Skip to main content

Value at Risk Associated with Maintenance of a Repairable System

  • Conference paper
  • First Online:
Engineering Asset Management 2011

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

This paper presents the derivation of the probability distribution of maintenance cost of a repairable system modeled as an alternative renewal process and subjected to an age-based replacement policy. The key idea of the paper is to formulate a renewal equation for computing the characteristic function of the maintenance cost incurred in a fixed time interval. Then, the Fourier transform of the characteristic function leads to the complete probability distribution of cost. This approach also enables the derivation of probability distributions of the down time and the number of failures in a given time period. The distribution of the cost can be used to evaluate the value at risk (VaR) and other measures needed for the financial planning of a maintenance program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christer A (1987) Comments on finite-period applications of age-based replacement models. IMA J Math Manage 1:111–124

    Article  MathSciNet  MATH  Google Scholar 

  2. Nakagawa T (2005) Maintenance theory of reliability. Springer series in reliability engineering. Springer, London

    Google Scholar 

  3. van Noortwijk J, van Gelder P (1996) Optimal maintenance decisions for berm breakwaters. Struct Saf 18(4):293–309

    Article  Google Scholar 

  4. van Noortwijk J, Klatter H (1999) Optimal inspection decisions for the block mats of the eastern scheldt barrier. Reliab Eng Syst Safety 65:203–211

    Article  Google Scholar 

  5. Kallen M, van Noortwijk J (2005) Optimal maintenance decisions under imperfect inspection. Reliab Eng Syst Safety 90(2–3):177–185

    Article  Google Scholar 

  6. Nicolai R, van Noortwijk J (2007) A comparison of models for measurable deterioration: An application to coatings on steel structures. Reliab Eng Syst Safety 92(12):1635–1650

    Article  Google Scholar 

  7. Christer A, Jack N (1991) An integral equation approach for replacement modeling overfinite time horizons. IMA J Math Appl Bus Ind 3(1):31–44

    MathSciNet  MATH  Google Scholar 

  8. Pandey M, Cheng T, van der Weide J (2010) Finite time maintenance cost analysis of engineering systems affected by stochastic degradation. Proceedings of the Institution of Mechanical Engineers, Part O: J Risk Reliab 225(2):241–250. doi:10.1177/1748007810393826

  9. Cheng T, Pandey M (2011) An accurate analysis of maintenance cost of structures experiencing stochastic degradation. Struct Infrastruct Eng (in press)

    Google Scholar 

  10. Birolini A (1999) Reliability engineering: theory and practice. Springer, Berlin

    Book  MATH  Google Scholar 

  11. Sundararajan D (2001) The discrete Fourier transform: theory, algorithms, and applications. World Scientific, Singapore

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

12.1.1 Computation of \( F_{\phi } \left( {\Upomega ,k} \right) \) and \( G_{\phi } \left( {\Upomega ,t} \right) \)

Using the law of total expectation by conditioning on \( X_{1} f_{\phi } \left( {\omega ,k} \right) \) is obtained as

$$\begin{aligned} f_{\phi } \left( {\omega ,k} \right) & = \sum\limits_{j = 1}^{{\rm{min}\left\{ {k,t_{p} } \right\}}} {{\rm E}\left[ {e^{{i\omega C_{1} }} \left| {X_{1} = j,Y_{1} = k - j} \right.} \right]} \\ & \quad P\left\{ {X_{1} = j,Y_{1} = k - j} \right\} \\ \end{aligned} $$
(12.18)

Note that the cost incurred in the first renewthat the cost incurred in the first renewal cycle is equal to \( c_{D} Y_{1} + c_{R} \left( {X_{1} } \right), \) where

$$ c_{R} \left( {X_{1} } \right) = \left\{ {\begin{array}{*{20}c} {c_{{CM}} ,} \\ {c_{{PM}} ,} \\ \end{array} \begin{array}{*{20}c} {{\text{if}}} & {X_{1} < t_{p} ,} \\ {{\text{if}}} & {X_{1} = t_{p} ,} \\ \end{array} } \right.$$
(12.19)

is the repair cost. Furthermore, X1 and Y1 are independent of each other. Then Eq. (12.18) gives

$$ f_{\phi } \left( {\omega ,k} \right) = \sum\limits_{{j = 1}}^{{\text {min}\left\{ {k,t_{p} } \right\}}} {e^{{i\omega \left[ {c_{D} \left( {k - j} \right) + c_{R} (j)} \right]}} } f_{X} \left( j \right)f_{Y} \left( {k - j} \right) $$
(12.20)

Similarly, noting that \( C\left( t \right) = c_{D} \left( {t - X_{1} } \right) + c_{R} \left( {X_{1} } \right) \) if \( X_{1} < t < T \) and \( C\left( t \right) = 0 \) if \( X_{1} > t,G_{\phi } \left( {\omega ,t} \right) \) is obtained as

$$\begin{aligned} G_{\phi } \left( {\omega ,t} \right) &= \sum\limits_{{j = 1}}^{{\text {min}\left\{ {t,t_{p} } \right\}}} {{\rm E}\left[ {e^{{i\omega C\left( t \right)}} \left| {X_{1} = j,Y_{1} > t - j} \right.} \right]} P\left\{ {X_{1} = j,Y_{1} > t - j} \right\} \\ &\quad+ {\rm E}\left[ {e^{{i\omega C\left( t \right)}} \left| {X_{1} > t} \right.} \right]P\left\{ {X_{1} > t} \right\} \\ &= \sum\limits_{{j = 1}}^{{\text {min}\left\{ {t,t_{p} } \right\}}} {e^{{i\omega \left[ {c_{D} \left( {t - j} \right) + c_{R} (j)} \right]}} } f_{X} (j)\bar{F}_{Y} \left( {t - j} \right) + \bar{F}_{X} \left( t \right) \\ \end{aligned} $$
(12.21)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this paper

Cite this paper

Cheng, T., Pandey, M.D., van der Weide, J.A.M. (2014). Value at Risk Associated with Maintenance of a Repairable System. In: Lee, J., Ni, J., Sarangapani, J., Mathew, J. (eds) Engineering Asset Management 2011. Lecture Notes in Mechanical Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-4993-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4993-4_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4992-7

  • Online ISBN: 978-1-4471-4993-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics