Skip to main content

Provocative (Drug) Testing in Inherited Arrhythmias

  • Chapter
  • First Online:
Electrical Diseases of the Heart

Abstract

Molecular genetic studies have established a link between a number of heritable channelopathies, including congenital long QT syndrome (LQTS), Brugada syndrome (BrS), and catecholaminergic polymorphic ventricular tachycardia (CPVT), and mutations in genes encoding for ion channels or other membrane components, therefore, have become a golden standard for diagnosing these channelopathies. Clinical diagnosis by standard 12-lead electrocardiography (ECG) at baseline misses some patients, who are genetically affected by these channelopathies (so called concealed form). Therefore, there is a strong need to devise clinical tools to improve the sensitivity of clinical tests to establish the diagnosis of these heritable channelopathies. Provocative testing with catecholamines and pharmacologic testing with sodium channel blockers are critical diagnostic tests in the evaluation of these heritable channelopathies and enable to unmask LQTS, BrS, and CPVT in their concealed state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz PJ, Periti M, Malliani A. The long QT syndrome. Am Heart J. 1975;89:378–90.

    Article  PubMed  CAS  Google Scholar 

  2. Schwartz PJ, Moss AJ, Vincent GM, Crampton RS. Diagnostic criteria for the long QT syndrome: an update. Circulation. 1993;88:782–4.

    Article  PubMed  CAS  Google Scholar 

  3. Moss AJ, Schwartz PJ, Crampton RS, Locati E, Carleen E. The long QT syndrome: a prospective international study. Circulation. 1985;71:17–21.

    Article  PubMed  CAS  Google Scholar 

  4. Priori SG. The fifteen years of discoveries that shaped molecular electrophysiology: time for appraisal. Circ Res. 2010;107:451–6.

    Article  PubMed  CAS  Google Scholar 

  5. Ackerman MJ, Mohler PJ. Defining a new paradigm for human arrhythmia syndromes: phenotypic manifestations of gene mutations in ion channel- and transporter-associated proteins. Circ Res. 2010;107:457–65.

    Article  PubMed  CAS  Google Scholar 

  6. Napolitano C, Antzelevitch C. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac voltage-dependent L-type calcium channel. Circ Res. 2011;108:607–18.

    Article  PubMed  CAS  Google Scholar 

  7. Wilde AA, Brugada R. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac sodium channel. Circ Res. 2011;108:884–97.

    Article  PubMed  CAS  Google Scholar 

  8. Shimizu W, Horie M. Phenotypic manifestations of mutations in genes encoding subunits of ­cardiac potassium channels. Circ Res. 2011;109:97–109.

    Article  PubMed  CAS  Google Scholar 

  9. Priori SG, Napolitano C, Schwartz PJ, Grillo M, Bloise R, Ronchetti E, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004;292:1341–4.

    Article  PubMed  CAS  Google Scholar 

  10. Vincent GM, Timothy KW, Leppert M, Keating M. The spectrum of symptoms and QT intervals in carriers of the gene for the long-QT syndrome. N Engl J Med. 1992;327:846–52.

    Article  PubMed  CAS  Google Scholar 

  11. Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome. Clinical impact. Circulation. 1999;99:529–33.

    Article  PubMed  CAS  Google Scholar 

  12. Swan H, Saarinen K, Kontula K, Toivonen L, Viitasalo M. Evaluation of QT interval duration and dispersion and proposed clinical criteria in diagnosis of long QT syndrome in patients with a genetically uniform type of LQT1. J Am Coll Cardiol. 1998;32:486–91.

    Article  PubMed  CAS  Google Scholar 

  13. Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348:1866–74.

    Article  PubMed  Google Scholar 

  14. Schechter E, Freeman CC, Lazzara R. Afterdepolarizations as a mechanism for the long QT syndrome: electrophysiologic studies of a case. J Am Coll Cardiol. 1984;3:1556–61.

    Article  PubMed  CAS  Google Scholar 

  15. Ackerman MJ, Khositseth A, Tester DJ, Hejlik JB, Shen WK, Porter CB. Epinephrine-induced QT interval prolongation: a gene-specific paradoxical response in congenital long QT syndrome. Mayo Clin Proc. 2002;77:413–21.

    PubMed  CAS  Google Scholar 

  16. Noda T, Takaki H, Kurita T, Suyama K, Nagaya N, Taguchi A, et al. Gene-specific response of dynamic ventricular repolarization to sympathetic stimulation in LQT1, LQT2 and LQT3 forms of congenital long QT syndrome. Eur Heart J. 2002;23:975–83.

    Article  PubMed  CAS  Google Scholar 

  17. Viskin S, Rosso R, Rogowski O, Belhassen B, Levitas A, Wagshal A, et al. Provocation of sudden heart rate oscillation with adenosine exposes abnormal QT responses in patients with long QT syndrome: a bedside test for diagnosing long QT syndrome. Eur Heart J. 2006;27:469–75.

    Article  PubMed  CAS  Google Scholar 

  18. Vyas H, Hejlik J, Ackerman MJ. Epinephrine QT stress testing in the evaluation of congenital long-QT syndrome: diagnostic accuracy of the paradoxical QT response. Circulation. 2006;113:1385–92.

    Article  PubMed  CAS  Google Scholar 

  19. Khositseth A, Hejlik J, Shen WK, Ackerman MJ. Epinephrine-induced T-wave notching in congenital long QT syndrome. Heart Rhythm. 2005;2:141–6.

    Article  PubMed  Google Scholar 

  20. Shimizu W, Antzelevitch C. Differential response to beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J Am Coll Cardiol. 2000;35:778–86.

    Article  PubMed  CAS  Google Scholar 

  21. Shimizu W, Noda T, Takaki H, Kurita T, Nagaya N, Satomi K, et al. Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long QT syndrome. J Am Coll Cardiol. 2003;41:633–42.

    Article  PubMed  CAS  Google Scholar 

  22. Shimizu W, Noda T, Takaki H, Nagaya N, Satomi K, Kurita T, et al. Diagnostic value of epinephrine test for genotyping LQT1, LQT2 and LQT3 forms of congenital long QT syndrome. Heart Rhythm. 2004;1:276–83.

    Article  PubMed  Google Scholar 

  23. Shimizu W, Tanabe Y, Aiba T, Inagaki M, Kurita T, Suyama K, et al. Differential effects of β-blockade on dispersion of repolarization in absence and presence of sympathetic stimulation between LQT1 and LQT2 forms of congenital long QT syndrome. J Am Coll Cardiol. 2002;39:1984–91.

    Article  PubMed  Google Scholar 

  24. Clur SA, Chockalingam P, Filippini LH, Widyanti AP, Van Cruijsen M, Blom NA, et al. The role of the epinephrine test in the diagnosis and management of children suspected of having congenital long QT syndrome. Pediatr Cardiol. 2010;31:462–8.

    Article  PubMed  Google Scholar 

  25. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. J Am Coll Cardiol. 1992;20:1391–6.

    Article  PubMed  CAS  Google Scholar 

  26. Matsuo K, Shimizu W, Kurita T, Inagaki M, Aihara N, Kamakura S. Dynamic changes of 12-lead electrocardiograms in a patient with Brugada syndrome. J Cardiovasc Electrophysiol. 1998;9:508–12.

    Article  PubMed  CAS  Google Scholar 

  27. Miyazaki T, Mitamura H, Miyoshi S, Soejima K, Aizawa Y, Ogawa S. Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. J Am Coll Cardiol. 1996;27:1061–70.

    Article  PubMed  CAS  Google Scholar 

  28. Yan GX, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST segment elevation. Circulation. 1999;100:1660–6.

    Article  PubMed  CAS  Google Scholar 

  29. Shimizu W, Antzelevitch C, Suyama K, Kurita T, Taguchi A, Aihara N, et al. Effect of sodium channel blockers on ST segment, QRS duration, and corrected QT interval in patients with Brugada syndrome. J Cardiovasc Electrophysiol. 2000;11:1320–9.

    Article  PubMed  CAS  Google Scholar 

  30. Brugada R, Brugada J, Antzelevitch C, Kirsch GE, Potenza D, Towbin JA, et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation. 2000;101:510–5.

    Article  PubMed  CAS  Google Scholar 

  31. Morita H, Morita ST, Nagase S, Banba K, Nishii N, Tani Y, et al. Ventricular arrhythmia induced by sodium channel blocker in patients with Brugada syndrome. J Am Coll Cardiol. 2003;42:1624–31.

    Article  PubMed  CAS  Google Scholar 

  32. Rolf S, Bruns HJ, Wichter T, Kirchhof P, Ribbing M, Wasmer K, et al. The ajmaline challenge in Brugada syndrome: diagnostic impact, safety, and recommended protocol. Eur Heart J. 2003;24:1104–12.

    Article  PubMed  CAS  Google Scholar 

  33. Wolpert C, Echternach C, Veltmann C, Antzelevitch C, Thomas GP, Spehl S, et al. Intravenous drug challenge using flecainide and ajmaline in patients with Brugada syndrome. Heart Rhythm. 2005;2:254–60.

    Article  PubMed  Google Scholar 

  34. Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, et al. Brugada syndrome. Report of the second consensus conference. Endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation. 2005;111:659–70.

    Article  PubMed  Google Scholar 

  35. Hong K, Brugada J, Oliva A, Berruezo-Sanchez A, Potenza D, Pollevick GD, et al. Value of electrocardiographic parameters and ajmaline test in the diagnosis of Brugada syndrome caused by SCN5A mutations. Circulation. 2004;110:3023–7.

    Article  PubMed  Google Scholar 

  36. Meregalli PG, Ruijter JM, Hofman N, Bezzina CR, Wilde AA, Tan HL. Diagnostic value of flecainide testing in unmasking SCN5A-related Brugada syndrome. J Cardiovasc Electrophysiol. 2006;17:857–64.

    Article  PubMed  Google Scholar 

  37. Gehi AK, Duong TD, Metz LD, Gomes JA, Mehta D. Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J Cardiovasc Electrophysiol. 2006;17:577–83.

    Article  PubMed  Google Scholar 

  38. Probst V, Veltmann C, Eckardt L, Meregalli PG, Gaita F, Tan HL, et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada Syndrome Registry. Circulation. 2010;121:635–43.

    Article  PubMed  CAS  Google Scholar 

  39. Delise P, Allocca G, Marras E, Giustetto C, Gaita F, Sciarra L, et al. Value of electrocardiographic parameters and ajmaline test in the diagnosis of Brugada syndrome caused by SCN5A mutations. Eur Heart J. 2011;32:169–76.

    Article  PubMed  Google Scholar 

  40. Kamakura S, Ohe T, Nakazawa K, Aizawa Y, Shimizu A, Horie M, et al. Brugada Syndrome Investigators in Japan: long-term prognosis of probands with Brugada-pattern ST-elevation in leads V1-V3. Circ Arrhythm Electrophysiol. 2009;2:495–503.

    Article  PubMed  Google Scholar 

  41. Evain S, Briec F, Kyndt F, Schott JJ, Lande G, Albuisson J, et al. Sodium channel blocker tests allow a clear distinction of electrophysiological characteristics and prognosis in patients with a type 2 or 3 Brugada electrocardiogram pattern. Heart Rhythm. 2008;5:1561–4.

    Article  PubMed  CAS  Google Scholar 

  42. Zorzi A, Migliore F, Marras E, Marinelli A, Baritussio A, Allocca G, et al. Should all individuals with a non diagnostic Brugada-electrocardiogram undergo sodium channel blocker test? Heart Rhythm. 2012;9(6):909–16.

    Article  PubMed  Google Scholar 

  43. Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation. 1995;91:1512–9.

    Article  PubMed  CAS  Google Scholar 

  44. Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106:69–74.

    Article  PubMed  CAS  Google Scholar 

  45. Postma AV, Denjoy I, Kamblock J, Alders M, Lupoglazoff JM, Vaksmann G, et al. Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients. J Med Genet. 2005;42:863–70.

    Article  PubMed  CAS  Google Scholar 

  46. Cerrone M, Colombi B, Santoro M, di Barletta MR, Scelsi M, Villani L, et al. Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor. Circ Res. 2005;96:1031–2.

    Article  Google Scholar 

  47. Tester DJ, Arya P, Will M, Haglund CM, Farley AL, Makielski JC, et al. Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing. Heart Rhythm. 2006;3:800–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement.

Dr. W Shimizu was supported in part by the Research Grant for the Cardiovascular Diseases (H24-033) from the Ministry of Health, Labour and Welfare, Japan, and Grant-in-Aid for Scientific Research on Innovative Areas (22136011).

Dr. Ackerman’s research program was supported by the National Institutes of Health (HD42569 and P01HL 94291), the CJ Foundation for SIDS, the Dr. Scholl Foundation, the Hannah M. Wernke Memorial Foundation, the Sheikh Zayed Saif Mohammed Al Nahyan Fund in Pediatric Cardiology Research, and the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Shimizu MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Shimizu, W., Ackerman, M.J. (2013). Provocative (Drug) Testing in Inherited Arrhythmias. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4978-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4978-1_18

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4977-4

  • Online ISBN: 978-1-4471-4978-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics