholar 

  4. Caloz C (2009) Perspectives on EM metamaterials. Mater Today 12(3):12–20

    Article  Google Scholar 

  5. Liu R, Li C, Mock JJ, Chin jY, Cui TJ, Smith DR (2009) Broadband ground-plane cloak. Science 323:366

    Article  Google Scholar 

  6. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292(5514):77–79

    Article  Google Scholar 

  7. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from Conductors and Enhanced Nonlinear Phenomena. IEEE Trans Microw Theory Tech 47(11):2075–2084

    Article  Google Scholar 

  8. Güney DÖ, Koschny T, Soukoulis CM (2009) Reducing ohmic losses in metamaterials by geometric tailoring. Phys Rev B 80(12):125129. doi:10.1103/PhysRevB.80.125129

    Article  Google Scholar 

  9. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  Google Scholar 

  10. Cai W, Chettiar UK, Kildishev AV, Shalaev VM, Milton GW (2007) Nonmagnetic cloak with minimized scattering. Appl Phys Lett 91:111105

    Article  Google Scholar 

  11. Zhang L, Yan M, Qiu M (2008) The effect of transformation order on the invisibility performance of a practical cylindrical cloak. J Opt A 10(9):095001. doi:10.1088/1464-4258/10/9/095001

    Article  Google Scholar 

  12. Leonhardt U (2006) Optical conformal mapping. Science 312:1777–1780

    Article  MathSciNet  MATH  Google Scholar 

  13. Li J, Pendry JB (2008) Hiding under the carpet: A new strategy for cloaking. Phys Rev Lett 101:203901

    Article  Google Scholar 

  14. Landy NI, Padilla WJ (2009) Guiding light with conformal transformations. Opt Express 17(14):872. doi:10.1364/OE.17.014872

    Google Scholar 

  15. Turpin JP, Massoud AT, Jiang ZH, Werner PL, Werner DH (2010) Conformal mappings to achieve simple material parameters for transformation optics devices. Opt Express 18:244. doi:10.1364/OE.18.000244

    Article  Google Scholar 

  16. Urzhumov YA, Kundtz NB, Smith DR, Pendry JB (2011) Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches. J Opt 13(2):024002. doi:10.1088/2040-8978/13/2/024002

    Article  Google Scholar 

  17. Urzhumov Y, Landy N, Smith DR (2012) Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves. J Appl Phys 111(5):053105. doi:10.1063/1.3691242

    Article  Google Scholar 

  18. Chen H, Liang Z, Yao P, Jiang X, Ma H, Chan CT (2007) Extending the bandwidth of electromagnetic cloaks. Phys Rev B 76:241104. doi:10.1103/PhysRevB.76.241104

    Article  Google Scholar 

  19. Kohn RV, Onofrei D, Vogelius MS, Weinstein MI (2010) Cloaking via change of variables for the Helmholtz equation. Commun Pur Appl Math 63:973–1016. doi:10.1002/cpa.20326

    MathSciNet  MATH  Google Scholar 

  20. Cummer SA, Liu R, Cui TJ (2009) A rigorous and nonsingular two dimensional cloaking coordinate transformation. J Appl Phys 105(056):102

    Google Scholar 

  21. Cummer SA, Popa BI, Schurig D, Smith DR, Pendry J (2006) Full-wave simulations of electromagnetic cloaking structures. Phys Rev E 74(3):036,621, doi: 10.1103/PhysRevE.74.036621.

    Google Scholar 

  22. Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nature Photon 1:224–227. doi:10.1038/nphoton.2007.28

    Article  Google Scholar 

  23. Valentine J, Li J, Zentgraf T, Bartal G, Zhang X (2009) An optical cloak made of dielectrics. Nature Mater 8:568–571. doi:10.1038/nmat2461

    Article  Google Scholar 

  24. Gabrielli LH, Cardenas J, Poitras CB, Lipson M (2009) Silicon nanostructure cloak operating at optical frequencies. Nature Photon 3:461–463. doi:10.1038/nphoton.2009.117

    Article  Google Scholar 

  25. Kundtz N, Smith DR (2010) Extreme-angle broadband metamaterial lens. Nature Mater 9:129–132. doi:10.1038/nmat2610

    Google Scholar 

  26. Popa BI, Cummer SA (2009) Cloaking with optimized homogeneous anisotropic layers. Phys Rev A 79:023806

    Article  Google Scholar 

  27. Zhang B, Wu BI (2010) Cylindrical cloaking at oblique incidence with optimized finite multilayer parameters. Opt Lett 35:2681–2683

    Article  Google Scholar 

  28. Andkjaer J, Sigmund O (2011) Topology optimized low-contrast all-dielectric optical cloak. Appl Phys Lett 98:021112

    Article  Google Scholar 

  29. Garcia-Chocano VM, Sanchis L, Diaz-Rubio A, Martinez-Pastor J, Cervera F, Llopis-Pontiveros R, Sanchez-Dehesa J (2011) Acoustic cloak for airborne sound by inverse design. Appl Phys Lett 99:074102. doi:10.1063/1.3623761

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Cummer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Cummer, S.A. (2014). Design for Simplified Materials in Transformation Electromagnetics. In: Werner, D., Kwon, DH. (eds) Transformation Electromagnetics and Metamaterials. Springer, London. https://doi.org/10.1007/978-1-4471-4996-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4996-5_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4995-8

  • Online ISBN: 978-1-4471-4996-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics