Skip to main content

Surface Mapping and Magneto-Electrocardiography

  • Chapter
  • First Online:
Electrical Diseases of the Heart

Abstract

The heart generates magnetic fields that can be detected by body surface mapping utilizing superconducting interference device sensors giving magnetocardiograms (MCGs). The advantages of MCGs over traditional electrocardiograms (ECGs) include increased sensitivity to small signals, less interference by tissue conductivities, and presentation of direct component signals and primary currents. This section highlights the basic principles, recent advancements, and clinical application of MCGs, especially in individuals whose ECGs are not diagnostic. Indeed, MCGs have unique value in diagnosis of prenatal electrical abnormalities, baseline shift in ischemic heart disease, His potential recording, mechanisms and foci of arrhythmias. State of the art technologies for 2D and 3D reconstruction of cardiac electrical activity combined with other cardiac imaging modalities are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pope JH, Aufderheide TP, Ruthazer R, et al. Missed diagnosis of acute cardiac ischemia in the emergency department. N Engl J Med. 2000;342:1163–70.

    Article  PubMed  CAS  Google Scholar 

  2. Wang Y, Cuculich PS, Zhang J, et al. Noninvasive electroanatomic mapping of human ventricular arrhythmias with electrocardiographic imaging. Sci Transl Med. 2011;3:98ra84.

    Article  PubMed  Google Scholar 

  3. Ramanathan C, Ghanem RN, Jia P, et al. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med. 2004;10:422–8.

    Article  PubMed  CAS  Google Scholar 

  4. Wellens HJ, Schuilenberg RM, Durrer D. Electrical stimulation of the heart in patients with Wolff-Parkinson-White syndrome, type A. Circulation. 1971;43:99–114.

    Article  PubMed  CAS  Google Scholar 

  5. Lauterbur PC. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature. 1973;242:190–1.

    Article  CAS  Google Scholar 

  6. Jackman WM, Wang XZ, Friday KJ, et al. Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current. N Engl J Med. 1991;324:1605–11.

    Article  PubMed  CAS  Google Scholar 

  7. Williamson SJ, Kaufmann L. Biomagnetism; sources and their detection. J Magnetism Magn Mater. 1981;22:147–60.

    Article  Google Scholar 

  8. Nowak H. Biomagnetic instrumentation. In: Andrä A, Nowak H, editors. Magnetism in medicine – a handbook. Berlin: Wiley-VCH; 1998. p. 88–135.

    Google Scholar 

  9. Yamada S, Yamaguchi I. Magnetocardiograms in clinical medicine: unique information on cardiac ischemia, arrhythmias, and fetal diagnosis. Intern Med. 2005;44:1–19.

    Article  PubMed  Google Scholar 

  10. Kandori A. Data analysis in magnetocardiography. In: Yamaguchi I, Tsukada K, editors. Magneto­cardiogram interpretation: a basic manual. Tokyo: Corona; 2006. p. 125–47.

    Google Scholar 

  11. Tsukada K, Haruta Y, Adachi A, et al. Multichannel SQUID system detecting tangential components of the cardiac magnetic field. Rev Sci Instrum. 1995;66:5085–91.

    Article  CAS  Google Scholar 

  12. Yamada S, Kuga K, On K, et al. Noninvasive recording of his potential using magnetocardiograms. Circ J. 2003;67:622–4.

    Article  PubMed  Google Scholar 

  13. Yamada S, Tsukada K, Miyashita T, et al. Noninvasive diagnosis of arrhythmic foci by using magnetocardiograms: method and accuracy of magneto-anatomical mapping system. J Arrhythmia. 2000;16:580–6.

    Google Scholar 

  14. Yamada S, Tsukada K, Miyashita T, et al. Noninvasive, direct visualization of macro-reentrant circuits by using magnetocardiograms: initiation and persistence of atrial flutter. Europace. 2003;5:343–50.

    Article  PubMed  CAS  Google Scholar 

  15. Yamada S, Tsukada K, Miyashita T, et al. Noninvasive diagnosis of partial atrial standstill using magnetocardiograms. Circ J. 2002;66:1178–80.

    Article  PubMed  Google Scholar 

  16. Ogata K, Kandori A, Miyashita T, et al. A comparison of two-dimensional techniques for converting magnetocardiogram maps into effective current source distributions. Rev Sci Instrum. 2011;82:014302.

    Article  PubMed  CAS  Google Scholar 

  17. Ogata K, Kandori A, Miyashita T, et al. Visualization of three-dimensional cardiac electrical excitation using standard heart model and anterior and posterior magnetocardiogram. Int J Cardiovasc Imaging. 2006;22:581–93.

    Article  PubMed  Google Scholar 

  18. Kandori A, Ogata K, Miyashita T, et al. Subtraction magnetocardiogram for detecting coronary heart disease. Ann Noninvasive Electrocardiol. 2010;15:360–8.

    Article  PubMed  Google Scholar 

  19. Kandori A, Miyashita T, Ogata K, et al. Electrical space-time abnormalities of ventricular depolarization in patients with Brugada syndrome and patients with complete right-bundle branch blocks studied by magnetocardiography. Pacing Clin Electrophysiol. 2006;29:15–20.

    Article  PubMed  Google Scholar 

  20. Kandori A, Miyashita T, Ogata K, et al. Magnetocardiography study on ventricular depolarization-current pattern in patients with brugada syndrome and complete right-bundle branch blocks. Pacing Clin Electrophysiol. 2006;29:1359–67.

    Article  PubMed  Google Scholar 

  21. Strasburger JF, Wakai RT. Fetal cardiac arrhythmia detection and in utero therapy. Nat Rev Cardiol. 2010;7:277–90.

    Article  PubMed  CAS  Google Scholar 

  22. Strasburger JF, Cheulkar B, Wakai RT. Magnetocardiography for fetal arrhythmias. Heart Rhythm. 2008;5:1073–6.

    Article  PubMed  Google Scholar 

  23. Lewis MJ. Review of electromagnetic source investigations of the fetal heart. Med Eng Phys. 2003;25:801–10.

    Article  PubMed  Google Scholar 

  24. Rein AJJT, O’Donnell C, Geva T, et al. Use of tissue velocity imaging in the diagnosis of fetal cardiac arrhythmias. Circulation. 2002;106:1827–33.

    Article  PubMed  CAS  Google Scholar 

  25. Comani S, Liberati M, Mantini D, et al. Characterization of fetal arrhythmias by means of fetal magnetocardiography in three cases of difficult ultrasonographic imaging. Pacing Clin Electrophysiol. 2004;27:1647–55.

    Article  PubMed  Google Scholar 

  26. Zhao H, Strasburger JF, Cuneo BF, et al. Fetal cardiac repolarization abnormalities. Am J Cardiol. 2006;98:491–6.

    Article  PubMed  Google Scholar 

  27. Wakai RT, Strasburger JF, Li Z, et al. Magneto­cardiographic rhythm patterns at initiation and termination of fetal supraventricular tachycardia. Circulation. 2003;107:307–12.

    Article  PubMed  CAS  Google Scholar 

  28. Stinstra J, Golbach E, van Leeuwen P, et al. Multicentre study of fetal cardiac time intervals using magnetocardiography. Br J Obstet Gynaecol. 2002;109:1235–43.

    Article  CAS  Google Scholar 

  29. Kandori A, Miyashita T, Tsukada K, et al. Sensitivity of foetal magnetocardiograms versus gestation week. Med Biol Eng Comput. 1999;37:545–8.

    Article  PubMed  CAS  Google Scholar 

  30. Hamada H, Horigome H, Asaka M, et al. Prenatal diagnosis of long QT syndrome using fetal magnetocardiography. Prenat Diagn. 1999;19:677–80.

    Article  PubMed  CAS  Google Scholar 

  31. Cuneo BF, Ovadia M, Strasburger JF, et al. Prenatal diagnosis and in utero treatment of torsades de pointes associated with congenital long QT syndrome. Am J Cardiol. 2003;91:1395–8.

    Article  PubMed  Google Scholar 

  32. Horigome H, Iwashita H, Yoshinaga M, et al. Magnetocardiographic demonstration of torsade de pointes in a fetus with congenital long QT syndrome. J Cardiovasc Electrophysiol. 2008;19:334–5.

    Article  PubMed  Google Scholar 

  33. Kandori A, Miyashita T, Tsukada K, et al. Prenatal diagnosis of QT prolongation by fetal magnetocardiogram – use of QRS and T-wave current-arrow maps. Physiol Meas. 2001;22:377–87.

    Article  PubMed  CAS  Google Scholar 

  34. Hosono T, Chiba Y, Shinto M, et al. A fetal Wolff-Parkinson-White syndrome diagnosed prenatally by magnetocardiography. Fetal Diagn Ther. 2001;16:215–7.

    Article  PubMed  CAS  Google Scholar 

  35. Kandori A, Hosono T, Chiba Y, et al. Classifying cases of fetal Wolff-Parkinson-White syndrome by estimating the accessory pathway from fetal magnetocardiograms. Med Biol Eng Comput. 2003;41:33–9.

    Article  PubMed  CAS  Google Scholar 

  36. Kandori A, Hosono T, Kanagawa T, et al. Detection of atrial-flutter and atrial-fibrillation waveforms by fetal magnetocardiogram. Med Biol Eng Comput. 2002;40:213–7.

    Article  PubMed  CAS  Google Scholar 

  37. Hosono T, Kanagawa T, Chiba Y, et al. Fetal atrial flutter recorded prenatally by magnetocardiography. Fetal Diagn Ther. 2002;17:75–7.

    Article  PubMed  Google Scholar 

  38. Zhao H, Cuneo BF, Strasburger JF, et al. Electrophysiological characteristics of fetal atrioventricular block. J Am Coll Cardiol. 2008;51:77–84.

    Article  PubMed  CAS  Google Scholar 

  39. Horigome H, Shiono J, Shigemitsu S, et al. Detection of cardiac hypertrophy in the fetus by approximation of the current dipole using magnetocardiography. Pediatr Res. 2001;50:242–5.

    Article  PubMed  CAS  Google Scholar 

  40. Schwartz PJ, Stramba-Badiale M, Segantini A, et al. Prolongation of the QT interval and the sudden infant death syndrome. N Engl J Med. 1998;338:1709–14.

    Article  PubMed  CAS  Google Scholar 

  41. Wang K, Asinger RW, Marriott HJ. ST-segment elevation in conditions other than acute myocardial infarction. N Engl J Med. 2003;349:2128–35.

    Article  PubMed  CAS  Google Scholar 

  42. Mirvis DM. The normal electrocardiogram. In: Mirvis DM, editor. Electrocardiography. A physiologic approach. St. Louis: C.V. Mosby; 1993. p. 102–12.

    Google Scholar 

  43. Cohen D, Kaufman LA. Magnetic determination of the relationship between the S-T segment shift and the injury current produced by coronary artery occlusion. Circ Res. 1975;36:414–24.

    Article  PubMed  CAS  Google Scholar 

  44. Savard P, Cohen D, Lepeschkin E, et al. Magnetic measurement of S-T and T-Q segment shifts in humans. Part I: early repolarization and left bundle branch block. Circ Res. 1983;53:264–73.

    Article  PubMed  CAS  Google Scholar 

  45. Cohen D, Savard P, Rifkin RD, et al. Magnetic measurement of S-T and T-Q segment shifts in humans. Part II: exercise-induced ST segment depression. Circ Res. 1983;53:274–9.

    Article  PubMed  CAS  Google Scholar 

  46. Van Leeuwen P, Hailer B, Lange S, et al. Spatial and temporal changes during QT interval in the magnetic field of patients with coronary artery disease. Biomed Tech. 1999;44:139–42.

    Article  Google Scholar 

  47. Park JW, Hill PM, Chung N, et al. Magneto­cardiography predicts coronary artery disease in patients with acute chest pain. Ann Noninvasive Electrocardiol. 2005;10:312–23.

    Article  PubMed  Google Scholar 

  48. Morrow DA, Boden WE. Stable ischemic heart disease. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease. A textbook of cardiovascular medicine. 9th ed. Philadelphia: WB Saunders; 2011. p. 1210–69.

    Google Scholar 

  49. Tsukada K, Miyashita T, Kandori A, et al. An isointegral mapping technique using magnetocardiogram, and its possible use for diagnosis of ischemic heart disease. Int J Card Imaging. 2000;16:55–66.

    Article  PubMed  CAS  Google Scholar 

  50. Yamada S, Tsukada K, Miyashita T, Yamaguchi I. Calculating integral values of the cardiac magnetic field is more sensitive to repolarization abnormalities than conducting electrocardiograms. Comput Cardiol. 2000;27:371–3.

    Google Scholar 

  51. Yamada S, Tsukada K, Miyashita T, Watanabe S, Yamaguchi I. Evaluating ventricular repolarization abnormalities in the at-rest phase in ischemic heart disease by using magnetocardiograms. Biomed Tech. 2001;46:47–9.

    Article  Google Scholar 

  52. On K, Watanabe S, Yamada S, et al. Integral value of JT interval in magnetocardiography is sensitive to coronary stenosis and improves soon after coronary revascularization. Circ J. 2007;71:1586–92.

    Article  PubMed  Google Scholar 

  53. Watanabe S, Yamada S. Magnetocardiography in early detection of electromagnetic abnormality in ischemic heart disease. J Arrhythmia. 2008;24:4–17.

    Google Scholar 

  54. Kanzaki H, Nakatani S, Kandori A, et al. A new screening method to diagnose coronary artery disease using multichannel magnetocardiogram and simple exercise. Basic Res Cardiol. 2003;98:124–32.

    Article  PubMed  Google Scholar 

  55. Stroink G, Moshage W, Achenbach S. Cardio­magnetism. In: Andrä A, Nowak H, editors. Magnetism in medicine – a handbook. Berlin: Wiley-VCH; 1998. p. 136–89.

    Google Scholar 

  56. Korhonen P, Husa T, Tietrala I, et al. Increased intra-QRS fragmentation in magnetocardiography as a predictor of arrhythmic events and ­mortality in patients with cardiac dysfunction after myocardial infarction. J Cardiovasc Electro­physiol. 2006;17:396–401.

    Article  PubMed  Google Scholar 

  57. Korhonen P, Pesola K, Jarvinen A, et al. Relation of magnetocardiographic arrhythmia risk parameters to delayed ventricular conduction in postinfarction ventricular tachycardia. Pacing Clin Electrophysiol. 2002;25:1339–45.

    Article  PubMed  Google Scholar 

  58. Nomura M, Fujino K, Katayama M, et al. Analysis of the T wave of the magnetocardiogram in patients with essential hypertension by means of isomagnetic and vector arrow maps. J Electro­cardiol. 1988;21:174–82.

    Article  PubMed  CAS  Google Scholar 

  59. Terada Y, Mitsui T, Sato M, et al. Right ventricular volume unloading evaluated by tangential magnetocardiography. Jpn J Thorac Cardiovasc Surg. 2000;48:16–23.

    Article  PubMed  CAS  Google Scholar 

  60. Shiono J, Horigome H, Matsui A, et al. Detection of repolarization abnormalities in patients with cardiomyopathy using current vector mapping technique on magnetocardiogram. Int J Cardiovasc Imaging. 2003;19:163–70.

    Article  PubMed  Google Scholar 

  61. Shiono J, Horigome H, Matsui A, et al. Evaluation of myocardial ischemia in Kawasaki disease using an integral map on magnetocardiogram. Pacing Clin Electrophysiol. 2002;25:915–21.

    Article  PubMed  Google Scholar 

  62. Brockmeier K, Schmitz L, Wiegand S, et al. Highpass-filtered magnetocardiogram and cardiomyopathy in patients with type 1 diabetes mellitus. J Electrocardiol. 1997;30:293–300.

    Article  PubMed  CAS  Google Scholar 

  63. Weismuller P, Abraham-Fuchs K, Schneider S, et al. Biomagnetic noninvasive localization of accessory pathways in Wolff-Parkinson-White syndrome. Pacing Clin Electrophysiol. 1991;14:1961–5.

    Article  PubMed  CAS  Google Scholar 

  64. Weismuller P, Abraham-Fuchs K, Schneider S, et al. Magnetocardiopgraphic noninvasive localization of accessory pathways in the Wolff-Parkinson-White syndrome by a multichannel system. Eur Heart. 1992;13:616–22.

    CAS  Google Scholar 

  65. Yamada S, Tsukada K, Miyashita T, et al. The superiority of magnetocardiograms over electrocardiograms for detecting conduction delay in the right atrium. Pacing Clin Electrophysiol. 2003;26(Pt. II):1048.

    Google Scholar 

  66. Yamada S, Tsukada K, Miyashita T, et al. Magnetocardiogram is a useful noninvasive tool to identify patients at high risk of atrial fibrillation and heart failure hospitalization. In: Halgren E, Ahlfors S, Hämäläinen M, Cohen D, editors. Biomag 2004 proceedings of the 14th international conference on biomagnetism. Boston: Biomag 2004 Ltd.; 2004. p. 422.

    Google Scholar 

  67. Baule GM, McFee R. Detection of the magnetic field of the heart. Am Heart J. 1963;66:95–6.

    Article  PubMed  CAS  Google Scholar 

  68. Baule GM, McFee R. The magnetic heart vector. Am Heart J. 1970;79:223–36.

    Article  PubMed  CAS  Google Scholar 

  69. Cohen D, Norman JC, Molokhia F, et al. Magnetocardiography of direct currents: S-T segment and baseline shifts during experimental myocardial infarction. Science. 1971;172:1329–33.

    Article  PubMed  CAS  Google Scholar 

  70. Barry WH, Fairbank WM, Harrison DC, et al. Measurement of the human magnetic heart vector. Science. 1977;198:1159–62.

    Article  PubMed  CAS  Google Scholar 

  71. Karp PJ, Katila TE, Saarinen M, et al. The normal human magnetocardiogram. II. A multipole analysis. Circ Res. 1980;47:117–30.

    Article  PubMed  CAS  Google Scholar 

  72. Brisinda D, Caristo ME, Fenici R. Contactless magnetocardiographic mapping in anesthetized Wistar rats: evidence of age-related changes of cardiac electrical activity. Am J Physiol Heart Circ Physiol. 2006;291:H368–78.

    Article  PubMed  CAS  Google Scholar 

  73. Franz MR. Magnetism: the last resort? J Cardiovasc Electrophysiol. 2001;12:778–9.

    Article  PubMed  CAS  Google Scholar 

  74. Mäkelä T, Pham QC, Clarysse P, et al. A 3-D model based registration approach for the PET, MR and MCG cardiac data fusion. Med Image Anal. 2003;7:377–89.

    Article  PubMed  Google Scholar 

  75. Feniti R, Pesola K, Mäkijärvi M, et al. Nonfluoro­scopic localization of an amagnetic catheter in a realistic torso phantom by magnetocardiographic and body surface potential mapping. Pacing Clin Electrophysiol. 1998;21(Pt. II):2485–91.

    Google Scholar 

  76. Feniti R, Pesola K, Korhonen P, et al. Magneto­cardiographic pacemapping for nonfluoroscopic localization of intracardiac electrophysiology catheters. Pacing Clin Electrophysiol. 1998;21(Pt. II):2492–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satsuki Yamada MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Yamada, S., Kandori, A. (2013). Surface Mapping and Magneto-Electrocardiography. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4978-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4978-1_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4977-4

  • Online ISBN: 978-1-4471-4978-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics