Skip to main content

Dielectric, Mechanical, and Electromechanical Properties of Ferroelectrics and Piezoelectrics

  • Chapter
  • First Online:
Tuneable Film Bulk Acoustic Wave Resonators

Abstract

This chapter introduces the fundamentals of dielectric, mechanical, and electromechanical properties of insulating solids, primarily focusing on ferroelectric and piezoelectric materials, suitable for FBARs. Sections 2.1, 2.2, and 2.3 address these properties, neglecting the energy dissipation associated with AC signals, whereas Sect. 2.4 is reserved for the discussion of effects related to the energy dissipation (e.g. dielectric and acoustic loss).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, this function is called « free energy density » as often done in literature. However, this is a proper name for \( F + P_{i} E_{i} \).

  2. 2.

    Here, a ferroelectric exhibiting two domain states is considered. Hence, Fig. 2.6b gives an example of a multi-domain configuration consisting of two domain states. Often, ferroelectrics exhibit more than two domain states. In this case, the domain configurations can consist of more than two domain states.

  3. 3.

    Such equation is valid for piezoelectrics as well. In this case, it should be derived from the set of electromechanical constitutive equations (2.87) by eliminating the electrical variables \( E \) and \( D \). The additional relationship between these variables needed for such procedure is controlled by the electrical conditions in the medium (e.g., short-circuit).

References

  • Baniecki JD, Laibowitz RB, Shaw TM et al (1998) Dielectric relaxation of Ba0.7Sr0.3TiO3 thin films from 1 mHz to 20 GHz. Appl Phys Lett 72:498–500

    Article  Google Scholar 

  • Brown B, Aaron M (2001) The politics of nature. In: Smith J (ed) The rise of modern genomics, 3rd edn. Wiley, New York

    Google Scholar 

  • Chase DR et al (2005) Modelling the Capacitive Nonlinearity in Thin Film BST Varactors. IEEE Trans Micr Theory Tech 53:3215–3220

    Article  Google Scholar 

  • Damjanovic D (2005) Hysteresis in piezoelectric and ferroelectric materials. In: Bertotti G, Mayergoyz I (eds) Science of hysteresis. Elsevier, Amsterdam

    Google Scholar 

  • Fukuda Y, Numata K, Aoki K et al (1996) Origin of dielectric relaxation observed for Ba0.5Sr0.5TiO3 thin-film capacitor. Jpn J Appl Phys 35:5178

    Article  Google Scholar 

  • Gurevich VL (1986) Transport in Phonon Systems. North-Holland, Amsterdam

    Google Scholar 

  • Gurevich VL, Tagantsev AK (1991) Intrinsic dielectric loss in crystals. Adv Phys 40:719–767

    Article  Google Scholar 

  • Holland R (1967) Representation of dielectric, elastic, and piezoelectric losses by complex coefficients. IEEE Trans Sonics Ultrason SU-14:18-20

    Google Scholar 

  • Jonscher AK (1996) Universal relaxation law. Chelsea Dielectrics Press, London

    Google Scholar 

  • Landau LD, Lifshitz EM, Pitaevskii LP (1984) Electrodynamics of Continuous Media, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Muralt P, Conde J, Arteida A et al (2009) Piezoelectric materials parameters for piezoelectric thin films in GHz applications. Int J Microwave Wirel Technol 1:19–27

    Article  Google Scholar 

  • Noeth A, Yamada T, Sherman VO et al (2007) Tuning of direct current bias-induced resonances in micromachined Ba0.3Sr0.7TiO3 thin-film capacitors. J Appl Phys 102:114110

    Article  Google Scholar 

  • Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, New York

    Google Scholar 

  • Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Effect of mechanical boundary conditions on the phase diagrams of epitaxial ferroelectric thin films. Phys Rev Lett 80:1988–1991

    Article  Google Scholar 

  • Smolenskii GA, Isupov VA (1954) Zhurnal Tekhnicheskoi Fiziki, 24:1375

    Google Scholar 

  • Strukov BA, Levanyuk AP (1998) Ferroelectric phenomena in crystals. Springer, Berlin

    Book  MATH  Google Scholar 

  • Tagantsev AK (1984) Dielectric losses in displacive ferroelectrics. Sov Phys JETP 59:1290–1297

    Google Scholar 

  • Tagantsev AK, Cross LE, Fousek J (2010) Domains in ferroic crystals and thin films. Springer, New York

    Book  Google Scholar 

  • Tagantsev AK, Sherman VO, Astafiev KF et al (2003) Ferroelectric materials for microwave tuneable applications. J Electroceram 11:5–66

    Article  Google Scholar 

  • Tagantsev AK (1982) On the dielectric relaxation and thermopolarization effect in crystals, PhD thesis, Ioffe Institute, Leningrad, Russia

    Google Scholar 

  • Vendik OG, Hollmann EK, Kozyrev AB et al (1999) Ferroelectric tuning of planar and bulk microwave devices. J Supercond 1 5–338

    Article  Google Scholar 

  • Vendik OG, Zubko SP (1997) Modeling the dielectric response of incipient ferroelectrics. J Appl Phys 82:4475–4483

    Article  Google Scholar 

  • Vorobiev A, Gevorgian S (2010) Tuneable thin film bulk acoustic wave resonators with improved Q-factor. Appl Phys Lett 96:212904

    Article  Google Scholar 

  • Waser R (1995) Polarisation, conduction, and breakdown in non-ferroelectric perovskite thin films. In: Auciello O, Waser R (eds) Science and technology of electroceramic thin films. Birkhäuser Verlag, Basel

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spartak Gevorgian .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Gevorgian, S., Tagantsev, A.K., Vorobiev, A. (2013). Dielectric, Mechanical, and Electromechanical Properties of Ferroelectrics and Piezoelectrics. In: Tuneable Film Bulk Acoustic Wave Resonators. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-4471-4944-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4944-6_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4943-9

  • Online ISBN: 978-1-4471-4944-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics