Skip to main content

Risk Stratification for Sudden Death in Patients with Coronary Artery Disease

  • Chapter
  • First Online:
Electrical Diseases of the Heart

Abstract

Approximately one-half of all deaths in patients with coronary artery disease occur suddenly and unexpectedly. The majority of these events appear to result from ventricular tachycardia or fibrillation. Although acute ischemia or infarction may precipitate such events, data suggest that a large proportion of these are not due to acute ischemic events. Rather, primary electrical phenomena that are a consequence of previous myocardial infarctions, such as intramyocardial reentry or other mechanisms, cause most of these events. These events usually occur without any apparent precipitating factor. While we have effective treatment for survivors of cardiac arrest, a minority of arrest victims survive the acute event. Thus, there is a need to identify patients at risk for these events before they occur, in order to institute prophylactic therapy.

Multiple tests to identify persons at risk for sudden death have been developed. No single test has been identified that has adequate sensitivity and specificity, when used by itself, because no test identifies patients at risk for all the various mechanisms that can cause sudden death. Increasing evidence suggests that the presence of multiple risk factors in an individual identifies persons at increased risk, while patients with only single risk factors, regardless of the specific factor, are at relatively low risk. However, at this time, the optimal combination of risk factors is not known. Also unknown is the optimal time for initial and repeat testing. Because of the progressive nature of coronary artery disease, tests will have to be repeated at intervals in patients with initial negative tests. Clinical trials are needed to define the best timing and combinations of tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham I, Mulcahy R, Hickey N, O’Neill W, Daly L. Natural history of coronary heart disease: a study of 586 men surviving an initial acute attack. Am Heart J. 1983;105:249–57.

    PubMed  CAS  Google Scholar 

  2. Zheng Z-J, Croft JB, Giles WH, Mensah GA. Sudden cardiac death in the united states, 1989 to 1998. Circulation. 2001;104:2158–63.

    PubMed  CAS  Google Scholar 

  3. Pouleur AC, Barkoudah E, Uno H, Skali H, Finn PV, Zelenkofske SL, et al. Pathogenesis of sudden unexpected death in a clinical trial of patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. Circulation. 2010;122:597–602.

    PubMed  Google Scholar 

  4. Baum R, Alvarez H, Cobb LA. Survival after resuscitation from out-of-hospital ventricular fibrillation. Circulation. 1974;50:1231–5.

    PubMed  CAS  Google Scholar 

  5. Becker LB, Han BH, Meyer PM, Wright FA, Rhodes KV, Smith DW, et al. Racial differences in the incidence of cardiac arrest and subsequent survival. The CPR Chicago Project. N Engl J Med. 1993;329:600–6.

    PubMed  CAS  Google Scholar 

  6. Eisenberg MS, Hallstrom A, Bergner L. Long-term survival after out-of-hospital cardiac arrest. N Engl J Med. 1982;306:1340–3.

    PubMed  CAS  Google Scholar 

  7. Liberthson RR, Nagel EL, Hirschman JC, Nussenfeld SR. Prehospital ventricular defibrillation. Prognosis and follow-up course. N Engl J Med. 1974;291:317–21.

    PubMed  CAS  Google Scholar 

  8. Myerburg RJ, Fenster J, Velez M, Rosenberg D, Lai S, Kurlansky P, et al. Impact of community-wide police car deployment of automated external defibrillators on survival from out-of-hospital cardiac arrest. Circulation. 2002;106:1058–64.

    PubMed  Google Scholar 

  9. Weaver WD, Hill D, Fahrenbruch CE, Copass MK, Martin JS, Cobb LA, et al. Use of the automatic external defibrillator in the management of out-of-hospital cardiac arrest. N Engl J Med. 1988;319:661–6.

    PubMed  CAS  Google Scholar 

  10. Holmes DRJ, Davis KB, Mock MB, Fisher LD, Gersh BJ, Killip T, et al. Study PitCAS. The effect of medical and surgical treatment on subsequent sudden cardiac death in patients with coronary artery disease. A report from the Coronary Artery Surgery Study. Circulation. 1986;73:1254–63.

    PubMed  Google Scholar 

  11. Huikuri HV, Tapanainen JM, Lindgren K, Raatikainen P, Makikallio TH, Airaksinen KEJ, et al. Prediction of sudden cardiac death after myocardial infarction in the beta-blocking era. J Am Coll Cardiol. 2003;42:652–8.

    PubMed  Google Scholar 

  12. Tavazzi L, Volpi A, Investigators G. Remarks about postinfarction prognosis in light of the experience with the gruppo italiano per lo studio della sopravvivenza nell’ infarto miocardico (gissi) trials. Circulation. 1997;95:1341–5.

    PubMed  CAS  Google Scholar 

  13. Madsen EB, Gilpin E, Henning H. Evaluation of prognosis one year after myocardial infarction. J Am Coll Cardiol. 1983;1:985–93.

    PubMed  CAS  Google Scholar 

  14. Rouleau JL, Talajic M, Sussex B, Potvin L, Warnica W, Davies RF, et al. Myocardial infarction patients in the 1990s – their risk factors, stratification and survival in Canada: the Canadian Assessment of Myocardial Infarction (CAMI) Study. J Am Coll Cardiol. 1996;27:1119–27.

    PubMed  CAS  Google Scholar 

  15. Sanz G, Castaner A, Betriu A, Magrina J, Roig E, Coll S, et al. Determinants of prognosis in survivors of myocardial infarction. A prospective clinical angiographic study. N Engl J Med. 1982;306:1065–70.

    PubMed  CAS  Google Scholar 

  16. Weinberg SL. Natural history six years after acute myocardial infarction. Is there a low risk group? Chest. 1976;69:23–8.

    PubMed  CAS  Google Scholar 

  17. Fioretti P, Brower RW, Simoons ML, ten Katen H, Beelen A, Baardman T, et al. Relative value of clinical variables, bicycle ergometry, rest radionuclide ventriculography and 24 hour ambulatory electrocardiographic monitoring at discharge to predict 1 year survival after myocardial infarction. J Am Coll Cardiol. 1986;8:40–9.

    PubMed  CAS  Google Scholar 

  18. Mazzoleni A, Curtin ME, Wolff R, Reiner L, Somes G. On the relationship between heart weights, fibrosis, and QRS duration. J Electrocardiol. 1975;8:233–6.

    PubMed  CAS  Google Scholar 

  19. Zimetbaum PJ, Buxton AE, Batsford W, Fisher JD, Hafley GE, Lee KL, et al. Electrocardiographic predictors of arrhythmic death and total mortality in the multicenter unsustained tachycardia trial. Circulation. 2004;110:766–9.

    PubMed  Google Scholar 

  20. Greenberg H, Case RB, Moss AJ, Brown MW, Carroll ER, Andrews ML, et al. Analysis of mortality events in the Multicenter Automatic Defibrillator Implantation Trial (MADIT-II). J Am Coll Cardiol. 2004;43:1459–65.

    PubMed  Google Scholar 

  21. Buxton A, Lee K, Hafley G, Pires L, Fisher J, Gold M, et al. Limitations of ejection fraction for prediction of sudden death risk in patients with coronary artery disease. Lessons from the MUSTT study. J Am Coll Cardiol. 2007;50:1150–7.

    PubMed  Google Scholar 

  22. Levy WC, Lee K, Hellkamp A, Poole JE, Mazaffarian D, Linker DT, et al. Maximizing survival benefit with primary prevention implantable cardioverter-defibrillator therapy in a heart failure population. Circulation. 2009;120:835–42.

    PubMed  Google Scholar 

  23. Buxton AE, Sweeney MO, Wathen MS, Josephson ME, Otterness MF, Hogan-Miller E, et al. Qrs duration does not predict occurrence of ventricular tachyarrhythmias in patients with implanted cardioverter-defibrillators. J Am Coll Cardiol. 2005;46:310–6.

    PubMed  Google Scholar 

  24. Schechtman KB, Capone RJ, Kleiger RE, Gibson RS, Schwartz DJ, Roberts R, et al. Risk stratification of patients with non-Q wave myocardial infarction. The critical role of ST segment depression. The Diltiazem Reinfarction Study Research Group. Circulation. 1989;80:1148–58.

    PubMed  CAS  Google Scholar 

  25. Cannon CP, McCabe CH, Stone PH, Rogers WJ, Schactman M, Thompson BW, et al. The electrocardiogram predicts one-year outcome of patients with unstable angina and non-Q wave myocardial infarction: results of the TIMI III Registry ECG Ancillary Study. J Am Coll Cardiol. 1997;30:133–40.

    PubMed  CAS  Google Scholar 

  26. Davey P. Qt interval and mortality from coronary artery disease. Prog Cardiovasc Dis. 2000;42:359–84.

    PubMed  CAS  Google Scholar 

  27. Algra A, Tijssen J, Roelandt J, Pool J, Lubsen J. QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation. 1991;83:1888–94.

    PubMed  CAS  Google Scholar 

  28. Dekker JM, Schouten EG, Klootwijk P, Pool J, Kromhout D. Association between QT interval and coronary heart disease in middle-aged and elderly men. The Zutphen Study. Circulation. 1994;90:779–85.

    PubMed  CAS  Google Scholar 

  29. Straus SM, Kors JA, De Bruin ML, van der Hooft CS, Hofman A, Heeringa J, et al. Prolonged QTC interval and risk of sudden cardiac death in a population of older adults. J Am Coll Cardiol. 2006;47:362–7.

    PubMed  Google Scholar 

  30. de Bruyne MC, Hoes AW, Kors JA, Hofman A, van Bemmel JH, Grobbee DE. Prolonged QT interval predicts cardiac and all-cause mortality in the elderly. The Rotterdam Study. Eur Heart J. 1999;20:278–84.

    PubMed  Google Scholar 

  31. Zhang Y, Post W, Blasco-Colmenares E, Dalal D, Tomaselli G, Guallara E. Electrocardiographic QT interval and mortality. A meta-analysis. Epidemiology. 2011;22:660–70.

    PubMed  Google Scholar 

  32. Statters DJ, Malik M, Ward DE, Camm AJ. QT dispersion: problems of methodology and clinical significance. J Cardiovasc Electrophysiol. 1994;5:672–85.

    PubMed  CAS  Google Scholar 

  33. Zabel M, Klingenheben T, Franz MR, Hohnloser SH. Assessment of QT dispersion for prediction of mortality or arrhythmic events after myocardial infarction: results of a prospective, long-term follow-up study. Circulation. 1998;97:2543–50.

    PubMed  CAS  Google Scholar 

  34. Zabel M, Acar B, Klingenheben T, Franz MR, Hohnloser SH, Malik M. Analysis of 12-lead T-wave morphology for risk stratification after myocardial infarction. Circulation. 2000;102:1252–7.

    PubMed  CAS  Google Scholar 

  35. Savelieva I, Yap YG, Yi G, Guo X, Camm AJ, Malik M. Comparative reproducibility of QT, QT peak, and T peak-T end intervals and dispersion in normal subjects, patients with myocardial infarction, and patients with hypertrophic cardiomyopathy. Pacing Clin Electrophysiol. 1998;21:2376–81.

    PubMed  CAS  Google Scholar 

  36. Panikkath R, Reinier K, Uy-Evanado A, Teodorescu C, Hattenhauer J, Mariani R, et al. Prolonged tpeak to tend interval on the resting electrocardiogram is associated with increased risk of sudden cardiac death. Circulation. 2011;4:441–7.

    PubMed  Google Scholar 

  37. Westaway S, Reinier K, Huertas-Vasquez A, Evanado A, Teodorescu C, Navarro J, et al. Common variants in CASQ2, GPD1L, and NOS1AP are significantly associated with risk of sudden death in patients with coronary artery disease. Circ Cardiovasc Genet. 2011;4:397–402.

    PubMed  Google Scholar 

  38. Kannel W, Doyle J, McNamara P, Quickenton P, Gordon T. Precursors of sudden coronary death: factors related to the incidence of sudden death. Circulation. 1975;51:606–13.

    PubMed  CAS  Google Scholar 

  39. Siscovick D, Raghunathan T, Rautaharju P, Psaty B, Cobb L, Wagner E. Clinically silent electrocardiographic abnormalities and risk of primary cardiac arrest among hypertensive patients. Circulation. 1996;94:1329–33.

    PubMed  CAS  Google Scholar 

  40. Westerhout C, Lauer M, James S, Fu Y, Wallentin L, Armstrong P. Electrocardiographic left ventricular hypertrophy in GUSTO IV ACS: an important risk marker of mortality in women. Eur Heart J. 2007;28:2064–9.

    PubMed  Google Scholar 

  41. Nelson GR, Cohn PF, Gorlin R. Prognosis in medically-treated coronary artery disease. Influence of ejection fraction compared to other parameters. Circulation. 1975;52:408–12.

    PubMed  CAS  Google Scholar 

  42. Schulze RA, Strauss HW, Pitt B. Sudden death in the year following myocardial infarction. Relation to ventricular premature contractions in the late hospital phase and left ventricular ejection fraction. Am J Med. 1977;62:192–9.

    PubMed  Google Scholar 

  43. Maggioni AP, Zuanetti G, Franzosi MG, Rovelli F, Santoro E, Staszewsky L, et al. Prevalence and prognostic significance of ventricular arrhythmias after acute myocardial infarction in the fibrinolytic era. GISSI-2 results. Circulation. 1993;87:312–22.

    PubMed  CAS  Google Scholar 

  44. Buxton AE, Lee KL, Fisher JD, Josephson ME, Prystowsky EN, Hafley G, et al. A randomized study of the prevention of sudden death in patients with coronary artery disease. N Engl J Med. 1999;341:1882–90.

    PubMed  CAS  Google Scholar 

  45. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346:877–83.

    PubMed  Google Scholar 

  46. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.

    PubMed  CAS  Google Scholar 

  47. Bailey JJ, Berson AS, Handelsman H, Hodges M. Utility of current risk stratification tests for predicting major arrhythmic events after myocardial infarction. J Am Coll Cardiol. 2001;38:1902–11.

    PubMed  CAS  Google Scholar 

  48. Buxton A, Hafley G, Lee K, Gold M, Packer D, Lehmann M, et al. Relation of ejection fraction and inducible ventricular tachycardia to mode of death in patients with coronary artery disease. Circulation. 2002;106:2466–72.

    PubMed  CAS  Google Scholar 

  49. Curtis J, Sokol S, Wang Y, Rathore S, Ko D, Jadbabaie F, et al. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol. 1983;42:736–42.

    Google Scholar 

  50. Ross AM, Coyne KS, Moreyra E, Reiner JS, Greenhouse SW, Walker PL, et al. Extended mortality benefit of early postinfarction reperfusion. Circulation. 1998;97:1549–56.

    PubMed  CAS  Google Scholar 

  51. Gorgels A, Gijsbers C, de Vreede-Swagemakers J, Lousberg A, Wellens H. Out-of-hospital cardiac arrest-the relevance of heart failure. The Maastricht Circulatory Arrest Registry. Eur Heart J. 2003;24:1204–9.

    PubMed  Google Scholar 

  52. Shiga T, Hagiwara N, Ogawa H, Takagi A, Nagashima M, Yamauchi T, et al. Sudden cardiac death and left ventricular ejection fraction during long-term follow-up after acute myocardial infarction in the primary percutaneous coronary intervention era: results from the HIJAMI-II registry. Heart. 2009;95:216–20.

    PubMed  CAS  Google Scholar 

  53. Copie X, Hnatkova K, Staunton A, Fei L, Camm A, Malik M. Predictive power of increased heart rate versus depressed left ventricular ejection fraction and heart rate variability for risk stratification after myocardial infarction. Results of a two-year follow-up study. J Am Coll Cardiol. 1996;27:270–6.

    PubMed  CAS  Google Scholar 

  54. Hare JL, Brown JK, Marwick TH. Performance of conventional echocardiographic parameters and myocardial measurements in the sequential evaluation of left ventricular function. Am J Cardiol. 2008;101:706–11.

    PubMed  Google Scholar 

  55. Exner DV, Kavanagh KM, Slawnych MP, Mitchell LB, Ramadan D, Aggarwal SG, et al. Noninvasive risk assessment early after a myocardial infarction: The REFINE study. J Am Coll Cardiol. 2007;50:2275–84.

    PubMed  Google Scholar 

  56. Anderson KP, DeCamilla J, Moss AJ. Clinical significance of ventricular tachycardia (3 beats or longer) detected during ambulatory monitoring after myocardial infarction. Circulation. 1978;57:890–7.

    PubMed  CAS  Google Scholar 

  57. Bigger JT, Weld FM, Rolnitzky LM. Prevalence, characteristics and significance of ventricular tachycardia (three or more complexes) detected with ambulatory electrocardiographic recording in the late hospital phase of acute myocardial infarction. Am J Cardiol. 1981;48:815–23.

    PubMed  Google Scholar 

  58. Ruberman W, Weinblatt E, Goldberg JD, Frank CW, Shapiro S. Ventricular premature complexes and mortality after myocardial infarction. N Engl J Med. 1977;297:750–5.

    PubMed  CAS  Google Scholar 

  59. Hallstrom AP, Bigger JT, Roden D, Friedman L, Akiyama T, Richardson DW, et al. Prognostic significance of ventricular premature depolarizations measured 1 year after myocardial infarction in patients with early postinfarction asymptomatic ventricular arrhythmia. J Am Coll Cardiol. 1992;20:259–64.

    PubMed  CAS  Google Scholar 

  60. Tominaga S, Blackburn H, Group CDPR. Prognostic importance of premature beats following myocardial infarction: experience in the coronary drug project. JAMA. 1973;223:1116–24.

    Google Scholar 

  61. Huikuri HK, Mahaux V, Bloch Thomsen P-E, CARISMA Investigators. Cardiac arrhythmias and risk stratification after myocardial infarction: results of the CARISMA pilot study. Pacing Clin Electrophysiol. 2003;26:416–9.

    PubMed  Google Scholar 

  62. Hohnloser SH, Klingenheben T, Zabel M, Schopperl M, Mauss O. Prevalence, characteristics and prognostic value during long-term follow-up of nonsustained ventricular tachycardia after myocardial infarction in the thrombolytic era. J Am Coll Cardiol. 1999;33:1895–902.

    PubMed  CAS  Google Scholar 

  63. Makikallio TH, Barthel P, Schneider R, Bauer A, Tapanainen JM, Tulppo MP, et al. Prediction of sudden cardiac death after acute myocardial infarction: role of holter monitoring in the modern treatment era. Eur Heart J. 2005;26:762–9.

    PubMed  Google Scholar 

  64. Scirica BM, Braunwald E, Belardinelli L, Hedgepeth CM, Spinar J, Wang W, et al. Relationship between nonsustained ventricular tachycardia after non-ST-elevation acute coronary syndrome and sudden cardiac death: observations from the metabolic efficiency with ranolazine for less ischemia in non-ST-elevation acute coronary syndrome-thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation. 2010;122:455–62.

    PubMed  CAS  Google Scholar 

  65. Breithardt G, Schwarzmaier J, Borggrefe M, Haerten K, Seipel L. Prognostic significance of late ventricular potentials after acute myocardial infarction. Eur Heart J. 1983;4:487–95.

    PubMed  CAS  Google Scholar 

  66. Gomes JA, Winters SL, Stewart D, Horowitz S, Milner M, Barreca P. A new noninvasive index to predict sustained ventricular tachycardia and sudden death in the first year after myocardial infarction: based on signal-averaged electrocardiogram, radionuclide ejection fraction and holter monitoring. J Am Coll Cardiol. 1987;10:349–57.

    PubMed  CAS  Google Scholar 

  67. Steinberg JS, Regan A, Sciacca RR, Bigger JT, Fleiss JL, Salvatore DE, et al. Predicting arrhythmic events after acute myocardial infarction using the signal-averaged electrocardiogram. Am J Cardiol. 1992;69:13–21.

    PubMed  CAS  Google Scholar 

  68. Kuchar DL, Thorburn CW, Sammel NL. Prediction of serious arrhythmic events after myocardial infarction: signal-averaged electrocardiogram, holter monitoring and radionuclide ventriculography. J Am Coll Cardiol. 1987;9:531–8.

    PubMed  CAS  Google Scholar 

  69. El-Sherif N, Denes P, Katz R, Capone R, Mitchell LB, Carlson M, et al. Definition of the best prediction criteria of the time domain signal-averaged electrocardiogram for serious arrhythmic events in the postinfarction period. J Am Coll Cardiol. 1995;25:908–14.

    PubMed  CAS  Google Scholar 

  70. Gomes J, Cain M, Buxton A, Josephson M, Lee K, Hafley G. Prediction of long-term outcomes by signal-averaged electrocardiography in patients with unsustained ventricular tachycardia, coronary artery disease, and left ventricular dysfunction. Circulation. 2001;104:436–41.

    PubMed  CAS  Google Scholar 

  71. Hood MA, Pogwizd SM, Peirick J, Cain ME. Contribution of myocardium responsible for ventricular tachycardia to abnormalities detected by analysis of signal-averaged ECGs. Circulation. 1992;86:1888–901.

    PubMed  CAS  Google Scholar 

  72. Scharf C, Redecker H, Duru F, Candinas R, Brunner-La Rocca HP, Gerber A, et al. Sudden cardiac death after coronary artery bypass grafting is not predicted by signal-averaged ECG. Ann Thorac Surg. 2001;72:1546–51.

    PubMed  CAS  Google Scholar 

  73. Gang ES, Lew AS, Hong M, Wang FZ, Siebert CA, Peter T. Decreased incidence of ventricular late potentials after successful thrombolytic therapy for acute myocardial infarction. N Engl J Med. 1989;321:712–6.

    PubMed  CAS  Google Scholar 

  74. Pedretti R, Laporta A, Etro MD, Gementi A, Bonelli R, Anza C, et al. Influence of thrombolysis on signal-averaged electrocardiogram and late arrhythmic events after acute myocardial infarction. Am J Cardiol. 1992;69:866–72.

    PubMed  CAS  Google Scholar 

  75. Zimmermann M, Adamec R, Ciaroni S. Reduction in the frequency of ventricular late potentials after acute myocardial infarction by early thrombolytic therapy. Am J Cardiol. 1991;67:697–703.

    PubMed  CAS  Google Scholar 

  76. Hohnloser SH, Franck P, Klingenheben T, Zabel M, Just H. Open infarct artery, late potentials, and other prognostic factors in patients after acute myocardial infarction in the thrombolytic era. A prospective trial. Circulation. 1994;90:1747–56.

    PubMed  CAS  Google Scholar 

  77. Vatterott PJ, Hammill SC, Bailey KR, Wiltgen CM, Gersh BJ. Late potentials on signal-averaged electrocardiograms and patency of the infarct-related artery in survivors of acute myocardial infarction. J Am Coll Cardiol. 1991;17:330–7.

    PubMed  CAS  Google Scholar 

  78. Buxton A, Waxman H, Marchlinski F, Untereker W, Waspe L, Josephson M. Role of triple extrastimuli during electrophysiologic study of patients with documented sustained ventricular tachyarrhythmias. Circulation. 1984;69:532–40.

    PubMed  CAS  Google Scholar 

  79. Ruskin J, DiMarco J, Garan H. Out-of-hospital cardiac arrest: electrophysiologic observations and selection of long-term antiarrhythmic therapy. N Engl J Med. 1980;303:607–13.

    PubMed  CAS  Google Scholar 

  80. Josephson M, Horowitz L, Spielman S, Greenspan A. Electrophysiologic and hemodynamic studies in patients resuscitated from cardiac arrest. Am J Cardiol. 1980;46:948–55.

    PubMed  CAS  Google Scholar 

  81. Greene H, Reid P, Schaeffer A. The repetitive ventricular response in man – a predictor of sudden death. N Engl J Med. 1978;299:729–34.

    PubMed  CAS  Google Scholar 

  82. Hamer A, Vohra J, Hunt D, Sloman G. Prediction of sudden death by electrophysiologic studies in high risk patients surviving acute myocardial infarction. Am J Cardiol. 1982;50:223–9.

    PubMed  CAS  Google Scholar 

  83. Richards D, Cody D, Denniss A, Russell P, Young A, Uther J. Ventricular electrical instability: a predictor of death after myocardial infarction. Am J Cardiol. 1983;51:75–80.

    PubMed  CAS  Google Scholar 

  84. Marchlinski F, Buxton A, Waxman H, Josephson M. Identifying patients at risk of sudden death after myocardial infarction: value of the response to programmed stimulation, degree of ventricular ectopic activity and severity of left ventricular dysfunction. Am J Cardiol. 1983;52:1190–6.

    PubMed  CAS  Google Scholar 

  85. Roy D, Marchand E, Theroux P, Waters DD, Pelletier GB, Bourassa MG. Programmed ventricular stimulation in survivors of an acute myocardial infarction. Circulation. 1985;72:487–94.

    PubMed  CAS  Google Scholar 

  86. Waspe L, Seinfeld D, Ferrick A, Kim S, Matos J, Fisher J. Prediction of sudden death and spontaneous ventricular tachycardia in survivors of complicated myocardial infarction: value of the response to programmed stimulation using a maximum of three ventricular extrastimuli. J Am Coll Cardiol. 1985;5:1292–301.

    PubMed  CAS  Google Scholar 

  87. Bhandari AK, Rose JS, Kotlewski A, Rahimtoola SH, Wu D. Frequency and significance of induced sustained ventricular tachycardia or fibrillation two weeks after acute myocardial infarction. Am J Cardiol. 1985;56:737–42.

    PubMed  CAS  Google Scholar 

  88. Iesaka Y, Nogami A, Aonuma K, Nitta J, Chun YH, Fujiwara H, et al. Prognostic significance of sustained monomorphic ventricular tachycardia induced by programmed ventricular stimulation using up to triple extrastimuli in survivors of acute myocardial infarction. Am J Cardiol. 1990;65:1057–63.

    PubMed  CAS  Google Scholar 

  89. Buxton AE, Lee KL, DiCarlo L, Gold MR, Greer GS, Prystowsky EN, et al. Electrophysiologic testing to identify patients with coronary artery disease who are at risk for sudden death. N Engl J Med. 2000;342:1937–45.

    PubMed  CAS  Google Scholar 

  90. Daubert J, Zareba W, Hall W, Schuger C, Corsello A, Leon AR, et al. Predictive value of ventricular arrhythmia inducibility for subsequent ventricular tachycardia or ventricular fibrillation in Multicenter Automatic Defibrillator Implantation Trial (MADIT) II patients. J Am Coll Cardiol. 2006;47:98–107.

    PubMed  Google Scholar 

  91. Roy D, Marchand E, Theroux P, Waters DD, Pelletier GB, Cartier R, et al. Long-term reproducibility and significance of provokable ventricular arrhythmias after myocardial infarction. J Am Coll Cardiol. 1986;8:32–9.

    PubMed  CAS  Google Scholar 

  92. Bourke JP, Richards DA, Ross DL, Wallace EM, McGuire MA, Uther JB. Routine programmed electrical stimulation in survivors of acute myocardial infarction for prediction of spontaneous ventricular tachyarrhythmias during follow-up: results, optimal stimulation protocol and cost-effective screening. J Am Coll Cardiol. 1991;18:780–8.

    PubMed  CAS  Google Scholar 

  93. Kumar S, Sivagangabalan G, Zaman S, West EB, Narayan A, Thiagalingam A, et al. Electro­physiology-guided defibrillator implantation early after ST-elevation myocardial infarction. Heart Rhythm. 2010;7:1589–97.

    PubMed  Google Scholar 

  94. Bourke J, Richards D, Ross D, McGuire M, Uther J. Does the induction of ventricular flutter or fibrillation at electrophysiologic testing after myocardial infarction have any prognostic significance? Am J Cardiol. 1995;75:431–5.

    PubMed  CAS  Google Scholar 

  95. Josephson ME, Almendral JM, Buxton AE, Marchlinski FE. Mechanisms of ventricular tachycardia. Circulation. 1987;75:III41–7.

    PubMed  CAS  Google Scholar 

  96. Kuck KH, Costard A, Schluter M, Kunze KP. Significance of timing programmed electrical stimulation after acute myocardial infarction. J Am Coll Cardiol. 1986;8:1279–88.

    PubMed  CAS  Google Scholar 

  97. Bhandari AK, Au PK, Rose JS, Kotlewski A, Blue S, Rahimtoola SH. Decline in inducibility of sustained ventricular tachycardia from two to twenty weeks after acute myocardial infarction. Am J Cardiol. 1987;59:284–90.

    PubMed  CAS  Google Scholar 

  98. Bhandari AK, Hong R, Kulick D, Petersen R, Rubin JN, Leon C, et al. Day to day reproducibility of electrically inducible ventricular arrhythmias in survivors of acute myocardial infarction. J Am Coll Cardiol. 1990;15:1075–81.

    PubMed  CAS  Google Scholar 

  99. Nogami A, Aonuma K, Takahashi A, Nitta J, Chun YH, Iesaka Y, et al. Usefulness of early versus late programmed ventricular stimulation in acute myocardial infarction. Am J Cardiol. 1991;68:13–20.

    PubMed  CAS  Google Scholar 

  100. Gomes JA, Hariman RI, Kang PS, El-Sherif N, Chowdhry I, Lyons J. Programmed electrical stimulation in patients with high-grade ventricular ectopy: electrophysiologic findings and prognosis for survival. Circulation. 1984;70:43–51.

    PubMed  CAS  Google Scholar 

  101. Buxton AE, Marchlinski FE, Flores BT, Miller JM, Doherty JU, Josephson ME. Nonsustained ventricular tachycardia in patients with coronary artery disease: role of electrophysiologic study. Circulation. 1987;75:1178–85.

    PubMed  CAS  Google Scholar 

  102. Klein RC, Machell C. Use of electrophysiologic testing in patients with nonsustained ventricular tachycardia: prognostic and therapeutic implications. J Am Coll Cardiol. 1989;14:155–61.

    PubMed  CAS  Google Scholar 

  103. Wilber DJ, Olshansky B, Moran JF, Scanlon PJ. Electrophysiological testing and nonsustained ventricular tachycardia. Use and limitations in patients with coronary artery disease and impaired ventricular function. Circulation. 1990;82:350–8.

    PubMed  CAS  Google Scholar 

  104. Kersschot I, Brugada P, Ramentol M, Zehender M, Waldecker B, Stevenson W, et al. Effects of early reperfusion in acute myocardial infarction on arrhythmias induced by programmed stimulation: a prospective, randomized study. J Am Coll Cardiol. 1986;7:1234–42.

    PubMed  CAS  Google Scholar 

  105. Bourke J, Young A, Richards D, Uther J. Reduction in incidence of inducible ventricular tachycardia after myocardial infarction by treatment with streptokinase during infarct evolution. J Am Coll Cardiol. 1990;16:1703–10.

    PubMed  CAS  Google Scholar 

  106. Chong JJ, Ganesan AN, Eipper V, Kovoor P. Comparison of left ventricular ejection fraction and inducible ventricular tachycardia in ST-elevation myocardial infarction treated by primary angioplasty versus thrombolysis. Am J Cardiol. 2008;101:153–7.

    PubMed  Google Scholar 

  107. Armoundas AA, Tomaselli GF, Esperer HD. Pathophysiological basis and clinical application of T-wave alternans. J Am Coll Cardiol. 2002;40:207–17.

    PubMed  Google Scholar 

  108. Walker M, Rosenbaum D. Repolarization ­alternans: implications for the mechanism and prevention of sudden cardiac death. Cardiovasc Res. 2003;57:599–614.

    PubMed  CAS  Google Scholar 

  109. Rashba EJ, Osman AF, MacMurdy K, Kirk MM, Sarang S, Peters RW, et al. Exercise is superior to pacing for T wave alternans measurement in subjects with chronic coronary artery disease and left ventricular dysfunction. J Cardiovasc Electrophysiol. 2002;13:845–50.

    PubMed  Google Scholar 

  110. Nearing BD, Verrier RL. Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J Appl Physiol. 2002;92:541–9.

    PubMed  Google Scholar 

  111. Verrier RL, Klingenheben T, Malik M, El-Sherif N, Exner DV, Hohnloser SH, et al. Microvolt T-wave alternans physiological basis, methods of measurement, and clinical utility – consensus guideline by International Society for Holter and Noninvasive Electrocardiology. J Am Coll Cardiol. 2011;58:1309–24.

    PubMed  Google Scholar 

  112. Gold MR, Bloomfield DM, Anderson KP, El-Sherif NE, Wilber DJ, Groh WJ, et al. A comparison of T-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. J Am Coll Cardiol. 2000;36:2247–53.

    PubMed  CAS  Google Scholar 

  113. Hohnloser SH, Klingenheben T, Bloomfield D, Dabbous O, Cohen RJ. Usefulness of microvolt T-wave alternans for prediction of ventricular tachyarrhythmic events in patients with dilated cardiomyopathy: results from a prospective observational study. J Am Coll Cardiol. 2003;41:2220–4.

    PubMed  Google Scholar 

  114. Klingenheben T, Zabel M, D’Agostino RB, Cohen RJ, Hohnloser SH. Predictive value of T-wave alternans for arrhythmic events in patients with congestive heart failure. Lancet. 2000;356:651–2.

    PubMed  CAS  Google Scholar 

  115. Rashba EJ, Osman AF, Macmurdy K, Kirk MM, Sarang SE, Peters RW, et al. Enhanced detection of arrhythmia vulnerability using T wave alternans, left ventricular ejection fraction, and programmed ventricular stimulation: a prospective study in subjects with chronic ischemic heart disease. J Cardiovasc Electrophysiol. 2004;15:170–6.

    PubMed  Google Scholar 

  116. Rosenbaum DS, Jackson LE, Smith JM, Garan H, Ruskin JN, Cohen RJ. Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med. 1994;330:235–41.

    PubMed  CAS  Google Scholar 

  117. Tanno K, Ryu S, Watanabe N, Minoura Y, Kawamura M, Asano T, et al. Microvolt T-wave alternans as a predictor of ventricular tachyarrhythmias: a prospective study using atrial ­pacing. Circulation. 2004;109:1854–8.

    PubMed  Google Scholar 

  118. Bloomfield DM, Bigger JT, Steinman RC, Namerow PB, Parides MK, Curtis AB, et al. Microvolt T-wave alternans and the risk of death or sustained ventricular arrhythmias in patients with left ventricular dysfunction. J Am Coll Cardiol. 2006;47:456–63.

    PubMed  Google Scholar 

  119. Gehi AK, Stein RH, Metz LD, Gomes JA. Microvolt T-wave alternans for the risk stratification of ventricular tachyarrhythmic events: a meta-analysis. J Am Coll Cardiol. 2005;46:75–82.

    PubMed  Google Scholar 

  120. Costantini O, Hohnloser SH, Kirk MM, Lerman BB, Baker JH, Sethuraman B, et al. The ABCD (alternans before cardioverter defibrillator) trial: strategies using T-wave alternans to improve efficiency of sudden cardiac death prevention. J Am Coll Cardiol. 2009;53:471–9.

    PubMed  Google Scholar 

  121. Gold MR, Ip JH, Costantini O, Poole JE, McNulty S, Mark DB, et al. Role of microvolt T-wave alternans in assessment of arrhythmia vulnerability among patients with heart failure and systolic dysfunction: primary results from the T-wave alternans sudden cardiac death in heart failure trial substudy. Circulation. 2008;118:2022–8.

    PubMed  Google Scholar 

  122. Chow T, Kereiakes DJ, Onufer J, Woelfel A, Gursoy S, Peterson BJ, et al. Does microvolt T-wave alternans testing predict ventricular tachyarrhythmias in patients with ischemic cardiomyopathy and prophylactic defibrillators? The MASTER (Microvolt T Wave Alternans Testing for Risk Stratification of Post-Myocardial Infarction Patients) trial. J Am Coll Cardiol. 2008;52:1607–15.

    PubMed  Google Scholar 

  123. Ikeda T, Yoshino H, Sugi K, Tanno K, Shimizu H, Watanabe J, et al. Predictive value of microvolt T-wave alternans for sudden cardiac death in patients with preserved cardiac function after acute myocardial infarction: results of a collaborative cohort stud. J Am Coll Cardiol. 2006;48:2268–74.

    PubMed  Google Scholar 

  124. Bloomfield DM, Steinman RC, Namerow PB, Parides M, Davidenko J, Kaufman ES, et al. Microvolt T-wave alternans distinguishes bet­ween patients likely and patients not likely to benefit from implanted cardiac defibrillator therapy: a solution to the Multicenter Automatic Defibrillator Implantation Trial (MADIT) II conundrum. Circulation. 2004;110:1885–9.

    PubMed  Google Scholar 

  125. Chow T, Kereiakes DJ, Bartone C, Booth T, Schloss EJ, Waller T, et al. Prognostic utility of microvolt T-wave alternans in risk stratification of patients with ischemic cardiomyopathy. J Am Coll Cardiol. 2006;47:1820–7.

    PubMed  Google Scholar 

  126. Tapanainen JM, Still AM, Airaksinen KE, Huikuri HV. Prognostic significance of risk stratifiers of mortality, including T wave alternans, after acute myocardial infarction: results of a prospective follow-up study. J Cardiovasc Electrophysiol. 2001;12:645–52.

    PubMed  CAS  Google Scholar 

  127. Force T. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043–65.

    Google Scholar 

  128. Zuanetti G, Latini R, Neilson JM, Schwartz PJ, Ewing DJ. Heart rate variability in patients with ventricular arrhythmias: effect of antiarrhythmic drugs. Antiarrhythmic Drug Evaluation Group (ADEG). J Am Coll Cardiol. 1991;17:604–12.

    PubMed  CAS  Google Scholar 

  129. Kontopoulos AG, Athyros VG, Papageorgiou AA, Papadopoulos GV, Avramidis MJ, Boudoulas H. Effect of quinapril or metoprolol on heart rate variability in post-myocardial infarction patients. Am J Cardiol. 1996;77:242–6.

    PubMed  CAS  Google Scholar 

  130. Kleiger RE, Miller JP, Bigger Jr JT, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59:256–62.

    PubMed  CAS  Google Scholar 

  131. Tsuji H, Venditti Jr FJ, Manders ES, Evans JC, Larson MG, Feldman CL, et al. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994;90:878–83.

    PubMed  CAS  Google Scholar 

  132. La Rovere MT, Bigger Jr JT, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351:478–84.

    PubMed  Google Scholar 

  133. La Rovere MT, Pinna GD, Hohnloser SH, Marcus FI, Mortara A, Nohara R, et al. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation. 2001;103:2072–7.

    PubMed  Google Scholar 

  134. Huikuri HV, Makikallio TH, Peng CK, Goldberger AL, Hintze U, Moller M. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation. 2000;101:47–53.

    PubMed  CAS  Google Scholar 

  135. Camm AJ, Pratt CM, Schwartz PJ, Al-Khalidi HR, Spyt MJ, Holroyde MJ, et al. Mortality in patients after a recent myocardial infarction: a randomized, placebo-controlled trial of azimilide using heart rate variability for risk stratification. Circulation. 2004;109:990–6.

    PubMed  Google Scholar 

  136. Casolo GC, Stroder P, Signorini C, Calzolari F, Zucchini M, Balli E, et al. Heart rate variability during the acute phase of myocardial infarction. Circulation. 1992;85:2073–9.

    PubMed  CAS  Google Scholar 

  137. Kuch B, Parvanov T, Hense HW, Axmann J, Bolte HD. Short-period heart rate variability in the general population as compared to patients with acute myocardial infarction from the same source population. Ann Noninvasive Electro­cardiol. 2004;9:113–20.

    PubMed  Google Scholar 

  138. Lakusic N, Smalcelj A, Mahovic D, Puljevic D, Lovric-Bencic M. Heart rate variability differences in post-myocardial infarction patients based on initial treatment during acute phase of disease. Int J Cardiol. 2008;126:437–8.

    PubMed  Google Scholar 

  139. La Rovere MT, Pinna GD, Maestri R, Mortara A, Capomolla S, Febo O, et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation. 2003;107:565–70.

    PubMed  Google Scholar 

  140. La Rovere M, Bigger Jr JT, Marcus F, Mortara A, Schwartz P, for the ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet. 1998;351:478–84.

    PubMed  Google Scholar 

  141. Bauer A, Kantelhardt JW, Barthel P, Schneider R, Makikallio T, Ulm K, et al. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet. 2006;367:1674–81.

    PubMed  Google Scholar 

  142. Farrell TG, Odemuyiwa O, Bashir Y, Cripps TR, Malik M, Ward DE, et al. Prognostic value of baroreflex sensitivity testing after acute myocardial infarction. Br Heart J. 1992;67:129–37.

    PubMed  CAS  Google Scholar 

  143. Farrell TG, Paul V, Cripps TR, Malik M, Bennett ED, Ward D, et al. Baroreflex sensitivity and electrophysiological correlates in patients after acute myocardial infarction. Circulation. 1991;83:945–52.

    PubMed  CAS  Google Scholar 

  144. De Ferrari GM, Sanzo A, Bertoletti A, Specchia G, Vanoli E, Schwartz PJ. Baroreflex sensitivity predicts long-term cardiovascular mortality after myocardial infarction even in patients with preserved left ventricular function. J Am Coll Cardiol. 2007;50:2285–90.

    PubMed  Google Scholar 

  145. Bauer A, Malik M, Schmidt G, Barthel P, Bonnemeier H, Cygankiewicz I, et al. Heart rate turbulence: Standards of measurement, physiological interpretation, and clinical use: International Society for Holter and Noninvasive Electrophysiology Consensus. J Am Coll Cardiol. 2008;52:1353–65.

    PubMed  Google Scholar 

  146. Schmidt G, Malik M, Barthel P, Schneider R, Ulm K, Rolnitzky L, et al. Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet. 1999;353:1390–6.

    PubMed  CAS  Google Scholar 

  147. Ghuran A, Reid F, La Rovere MT, Schmidt G, Bigger Jr JT, Camm AJ, et al. Heart rate turbulence-based predictors of fatal and nonfatal cardiac arrest (the autonomic tone and reflexes after myocardial infarction substudy). Am J Cardiol. 2002;89:184–90.

    PubMed  Google Scholar 

  148. Barthel P, Schneider R, Bauer A, Ulm K, Schmitt C, Schomig A, et al. Risk stratification after acute myocardial infarction by heart rate turbulence. Circulation. 2003;108:1221–6.

    PubMed  Google Scholar 

  149. Bauer A, Barthel P, Schneider R, Ulm K, Muller A, Joeinig A, et al. Improved Stratification of Autonomic Regulation for risk prediction in post-infarction patients with preserved left ventricular function (ISAR-Risk). Eur Heart J. 2009;30:576–83.

    PubMed  Google Scholar 

  150. Kwon DH, Smedira NG, Rodriguez ER, Tan C, Setser R, Thamilarasan M, et al. Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol. 2009;54:242–9.

    PubMed  Google Scholar 

  151. Kwong RY, Chan AK, Brown KA, Chan CW, Reynolds HG, Tsang S, et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation. 2006;113:2733–43.

    PubMed  Google Scholar 

  152. Yan AT, Shayne AJ, Brown KA, Gupta SN, Chan CW, Luu TM, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circula­tion. 2006;114:32–9.

    PubMed  Google Scholar 

  153. Schmidt A, Azevedo C, Cheng A, Guptsa S, Bluemke D, Foo T, et al. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation. 2006;115:2006–14.

    Google Scholar 

  154. Boye P, Abdel-Aty H, Zacharzowsky U, Bohl S, Schwenke C, van der Geest RJ, et al. Prediction of life-threatening arrhythmic events in patients with chronic myocardial infarction by contrast-enhanced CMR. JACC Cardiovasc Imaging. 2011;4:871–9.

    PubMed  Google Scholar 

  155. Ciaccio EJ, Ashikaga H, Kaba RA, Cervantes D, Hopenfeld B, Wit AL, et al. Model of reentrant ventricular tachycardia based on infarct border zone geometry predicts reentrant circuit features as determined by activation mapping. Heart Rhythm. 2007;4:1034–45.

    PubMed  Google Scholar 

  156. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90:29–34.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred E. Buxton MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Liu, E.H., Joventino, L.P., Buxton, A.E. (2013). Risk Stratification for Sudden Death in Patients with Coronary Artery Disease. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4978-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4978-1_22

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4977-4

  • Online ISBN: 978-1-4471-4978-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics