Skip to main content

Novel Predictors of Sudden Cardiac Death

  • Chapter
  • First Online:
Electrical Diseases of the Heart

Abstract

Despite recent advances in resuscitation science, survival from sudden cardiac arrest (SCA) remains low, and sudden cardiac death (SCD) remains a public health problem of significant proportions. In the United States, estimates of the annual incidence of SCD range from 250,000 to 300,000. Currently, severe left ventricular (LV) dysfunction measured by the LV ejection fraction is the best available predictor of SCD risk and the major indication for primary prevention with the implantable cardioverter-defibrillator (ICD). However, there are major inadequacies associated with using LV ejection fraction for prediction of risk and there is a significant scope for enhancement of risk stratification. This chapter will discuss the utility and limitations of severe LV systolic dysfunction as a risk predictor of SCD, other predictors in the process of being evaluated and finally, the promise that new genomic predictors may also contribute to the process of SCD risk stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldberger JJ, Cain ME, Hohnloser SH, Kadish AH, Knight BP, Lauer MS, et al. American Heart Association/American College of Cardiology Found­ation/Heart Rhythm Society scientific state­ment on noninvasive risk stratification techniques for identifying patients at risk for sudden cardiac death. A scientific statement from the American Heart Association Council on Clinical Cardiology Committee on Electrocardiography and Arrhythmias and Council on Epidemiology and Prevention. J Am Coll Cardiol. 2008;52(14):1179–99.

    Article  PubMed  Google Scholar 

  2. Chugh SS, Reinier K, Teodorescu C, Evanado A, Kehr E, Al Samara M, et al. Epidemiology of sudden cardiac death: clinical and research implications. Prog Cardiovasc Dis. 2008;51(3):213–28.

    Article  PubMed  Google Scholar 

  3. Zheng ZJ, Croft JB, Giles WH, Mensah GA. Sudden cardiac death in the United States, 1989 to 1998. Circulation. 2001;104(18):2158–63.

    Article  PubMed  CAS  Google Scholar 

  4. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352(3):225–37.

    Article  PubMed  CAS  Google Scholar 

  5. Buxton AE, Lee KL, Fisher JD, Josephson ME, Prystowsky EN, Hafley G. A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators. N Engl J Med. 1999;341(25):1882–90.

    Article  PubMed  CAS  Google Scholar 

  6. Moss AJ, Hall WJ, Cannom DS, Daubert JP, Higgins SL, Klein H, et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N Engl J Med. 1996;335(26):1933–40.

    Article  PubMed  CAS  Google Scholar 

  7. Moss AJ, Zareba W, Jackson Hall W, Klein H, Wilber DJ, Cannom DS, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346(12):877–83.

    Article  PubMed  Google Scholar 

  8. Hammill SC, Kremers MS, Kadish AH, Stevenson LW, Heidenreich PA, Lindsay BD, et al. Review of the ICD Registry’s third year, expansion to include lead data and pediatric ICD procedures, and role for measuring performance. Heart Rhythm. 2009;6(9):1397–401.

    Article  PubMed  Google Scholar 

  9. Zwanziger J, Hall WJ, Dick AW, Zhao H, Mushlin AI, Hahn RM, et al. The cost effectiveness of implantable cardioverter-defibrillators: results from the Multicenter Automatic Defibrillator Implantation Trial (MADIT)-II. J Am Coll Cardiol. 2006;47(11):2310–8.

    Article  PubMed  Google Scholar 

  10. Levy WC, Lee KL, Hellkamp AS, Poole JE, Mozaffarian D, Linker DT, et al. Maximizing survival benefit with primary prevention implantable cardioverter-defibrillator therapy in a heart failure population. Circulation. 2009;120(10):835–42.

    Article  PubMed  Google Scholar 

  11. Moss AJ. Prognosis after myocardial infarction. Am J Cardiol. 1983;52(7):667–9.

    Article  PubMed  CAS  Google Scholar 

  12. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. The Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators. N Engl J Med. 1997;337(22):1576–83.

    Google Scholar 

  13. Stevenson LW. Implantable cardioverter-defibrillators for primary prevention of sudden death in heart failure: are there enough bangs for the bucks? Circulation. 2006;114(2):101–3.

    Article  PubMed  Google Scholar 

  14. Jauhar S, Slotwiner DJ. The economics of ICDs. N Engl J Med. 2004;351(24):2542–4.

    Article  PubMed  CAS  Google Scholar 

  15. Myerburg RJ, Mitrani R, Interian Jr A, Castellanos A. Interpretation of outcomes of antiarrhythmic clinical trials: design features and population impact. Circulation. 1998;97(15):1514–21.

    Article  PubMed  CAS  Google Scholar 

  16. de Vreede-Swagemakers JJ, Gorgels AP, Dubois-Arbouw WI, van Ree JW, Daemen MJ, Houben LG, et al. Out-of-hospital cardiac arrest in the 1990’s: a population-based study in the Maastricht area on incidence, characteristics and survival. J Am Coll Cardiol. 1997;30(6):1500–5.

    Article  PubMed  Google Scholar 

  17. Gorgels AP, Gijsbers C, de Vreede-Swagemakers J, Lousberg A, Wellens HJ. Out-of-hospital cardiac arrest – the relevance of heart failure. The Maastricht Circulatory Arrest Registry. Eur Heart J. 2003;24(13):1204–9.

    Article  PubMed  Google Scholar 

  18. Stecker EC, Vickers C, Waltz J, Socoteanu C, John BT, Mariani R, et al. Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction: two-year findings from the Oregon Sudden Unexpected Death Study. J Am Coll Cardiol. 2006;47(6):1161–6.

    Article  PubMed  Google Scholar 

  19. DiMarco JP. Implantable cardioverter-defibrillators. N Engl J Med. 2003;349(19):1836–47.

    Article  PubMed  CAS  Google Scholar 

  20. Myerburg RJ. Scientific gaps in the prediction and prevention of sudden cardiac death. J Cardiovasc Electrophysiol. 2002;13(7):709–23.

    Article  PubMed  Google Scholar 

  21. Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001;141(3):334–41.

    Article  PubMed  CAS  Google Scholar 

  22. Cameron JS, Myerburg RJ, Wong SS, Gaide MS, Epstein K, Alvarez TR, et al. Electrophysiologic consequences of chronic experimentally induced left ventricular pressure overload. J Am Coll Cardiol. 1983;2(3):481–7.

    Article  PubMed  CAS  Google Scholar 

  23. Cerbai E, Barbieri M, Li Q, Mugelli A. Ionic basis of action potential prolongation of hypertrophied cardiac myocytes isolated from hypertensive rats of different ages. Cardiovasc Res. 1994;28(8):1180–7.

    Article  PubMed  CAS  Google Scholar 

  24. Nordin C, Siri F, Aronson RS. Electrophysiologic characteristics of single myocytes isolated from hypertrophied guinea-pig hearts. J Mol Cell Cardiol. 1989;21(7):729–39.

    Article  PubMed  CAS  Google Scholar 

  25. Tomita F, Bassett AL, Myerburg RJ, Kimura S. Diminished transient outward currents in rat hypertrophied ventricular myocytes. Circ Res. 1994;75(2):296–303.

    Article  PubMed  CAS  Google Scholar 

  26. Ben-David J, Zipes DP, Ayers GM, Pride HP. Canine left ventricular hypertrophy predisposes to ventricular tachycardia induction by phase 2 early afterdepolarizations after administration of BAY K 8644. J Am Coll Cardiol. 1992;20(7):1576–84.

    Article  PubMed  CAS  Google Scholar 

  27. Furukawa T, Bassett AL, Furukawa N, Kimura S, Myerburg RJ. The ionic mechanism of reperfusion-induced early afterdepolarizations in feline left ventricular hypertrophy. J Clin Invest. 1993;91(4):1521–31.

    Article  PubMed  CAS  Google Scholar 

  28. Qin D, Zhang ZH, Caref EB, Boutjdir M, Jain P, el-Sherif N. Cellular and ionic basis of arrhythmias in postinfarction remodeled ventricular myocardium. Circ Res. 1996;79(3):461–73.

    Article  PubMed  CAS  Google Scholar 

  29. Wolk R. Arrhythmogenic mechanisms in left ventricular hypertrophy. Europace. 2000;2(3):216–23.

    Article  PubMed  CAS  Google Scholar 

  30. Severs NJ. Gap junction alterations in the failing heart. Eur Heart J. 1994;15(Suppl D):53–7.

    Article  PubMed  Google Scholar 

  31. Spach MS, Boineau JP. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. Pacing Clin Electrophysiol. 1997;20(2 Pt 2):397–413.

    Article  PubMed  CAS  Google Scholar 

  32. Weber KT, Brilla CG, Campbell SE. Regulatory mechanisms of myocardial hypertrophy and fibrosis: results of in vivo studies. Cardiology. 1992;81(4–5):266–73.

    Article  PubMed  CAS  Google Scholar 

  33. El-Sherif N, Scherlag BJ, Lazzara R, Hope RR. Re-entrant ventricular arrhythmias in the late myocardial infarction period. 1. Conduction characteristics in the infarction zone. Circulation. 1977;55(5):686–702.

    Article  PubMed  CAS  Google Scholar 

  34. El-Sherif N, Turitto G. Risk stratification and management of sudden cardiac death: a new paradigm. J Cardiovasc Electrophysiol. 2003;14(10):1113–9.

    Article  PubMed  Google Scholar 

  35. Luke RA, Saffitz JE. Remodeling of ventricular conduction pathways in healed canine infarct border zones. J Clin Invest. 1991;87(5):1594–602.

    Article  PubMed  CAS  Google Scholar 

  36. Lip GY, Blann AD, Beevers DG. Prothrombotic factors, endothelial function and left ventricular hypertrophy in isolated systolic hypertension compared with systolic-diastolic hypertension. J Hypertens. 1999;17(8):1203–7.

    Article  PubMed  CAS  Google Scholar 

  37. Varughese GI, Lip GY. Is hypertension a prothrombotic state? Curr Hypertens Rep. 2005;7(3):168–73.

    Article  PubMed  CAS  Google Scholar 

  38. Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol. 1998;32(5):1454–9.

    Article  PubMed  CAS  Google Scholar 

  39. East MA, Jollis JG, Nelson CL, Marks D, Peterson ED. The influence of left ventricular hypertrophy on survival in patients with coronary artery ­disease: do race and gender matter? J Am Coll Cardiol. 2003;41(6):949–54.

    Article  PubMed  Google Scholar 

  40. Ghali JK, Liao Y, Simmons B, Castaner A, Cao G, Cooper RS. The prognostic role of left ventricular hypertrophy in patients with or without coronary artery disease. Ann Intern Med. 1992;117(10):831–6.

    Article  PubMed  CAS  Google Scholar 

  41. Sukhija R, Aronow WS, Kakar P, Levy JA, Lehrman SG, Babu S. Prevalence of echocardiographic left ventricular hypertrophy in persons with systemic hypertension, coronary artery disease, and peripheral arterial disease and in persons with systemic hypertension, coronary artery disease, and no peripheral arterial disease. Am J Cardiol. 2005;96(6):825–6.

    Article  PubMed  Google Scholar 

  42. Burke AP, Farb A, Liang YH, Smialek J, Virmani R. Effect of hypertension and cardiac hypertrophy on coronary artery morphology in sudden cardiac death. Circulation. 1996;94(12):3138–45.

    Article  PubMed  CAS  Google Scholar 

  43. Burke AP, Farb A, Pestaner J, Malcom GT, Zieske A, Kutys R, et al. Traditional risk factors and the incidence of sudden coronary death with and without coronary thrombosis in blacks. Circulation. 2002;105(4):419–24.

    Article  PubMed  Google Scholar 

  44. Bayes de Luna A, Coumel P, Leclercq JF. Ambulatory sudden cardiac death: mechanisms of production of fatal arrhythmia on the basis of data from 157 cases. Am Heart J. 1989;117(1):151–9.

    Article  PubMed  CAS  Google Scholar 

  45. Reinier K, Dervan C, Singh T, Uy-Evanado A, Lai S, Gunson K, et al. Increased left ventricular mass and decreased left ventricular systolic function have independent pathways to ventricular arrhythmogenesis in coronary artery disease. Heart Rhythm. 2011;8(8):1177–82.

    Article  PubMed  Google Scholar 

  46. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80(5):795–803.

    Article  PubMed  CAS  Google Scholar 

  47. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell. 2001;104(4):569–80.

    Article  PubMed  CAS  Google Scholar 

  48. Moss AJ, Schwartz PJ, Crampton RS, Tzivoni D, Locati EH, MacCluer J, et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation. 1991;84(3):1136–44.

    Article  PubMed  CAS  Google Scholar 

  49. Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet. 1997;17(3):338–40.

    Article  PubMed  CAS  Google Scholar 

  50. Algra A, Tijssen JG, Roelandt JR, Pool J, Lubsen J. QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation. 1991;83(6):1888–94.

    Article  PubMed  CAS  Google Scholar 

  51. Moss AJ. QTc prolongation and sudden cardiac death: the association is in the detail. J Am Coll Cardiol. 2006;47(2):368–9.

    Article  PubMed  Google Scholar 

  52. Straus SM, Kors JA, De Bruin ML, van der Hooft CS, Hofman A, Heeringa J, et al. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J Am Coll Cardiol. 2006;47(2):362–7.

    Article  PubMed  Google Scholar 

  53. Chugh SS, Reinier K, Singh T, Uy-Evanado A, Socoteanu C, Peters D, et al. Determinants of prolonged QT interval and their contribution to sudden death risk in coronary artery disease: the Oregon Sudden Unexpected Death Study. Circulation. 2009;119(5):663–70.

    Article  PubMed  Google Scholar 

  54. Morin DP, Oikarinen L, Viitasalo M, Toivonen L, Nieminen MS, Kjeldsen SE, et al. QRS duration predicts sudden cardiac death in hypertensive patients undergoing intensive medical therapy: the LIFE study. Eur Heart J. 2009;30(23):2908–14.

    Article  PubMed  Google Scholar 

  55. Teodorescu C, Reinier K, Uy-Evanado A, Navarro J, Mariani R, Gunson K, et al. Prolonged QRS duration on the resting ECG is associated with sudden death risk in coronary disease, independent of prolonged ventricular repolarization. Heart Rhythm. 2011;8(10):1562–7.

    Article  PubMed  Google Scholar 

  56. Panikkath R, Reinier K, Uy-Evanado A, Teodorescu C, Hattenhauer J, Mariani R, et al. Prolonged Tpeak-to-tend interval on the resting ECG is associated with increased risk of sudden cardiac death. Circ Arrhythm Electrophysiol. 2011;4(4):441–7.

    Article  PubMed  Google Scholar 

  57. Balkau B, Jouven X, Ducimetiere P, Eschwege E. Diabetes as a risk factor for sudden death. Lancet. 1999;354(9194):1968–9.

    Article  PubMed  CAS  Google Scholar 

  58. Jouven X, Desnos M, Guerot C, Ducimetiere P. Predicting sudden death in the population: the Paris Prospective Study I. Circulation. 1999;99(15):1978–83.

    Article  PubMed  CAS  Google Scholar 

  59. Albert CM, Chae CU, Grodstein F, Rose LM, Rexrode KM, Ruskin JN, et al. Prospective study of sudden cardiac death among women in the United States. Circulation. 2003;107(16):2096–101.

    Article  PubMed  Google Scholar 

  60. Albert CM, Mittleman MA, Chae CU, Lee IM, Hennekens CH, Manson JE. Triggering of sudden death from cardiac causes by vigorous exertion. N Engl J Med. 2000;343(19):1355–61.

    Article  PubMed  CAS  Google Scholar 

  61. Jouven X, Lemaitre RN, Rea TD, Sotoodehnia N, Empana JP, Siscovick DS. Diabetes, glucose level, and risk of sudden cardiac death. Eur Heart J. 2005;26(20):2142–7.

    Article  PubMed  Google Scholar 

  62. Junttila MJ, Barthel P, Myerburg RJ, Makikallio TH, Bauer A, Ulm K, et al. Sudden cardiac death after myocardial infarction in patients with type 2 diabetes. Heart Rhythm. 2010;7(10):1396–403.

    Article  PubMed  Google Scholar 

  63. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–81.

    Article  PubMed  CAS  Google Scholar 

  64. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25(4):543–67.

    Article  PubMed  CAS  Google Scholar 

  65. Govind S, Saha S, Brodin LA, Ramesh SS, Arvind SR, Quintana M. Impaired myocardial functional reserve in hypertension and diabetes mellitus without coronary artery disease: searching for the possible link with congestive heart failure in the myocardial Doppler in diabetes (MYDID) study II. Am J Hypertens. 2006;19(8):851–7.

    Article  PubMed  Google Scholar 

  66. Drechsler C, Krane V, Ritz E, Marz W, Wanner C. Glycemic control and cardiovascular events in diabetic hemodialysis patients. Circulation. 2009;120(24):2421–8.

    Article  PubMed  CAS  Google Scholar 

  67. Veglio M, Borra M, Stevens LK, Fuller JH, Perin PC. The relation between QTc interval prolongation and diabetic complications. The EURODIAB IDDM Complication Study Group. Diabetologia. 1999;42(1):68–75.

    Article  PubMed  CAS  Google Scholar 

  68. Cardoso CR, Salles GF, Deccache W. QTc interval prolongation is a predictor of future strokes in patients with type 2 diabetes mellitus. Stroke. 2003;34(9):2187–94.

    Article  PubMed  Google Scholar 

  69. Rana BS, Lim PO, Naas AA, Ogston SA, Newton RW, Jung RT, et al. QT interval abnormalities are often present at diagnosis in diabetes and are better predictors of cardiac death than ankle brachial pressure index and autonomic function tests. Heart. 2005;91(1):44–50.

    Article  PubMed  CAS  Google Scholar 

  70. Vrtovec B, Fister M, Poglajen G, Starc V, Haddad F. Diabetes does not affect ventricular repolarization and sudden cardiac death risk in patients with dilated cardiomyopathy. Pacing Clin Electrophysiol. 2009;32 Suppl 1:S146–50.

    Article  PubMed  Google Scholar 

  71. Lloyd-Mostyn RH, Watkins PJ. Defective innervation of heart in diabetic autonomic neuropathy. Br Med J. 1975;3(5974):15–7.

    Article  PubMed  CAS  Google Scholar 

  72. Nesto RW. Correlation between cardiovascular disease and diabetes mellitus: current concepts. Am J Med. 2004;116(Suppl 5A):11S–22.

    Article  PubMed  Google Scholar 

  73. Pourmoghaddas A, Hekmatnia A. The relationship between QTc interval and cardiac autonomic neuropathy in diabetes mellitus. Mol Cell Biochem. 2003;249(1–2):125–8.

    Article  PubMed  CAS  Google Scholar 

  74. Veglio M, Chinaglia A, Borra M, Perin PC. Does abnormal QT interval prolongation reflect autonomic dysfunction in diabetic patients? QTc interval measure versus standardized tests in diabetic autonomic neuropathy. Diabet Med. 1995;12(4):302–6.

    Article  PubMed  CAS  Google Scholar 

  75. Havmoeller R, Chugh SS. Plasma biomarkers for prediction of sudden cardiac death – another piece of the risk stratification puzzle? Circ Arrhythm Electrophysiol. 2012;5(1):237–43.

    Article  Google Scholar 

  76. Albert CM, Ma J, Rifai N, Stampfer MJ, Ridker PM. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation. 2002;105(22):2595–9.

    Article  PubMed  CAS  Google Scholar 

  77. Blangy H, Sadoul N, Dousset B, Radauceanu A, Fay R, Aliot E, et al. Serum BNP, hs-C-reactive protein, procollagen to assess the risk of ventricular tachycardia in ICD recipients after myocardial infarction. Europace. 2007;9(9):724–9.

    Article  PubMed  Google Scholar 

  78. Korngold EC, Januzzi Jr JL, Gantzer ML, Moorthy MV, Cook NR, Albert CM. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac death among women. Circulation. 2009;119(22):2868–76.

    Article  PubMed  CAS  Google Scholar 

  79. Empana JP, Jouven X, Canoui-Poitrine F, Luc G, Tafflet M, Haas B, et al. C-reactive protein, interleukin 6, fibrinogen and risk of sudden death in European middle-aged men: the PRIME study. Arterioscler Thromb Vasc Biol. 2010;30(10):2047–52.

    Article  PubMed  CAS  Google Scholar 

  80. Patton KK, Sotoodehnia N, DeFilippi C, Siscovick DS, Gottdiener JS, Kronmal RA. N-terminal pro-B-type natriuretic peptide is associated with sudden cardiac death risk: the Cardiovascular Health Study. Heart Rhythm. 2011;8(2):228–33.

    Article  PubMed  Google Scholar 

  81. Jouven X, Charles MA, Desnos M, Ducimetiere P. Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation. 2001;104(7):756–61.

    Article  PubMed  CAS  Google Scholar 

  82. Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, et al. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med. 2002;346(15):1113–8.

    Article  PubMed  CAS  Google Scholar 

  83. Lemaitre RN, King IB, Mozaffarian D, Sotoodehnia N, Rea TD, Kuller LH, et al. Plasma phospholipid trans fatty acids, fatal ischemic heart disease, and sudden cardiac death in older adults: the cardiovascular health study. Circulation. 2006;114(3):209–15.

    Article  PubMed  CAS  Google Scholar 

  84. Peacock JM, Ohira T, Post W, Sotoodehnia N, Rosamond W, Folsom AR. Serum magnesium and risk of sudden cardiac death in the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2010;160(3):464–70.

    Article  PubMed  CAS  Google Scholar 

  85. Chiuve SE, Korngold EC, Januzzi Jr JL, Gantzer ML, Albert CM. Plasma and dietary magnesium and risk of sudden cardiac death in women. Am J Clin Nutr. 2011;93(2):253–60.

    Article  PubMed  CAS  Google Scholar 

  86. Kucharska-Newton AM, Couper DJ, Pankow JS, Prineas RJ, Rea TD, Sotoodehnia N, et al. Hemostasis, inflammation, and fatal and nonfatal coronary heart disease: long-term follow-up of the atherosclerosis risk in communities (ARIC) cohort. Arterioscler Thromb Vasc Biol. 2009;29(12):2182–90.

    Article  PubMed  CAS  Google Scholar 

  87. Deo R, Sotoodehnia N, Katz R, Sarnak MJ, Fried LF, Chonchol M, et al. Cystatin C and sudden cardiac death risk in the elderly. Circ Cardiovasc Qual Outcomes. 2010;3(2):159–64.

    Article  PubMed  Google Scholar 

  88. Tomaschitz A, Pilz S, Ritz E, Morganti A, Grammer T, Amrein K, et al. Associations of plasma renin with 10-year cardiovascular mortality, sudden cardiac death, and death due to heart failure. Eur Heart J. 2011;32(21):2642–9.

    Article  PubMed  CAS  Google Scholar 

  89. Friedlander Y, Siscovick DS, Weinmann S, Austin MA, Psaty BM, Lemaitre RN, et al. Family history as a risk factor for primary cardiac arrest. Circulation. 1998;97(2):155–60.

    Article  PubMed  CAS  Google Scholar 

  90. Kaikkonen KS, Kortelainen ML, Linna E, Huikuri HV. Family history and the risk of sudden cardiac death as a manifestation of an acute coronary event. Circulation. 2006;114(14):1462–7.

    Article  PubMed  Google Scholar 

  91. Rook MB, Bezzina Alshinawi C, Groenewegen WA, van Gelder IC, van Ginneken AC, Jongsma HJ, et al. Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome. Cardiovasc Res. 1999;44(3):507–17.

    Article  PubMed  CAS  Google Scholar 

  92. Moss AJ, Shimizu W, Wilde AA, Towbin JA, Zareba W, Robinson JL, et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation. 2007;115(19):2481–9.

    Article  PubMed  CAS  Google Scholar 

  93. Lahat H, Pras E, Olender T, Avidan N, Ben-Asher E, Man O, et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet. 2001;69(6):1378–84.

    Article  PubMed  CAS  Google Scholar 

  94. London B, Michalec M, Mehdi H, Zhu X, Kerchner L, Sanyal S, et al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation. 2007;116(20):2260–8.

    Article  PubMed  CAS  Google Scholar 

  95. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med. 2001;345(20):1473–82.

    Article  PubMed  CAS  Google Scholar 

  96. Albert CM, MacRae CA, Chasman DI, VanDenburgh M, Buring JE, Manson JE, et al. Common variants in cardiac ion channel genes are associated with sudden cardiac death. Circ Arrhythm Electrophysiol. 2010;3(3):222–9.

    Article  PubMed  CAS  Google Scholar 

  97. Westaway SK, Reinier K, Huertas-Vazquez A, Evanado A, Teodorescu C, Navarro J, et al. Common variants in CASQ2, GPD1L, and NOS1AP are significantly associated with risk of sudden death in patients with coronary artery disease. Circ Cardiovasc Genet. 2011;4(4):397–402.

    Article  PubMed  Google Scholar 

  98. Postma AV, Denjoy I, Hoorntje TM, Lupoglazoff JM, Da Costa A, Sebillon P, et al. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ Res. 2002;91(8):e21–6.

    Article  PubMed  CAS  Google Scholar 

  99. Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, Ikeda M, et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet. 2006;38(6):644–51.

    Article  PubMed  CAS  Google Scholar 

  100. Kao WH, Arking DE, Post W, Rea TD, Sotoodehnia N, Prineas RJ, et al. Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation. 2009;119(7):940–51.

    Article  PubMed  CAS  Google Scholar 

  101. Eijgelsheim M, Newton-Cheh C, Aarnoudse AL, van Noord C, Witteman JC, Hofman A, et al. Genetic variation in NOS1AP is associated with sudden cardiac death: evidence from the Rotterdam study. Hum Mol Genet. 2009;18(21):4213–8.

    Article  PubMed  CAS  Google Scholar 

  102. Sotoodehnia N, Siscovick DS, Vatta M, Psaty BM, Tracy RP, Towbin JA, et al. Beta2-adrenergic receptor genetic variants and risk of sudden cardiac death. Circulation. 2006;113(15):1842–8.

    Article  PubMed  CAS  Google Scholar 

  103. Altschuld RA, Billman GE. Beta(2)-adrenoceptors and ventricular fibrillation. Pharmacol Ther. 2000;88(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  104. Arking DE, Reinier K, Post W, Jui J, Hilton G, O’Connor A, et al. Genome-wide association study identifies GPC5 as a novel genetic locus protective against sudden cardiac arrest. PLoS One. 2010;5(3):e9879.

    Article  PubMed  CAS  Google Scholar 

  105. Filmus J, Capurro M, Rast J. Glypicans. Genome Biol. 2008;9(5):224.

    Article  PubMed  CAS  Google Scholar 

  106. Lin AE, Neri G, Hughes-Benzie R, Weksberg R. Cardiac anomalies in the Simpson-Golabi-Behmel syndrome. Am J Med Genet. 1999;83(5):378–81.

    Article  PubMed  CAS  Google Scholar 

  107. Arking DE, Junttila MJ, Goyette P, Huertas-Vazquez A, Eijgelsheim M, Blom MT, et al. Identification of a sudden cardiac death susceptibility locus at 2q24.2 through genome-wide association in European ancestry individuals. PLoS Genet. 2011;7(6):e1002158.

    Article  PubMed  CAS  Google Scholar 

  108. Jones MH, Hamana N, Nezu J, Shimane M. A novel family of bromodomain genes. Genomics. 2000;63(1):40–5.

    Article  PubMed  CAS  Google Scholar 

  109. Sanchez R, Zhou MM. The role of human bromodomains in chromatin biology and gene transcription. Curr Opin Drug Discov Devel. 2009;12(5):659–65.

    PubMed  CAS  Google Scholar 

  110. Escobedo LG, Zack MM. Comparison of sudden and nonsudden coronary deaths in the United States. Circulation. 1996;93(11):2033–6.

    Article  PubMed  CAS  Google Scholar 

  111. Hemingway H, Malik M, Marmot M. Social and psychosocial influences on sudden cardiac death, ventricular arrhythmia and cardiac autonomic function. Eur Heart J. 2001;22(13):1082–101.

    Article  PubMed  CAS  Google Scholar 

  112. Mensah GA, Mokdad AH, Ford ES, Greenlund KJ, Croft JB. State of disparities in cardiovascular health in the United States. Circulation. 2005;111(10):1233–41.

    Article  PubMed  Google Scholar 

  113. Chugh SS, Jui J, Gunson K, Stecker EC, John BT, Thompson B. Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate-based review in a large U.S. community. J Am Coll Cardiol. 2004;44(6):1268–75.

    Article  PubMed  Google Scholar 

  114. Reinier K, Stecker EC, Vickers C, Gunson K, Jui J, Chugh SS. Incidence of sudden cardiac arrest is higher in areas of low socioeconomic status: a prospective two year study in a large United States community. Resuscitation. 2006;70(2):186–92.

    Article  PubMed  Google Scholar 

  115. Reinier K, Thomas E, Andrusiek DL, Aufderheide TP, Brooks SC, Callaway CW, et al. Socioeconomic status and incidence of sudden cardiac arrest. CMAJ. 2011;183(15):1705–12.

    Article  PubMed  Google Scholar 

  116. Hallstrom AP, Ornato JP, Weisfeldt M, Travers A, Christenson J, McBurnie MA, et al. Public-access defibrillation and survival after out-of-hospital cardiac arrest. N Engl J Med. 2004;351(7):637–46.

    Article  PubMed  CAS  Google Scholar 

  117. Hazinski MF, Idris AH, Kerber RE, Epstein A, Atkins D, Tang W, et al. Lay rescuer automated external defibrillator (“public access defibrillation”) programs: lessons learned from an international multicenter trial: advisory statement from the American Heart Association Emergency Cardiovascular Committee; the Council on Cardiopulmonary, Perioperative, and Critical Care; and the Council on Clinical Cardiology. Circulation. 2005;111(24):3336–40.

    Article  PubMed  Google Scholar 

  118. Jaglal SB, Goel V. Social inequity in risk of coronary artery disease in Ontario. Can J Cardiol. 1994;10(4):439–43.

    PubMed  CAS  Google Scholar 

  119. Rozanski A, Blumenthal JA, Davidson KW, Saab PG, Kubzansky L. The epidemiology, pathophysiology, and management of psychosocial risk factors in cardiac practice: the emerging field of behavioral cardiology. J Am Coll Cardiol. 2005;45(5):637–51.

    Article  PubMed  Google Scholar 

  120. Soo L, Huff N, Gray D, Hampton JR. Geographical distribution of cardiac arrest in Nottinghamshire. Resuscitation. 2001;48(2):137–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumeet S. Chugh MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Chugh, S.S., Havmöller, R., Teodorescu, C., Huertas-Vazquez, A., Uy-Evanado, A., Reinier, K. (2013). Novel Predictors of Sudden Cardiac Death. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4978-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4978-1_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4977-4

  • Online ISBN: 978-1-4471-4978-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics