Skip to main content

Abstract

Cardiometabolic diseases are a group of complex and highly intertwined disorders that contribute significantly to healthcare expenditures. Despite the substantial efforts made for making safe and effective treatment options available to patients, cardiometabolic diseases are still a leading cause of death worldwide. This is in part due to the apparent disconnect between drug development and clinical application of medications. In order to bridge this gap, translational research approaches are needed which allow for integration of available knowledge and transition of drugs from bench to bedside. These translational research approaches further allow to feedback the lessons learned during the development of one drug into the development of next-in-pipeline drugs, which improves their chances to successfully make it to the market. Ultimately, these quantitative approaches can also serve as a knowledge platform for bedside-ready decision support tools that can guide the clinician’s choice of the most appropriate drug and/or dosing regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plutzky J. A cardiologist’s perspective on cardiometabolic risk. Am J Cardiol. 2007;100(12A):3P–6. Epub 2007/12/25.

    Article  PubMed  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–245. Epub 2012/12/15.

    Article  PubMed  Google Scholar 

  3. Vlasakakis G, Pasqua OD. Cardiovascular disease: the other face of diabetes. CPT Pharmacometrics Syst Pharmacol. 2013;2:e81. Epub 2013/10/25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lesko LJ, Zheng S, Schmidt S. Systems approaches in risk assessment. Clin Pharmacol Ther. 2013;93(5):413–24. Epub 2013/03/28.

    Article  CAS  PubMed  Google Scholar 

  5. Rubio DM, Schoenbaum EE, Lee LS, Schteingart DE, Marantz PR, Anderson KE, et al. Defining translational research: implications for training. Acad Med. 2010;85(3):470–5. Epub 2010/02/26.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Woolf SH. The meaning of translational research and why it matters. JAMA. 2008;299(2):211–3. Epub 2008/01/10.

    Article  CAS  PubMed  Google Scholar 

  7. American Diabetes Association. Standards of medical care in diabetes–2014. Diabetes Care. 2014;37 Suppl 1:S14–80. Epub 2013/12/21.

    Article  Google Scholar 

  8. Jain R, Chung SM, Jain L, Khurana M, Lau SW, Lee JE, et al. Implications of obesity for drug therapy: limitations and challenges. Clin Pharmacol Ther. 2011;90(1):77–89. Epub 2011/06/03.

    Article  CAS  PubMed  Google Scholar 

  9. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. Epub 2001/03/10.

    Article  Google Scholar 

  10. Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G. Mechanism-based pharmacokinetic-pharmacodynamic modeling-a new classification of biomarkers. Pharm Res. 2005;22(9):1432–7. Epub 2005/09/01.

    Article  CAS  PubMed  Google Scholar 

  11. Sorger PK, Allerheiligen SRB, Quantitative and Systems Pharmacology in the Post-genomic Era: New Approaches to Discovering Drugs and Understanding Therapeutic Mechanisms. An NIH White Paper by the QSP Workshop Group. 2011; http://www.nigms.nih.gov/NR/rdonlyres/8ECB1F7C-BE3B-431F-89E6-A43411811AB1/0/SystemsPharmaWPSorger2011.pdf.

  12. Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA, et al. Model-based drug development. Clin Pharmacol Ther. 2007;82(1):21–32. Epub 2007/05/25.

    Article  CAS  PubMed  Google Scholar 

  13. Shafrir E. In: Shafrir E, editor. Animal models of diabetes, frontiers in research. 2nd ed. Boca Raton: CRC Press; 2007.

    Chapter  Google Scholar 

  14. Shafrir E. Contribution of animal models to the research of the causes of diabetes. World J Diabetes. 2010;1(5):137–40.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hunter P, Nielsen P. A strategy for integrative computational physiology. Physiology. 2005;20:316–25.

    Article  CAS  PubMed  Google Scholar 

  16. Ploeger BA, van der Graaf PH, Danhof M. Incorporating receptor theory in mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling. Drug Metab Pharmacokinet. 2009;24(1):3–15. Epub 2009/03/03.

    Article  CAS  PubMed  Google Scholar 

  17. Gallenberger M, Castell W, Hense BA, Kuttler C. Dynamics of glucose and insulin concentration connected to the β-cell cycle: model development and analysis. Theor Biol Med Model. 2012;9:46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Luni C, Marth JD, Doyle 3rd FJ. Computational modeling of glucose transport in pancreatic beta-cells identifies metabolic thresholds and therapeutic targets in diabetes. PLoS One. 2012;7(12):e53130. Epub 2013/01/10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jauslin PM, Silber HE, Frey N, Gieschke R, Simonsson US, Jorga K, et al. An integrated glucose-insulin model to describe oral glucose tolerance test data in type 2 diabetics. J Clin Pharmacol. 2007;47(10):1244–55. Epub 2007/10/02.

    Article  CAS  PubMed  Google Scholar 

  20. Ajmera I, Swat M, Laibe C, Novere NL, Chelliah V. The impact of mathematical modeling on the understanding of diabetes and related complications. CPT Pharmacometrics Syst Pharmacol. 2013;2(7):e54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Schaller S, Willmann S, Lippert J, Schaupp L, Pieber TR, Schuppert A, et al. A generic integrated physiologically based whole-body model of the glucose-insulin-glucagon regulatory system. CPT Pharmacometrics Syst Pharmacol. 2013;2(8):e65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Cao Y, Gao W, Jusko WJ. Pharmacokinetic/pharmacodynamic modeling of GLP-1 in healthy rats. Pharm Res. 2012;29(4):1078–86. Epub 2011/12/20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gao W, Jusko WJ. Modeling disease progression and rosiglitazone intervention in type 2 diabetic Goto-Kakizaki rats. J Pharmacol Exp Ther. 2012;341(3):617–25. Epub 2012/03/02.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. de Winter W, DeJongh J, Post T, Ploeger B, Urquhart R, Moules I, et al. A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus. J Pharmacokinet Pharmacodyn. 2006;33(3):313–43. Epub 2006/03/23.

    Article  PubMed  Google Scholar 

  25. Tay JC GP, Geiser JS, Chien JY, Sinha VP. Time course models for long-term treatment of Type II diabetes mellitus with oral medications. American Conference on Pharmacometrics (ACoP) meeting. 2011.

    Google Scholar 

  26. Eddy DM, Schlessinger L. Archimedes: a trial-validated model of diabetes. Diabetes Care. 2003;26(11):3093–101. Epub 2003/10/28.

    Article  PubMed  Google Scholar 

  27. Bassingthwaighte JB. Strategies for the physiome project. Ann Biomed Eng. 2000;28(8):1043–58. Epub 2001/01/06.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hill NR, Levy JC, Matthews DR. Expansion of the homeostasis model assessment of beta-cell function and insulin resistance to enable clinical trial outcome modeling through the interactive adjustment of physiology and treatment effects: iHOMA2. Diabetes Care. 2013;36(8):2324–30. Epub 2013/04/09.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Klinke 2nd DJ. Integrating epidemiological data into a mechanistic model of type 2 diabetes: validating the prevalence of virtual patients. Ann Biomed Eng. 2008;36(2):321–34. Epub 2007/11/30.

    Article  PubMed  Google Scholar 

  30. Gross JL, Rogers J, Polhamus D, Gillespie W, Friedrich C, Gong Y, et al. A novel model-based meta-analysis to indirectly estimate the comparative efficacy of two medications: an example using DPP-4 inhibitors, sitagliptin and linagliptin, in treatment of type 2 diabetes mellitus. BMJ Open. 2013;3(3):e001844. Epub 2013/03/08.

    Article  PubMed Central  PubMed  Google Scholar 

  31. (NIH)-Fact-Sheets NIoH. Research Portfolio Online Reporting Tools (RePORT) – Human Genome Project. 2013.

    Google Scholar 

  32. Herder C, Karakas M, Koenig W. Biomarkers for the prediction of type 2 diabetes and cardiovascular disease. Clin Pharmacol Ther. 2011;90(1):52–66. Epub 2011/06/10.

    Article  CAS  PubMed  Google Scholar 

  33. Mather KJ, Goldberg RB. Clinical use of adiponectin as a marker of metabolic dysregulation. Best Pract Res Clin Endocrinol Metab. 2014;28(1):107–17. Epub 2014/01/15.

    Article  CAS  PubMed  Google Scholar 

  34. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA. 2004;291(14):1730–7. Epub 2004/04/15.

    Article  CAS  PubMed  Google Scholar 

  35. Khoury MJ, Valdez R, Albright A. Public health genomics approach to type 2 diabetes. Diabetes. 2008;57(11):2911–4. Epub 2008/10/31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Grimes DA, Schulz KF. Making sense of odds and odds ratios. Obstet Gynecol. 2008;111(2 Pt 1):423–6. Epub 2008/02/02.

    Article  PubMed  Google Scholar 

  37. Szumilas M. Explaining odds ratios. J Can Acad Child Adolesc Psychiatry. 2010;19(3):227–9. Epub 2010/09/16.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Timothy F. The genetics behind type 2 diabetes – lessons from GWAS. Diabetes Voice. 2012;57(4):24.

    Google Scholar 

  39. Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med. 2009;27(5):351–7. Epub 2009/08/28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Delisle H. Foetal programming of nutrition-related chronic diseases. Sante (Montrouge, France). 2002;12(1):56–63. Epub 2002/04/12. La programmation foetale des maladies chronique liees a la nutrition.

    Google Scholar 

  41. Mould DR, Lesko LJ. Personalized medicine – integrating individual exposure response information at the bedside. In: Schmidt S, Derendorf H, editors. Applied phamacometrics. New York: Springer; 2014.

    Google Scholar 

  42. FDA. Section 6: 510(k) summary (21 CFR 807.92(c)) – Glooko blood glucose meter and data management system. 2013.

    Google Scholar 

  43. Vanchieri. Addressing the barriers to pediatric drug development: workshop summary. Washington, DC: National Academy of Sciences; 2008.

    Google Scholar 

  44. Saunders TJ, Chaput JP, Goldfield GS, Colley RC, Kenny GP, Doucet E, et al. Prolonged sitting and markers of cardiometabolic disease risk in children and youth: a randomized crossover study. Metab Clin Exp. 2013;62(10):1423–8. Epub 2013/06/19.

    Article  CAS  PubMed  Google Scholar 

  45. Sue Kirkman M, Briscoe VJ, Clark N, Florez H, Haas LB, Halter JB, et al. Diabetes in older adults: a consensus report. J Am Geriatr Soc. 2012;60(12):2342–56. Epub 2012/10/31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Schmidt PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Gaitonde, P., Miller, S.A., Trame, M.N., Schmidt, S. (2015). Quantitative Approaches in Translational Research: An Overview. In: Krentz, A., Heinemann, L., Hompesch, M. (eds) Translational Research Methods for Diabetes, Obesity and Cardiometabolic Drug Development. Springer, London. https://doi.org/10.1007/978-1-4471-4920-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4920-0_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4919-4

  • Online ISBN: 978-1-4471-4920-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics