Advertisement

Introduction

  • Spartak Gevorgian
  • Alexander K. Tagantsev
  • Andrei Vorobiev
Chapter
Part of the Engineering Materials and Processes book series (EMP)

Abstract

This chapter starts with brief discussions about needs in tuneable resonators focusing on advanced agile microwave communication systems. To assist in reading of the following chapters, vibrational modes in FBARs are reviewed. The concept of electrostriction-mediated induced piezoelectric effect in paraelectrics, used in intrinsically tuneable ferroelectric FBARs, is discussed. A summary of the state-of-the-art in intrinsically tuneable FBARs concludes the chapter.

Keywords

Resonant Frequency Surface Acoustic Wave Piezoelectric Effect Electromechanical Coupling Coefficient Mobile Handset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aigner R (2007) Bringing BAW technology into volume production: the ten commandments and the seven deadly sins. 3rd international symposium acoustic wave devices for future mobile communication systemsGoogle Scholar
  2. Aigner R (2008) Tuneable RF filters: pursuing the ‘Holy Grail’ of acoustic filter R&D. Microw J 49:23–29Google Scholar
  3. Berge J, Gevorgian S (2011) Tuneable bulk acoustic wave resonators based on Ba0.25Sr0.75TiO3 thin films and HfO2/SiO2 Bragg reflector. IEEE Tr Ultrason Ferroel Freq Control 58:2768–2771CrossRefGoogle Scholar
  4. Berge J, Vorobiev A, Steichen W, Gevorgian S (2007) Tuneable solidly mounted thin film bulk acoustic resonators based on BaxSr1 xTiO3 films. IEEE Microwave Wirel Compon Lett 17:655–657CrossRefGoogle Scholar
  5. Berge J, Norling M, Vorobiev A, Gevorgian S (2008) Field and temperature dependent parameters of the dc field induced resonances in BaxSr1-xTiO3-based tuneable thin film bulk acoustic resonators. J Appl Phys 103:064508CrossRefGoogle Scholar
  6. Capanu M, Bernacki T, Zelner M, Woo P, Cervin-Lawry A, Divita C (2008) DC-switchable and tuneable piezoelectricity in RF thin-film BST capacitors. EuMC2008, pp 123–126Google Scholar
  7. Chandrahalim H, Bhave SA, Polcawich RG, Pulskamp J, Kaul R (2009) A Pb(Zr0.55Ti0.45)O3-transduced fully differential mechanically coupled frequency agile filter. IEEE Electron Device Lett 30:1296–1298CrossRefGoogle Scholar
  8. Cheng Y, Liu XJ, Wu DJ (2011) Temperature tuneable Lamb wave based on BST. J Acoust Soc Am 129:1157–1160CrossRefGoogle Scholar
  9. Conde J, Muralt P (2008) Characterization of Sol-Gel Pb(Zr0.53Ti0.47)O3 in thin film bulk acoustic resonators. IEEE Ultrason Ferroelectr Freq Control 55:1373–1379CrossRefGoogle Scholar
  10. Gevorgian S, Lewin T, Jacobsson H, Vorobiev A (2004) Bulk acoustic resonator (TFBAR). International patent application PCT/SE2004/001099Google Scholar
  11. Gevorgian S, Lewin T, Jacobsson H, Vorobiev A (2008) Bulk acoustic resonator (TFBAR). US patent 2008/0055023 A1, 6 Mar 2008Google Scholar
  12. Gevorgian S, Vorobiev A, Deleniv A (2009) Ferroelectrics in microwave devices, circuits and systems. Springer, LondonCrossRefGoogle Scholar
  13. Hashimoto K (2009) RF bulk acoustic wave filters for communications. Artech House, NorwoodGoogle Scholar
  14. Ivira B, Reinhardt A, Defaÿ E, Aid M (2008) Integration of electrostrictive Ba0.7Sr0.3TiO3 thin films into bulk acoustic wave resonator for RF-frequency tuning under DC bias. IEEE International Frequency Control Symposium, pp 254–258Google Scholar
  15. Kadota, M, Kimura T, Ida Y (2009) Nagaokakyoshi, Japan, ultra wide band resonator composed of grooved Cu-electrode on LiNbO3 and its application to tuneable filter. IEEE Int Ultrason Symp (IUS’2009) 2668–2671Google Scholar
  16. Kadota M, Ogami T (2010) 5.4 GHz Lamb wave resonator using LiNbO3 crystal thin plate and application to tuneable filter LiNbO3. Proc Symp Ultrason Electron 31:337–338Google Scholar
  17. Khanna APS et al (2003) A 2 GHz voltage tuneable FBAR oscillator. IEEE IMS’2003, pp 717–720Google Scholar
  18. Kim JJ, Zhang H, Pang W et al (2005) Low phase noise, FBAR-based voltage controlled oscillator without varactor, Transducers ‘05. IEEE international conference on solid-state sensors and actuators (Seoul, Korea), pp 1063–1066Google Scholar
  19. Lee V, Sis SA, Zhu X, Mortazawi A (2010) Intrinsically switchable interdigitated barium titanate thin film contour mode resonators. IMS, pp 1448–1450Google Scholar
  20. Mahon S, Zepess J, Andrews M (2008) BAW flip-chip switched filter bank delivers dramatic form factor reduction. High Freq Electron (August) 24–28Google Scholar
  21. Mason WP (1948) Electrostrictive effect in barium titanate ceramics. Phys Rev 74:1134–1147CrossRefGoogle Scholar
  22. Muralt P, Antifakos J, Cantoni M, Lanz R, Martin F (2005) Is there a better material for thin film BAW applications than A1 N? IEEE ultrasonics symposium, pp 315–320Google Scholar
  23. Noeth A, Yamada T, Sherman VO, Muralt P, Tagantsev AK, Setter N (2007) Tuning of direct current bias-induced resonances in micromachined Ba0.3Sr0.7TiO3 thin-film capacitors. J Appl Phys 1(02):114110CrossRefGoogle Scholar
  24. Noeth A, Yamada T, Tagantsev AK et al (2008) Electrical tuning of dc bias induced acoustic resonances in paraelectric thin films. J Appl Phys 104:094102–094110CrossRefGoogle Scholar
  25. Noeth A, Yamada T, Muralt P, Tagantsev AK, Setter N (2010) Tuneable thin film bulk acoustic wave resonator based on BaxSr1-xTiO3 thin film. IEEE Trans Ultrason Ferroelectr Freq Control 57:379–385CrossRefGoogle Scholar
  26. Rinaldi M et al (2009) 5–10 GHz AlN contour-mode nanoelectromechanical resonators. IEEE 22nd international conference on micro electro mechanical systems, MEMS’2009, pp 916–919Google Scholar
  27. Rocha-Gaso M-I, March-Iborra C, Montoya-Baides Á, Arnau-Vives A (2009) Surface generated acoustic wave biosensors for the detection of pathogens: a review. Sensors 9:5740–5769Google Scholar
  28. Roy MK, Richer J (2006) Tunable ferroelectric filters for software defined tactical radios. ISAF 2006Google Scholar
  29. Saddik GN, Boesch DS, Stemmer S, York RA (2007) dc electric field tuneable bulk acoustic wave solidly mounted resonator using SrTiO3. Appl Phys Let 91:043501CrossRefGoogle Scholar
  30. Saddik GN, Boesch DS, Stemmer S, York RA (2008) Strontium titanate DC electric field switchable and tuneable bulk acoustic wave solidly mounted resonator. IEEE IMS’2008Google Scholar
  31. Schreiter M, Gabl R, Pitzer D, Primig R, Wersing W (2004) Electro-acoustic hysteresis behaviour of PZT thin film bulk acoustic resonators. J Eur Ceram Soc 24:1589–1592CrossRefGoogle Scholar
  32. Sis SA, Lee V, Phillips JD, Mortazawi A (2012) Intrinsically switchable thin film ferroelectric resonators. IEEE IMS’2012Google Scholar
  33. Volatier A, Defaÿ E, Aïd M, N’hari A, Ancey P (2008) Switchable and tuneable strontium titanate electrostrictive bulk acoustic wave resonator integrated with a Bragg mirror. Appl Phys Lett 92:032906CrossRefGoogle Scholar
  34. Vorobiev A, Gevorgian S (2010) Tuneable thin film bulk acoustic wave resonators with improved Q-factor. Appl Phys Lett 96:212904CrossRefGoogle Scholar
  35. Vorobiev A, Gevorgian S (2012) Improved tuneable performance of high Q-factor BaxSr1-xTiO3 film bulk acoustic wave resonators. Proceedings of EuMIC’2012Google Scholar
  36. Wang Q-M, Zhang T, Chena Q, Dub X-H (2003) Effect of DC bias field on the complex materials coefficients of piezoelectric resonators. Sens Actuators A 109:149–155CrossRefGoogle Scholar
  37. Yasue T, Komatsu T, Nakamura N, Hashimoto K, Hirano H, Esashi M, Tanaka S (2011) Wideband tuneable Love wave filter using electrostatically-actuated MEMs variable capacitors integrated on lithium niobate. Transducers’2011Google Scholar
  38. Zhu X, Phillips JD, Mortazawi A (2007) A DC voltage dependant switchable thin film bulk wave acoustic resonator using ferroelectric thin film. IEEE IMS’2007, pp 671–674Google Scholar
  39. Zinck C, Defay E, Volatier A, Caruyer G, Pellissier TD, Figuier L (2004) Design, integration and characterization of PZT tuneable FBAR. IEEE international ultrasonics, ferroelectrics, and frequency control joint 50th anniversary conference, pp 29–32Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Spartak Gevorgian
    • 1
  • Alexander K. Tagantsev
    • 2
  • Andrei Vorobiev
    • 1
  1. 1.Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSweden
  2. 2.LausanneSwitzerland

Personalised recommendations