Skip to main content

Anode Catalysts for Alkaline Direct Alcohol Fuel Cells and Characteristics of the Catalyst Layer

  • Chapter
  • First Online:
Book cover Electrocatalysis in Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

Abstract

The faster kinetics of the alcohol oxidation reaction in alkaline direct alcohol fuel cells (ADAFCs), opening up the possibility of using less expensive metal catalysts, as silver, nickel, and palladium, makes the alkaline direct alcohol fuel cell a potentially low-cost technology compared to acid direct alcohol fuel cell technology, which employs platinum catalysts. In this work an overview of catalysts for ADAFCs, and of testing of ADAFCs, fuelled with methanol, ethanol, and ethylene glycol, formed by these materials, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Markovic N, Gasteiger H, Ross PN (1997) Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J Electrochem Soc 144(5):1591–1597

    Google Scholar 

  2. Blizanac BB, Ross PN, Markovic NM (2007) Oxygen electroreduction on Ag(111): the pH effect. Electrochim Acta 52(6):2264–2271

    Google Scholar 

  3. Kordesch K, Hacker V, Gsellmann J, Cifrain M, Faleschini G, Enzinger P, Fankhauser R, Ortner M, Muhr M, Aronson RR (2000) Alkaline fuel cells applications. J Power Sources 86(1–2):162–165

    Google Scholar 

  4. Gouerec P, Poletto L, Denizot J, Sanchez-Cortezon E, Miners JH (2004) The evolution of the performance of alkaline fuel cells with circulating electrolyte. J Power Sources 129(2): 193–204

    Google Scholar 

  5. Gulzow E, Schulze M, Gerke U (2006) Bipolar concept for alkaline fuel cells. J Power Sources 156(1):1–7

    Google Scholar 

  6. Lin BYS, Kirk DW, Thorpe SJ (2006) Performance of alkaline fuel cells: a possible future energy system? J Power Sources 161(1):474–483

    Google Scholar 

  7. Duerr M, Gair S, Cruden A, McDonald J (2007) Dynamic electrochemical model of an alkaline fuel cell stack. J Power Sources 171(2):1023–1032

    Google Scholar 

  8. Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150:27–31

    Google Scholar 

  9. Varcoe JR, Slade RCT, Lam How Yee E (2006) An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells. Chem Commun 13:1428–1429

    Google Scholar 

  10. Yang CC, Hsu ST, Chien WC, Shih MC, Chiu SJ, Lee KT, Wang CL (2006) Electrochemical properties of air electrodes based on MnO2 catalysts supported on binary carbons. Int J Hydrogen Energy 31(14):2076–2087

    Google Scholar 

  11. Bidault F, Brett DJL, Middleton PH, Brandon NP (2009) Review of gas diffusion cathodes for alkaline fuel cells. J Power Sources 187(1):39–48

    Google Scholar 

  12. Dillon R, Srinivasan S, Arico AS, Antonucci V (2004) International activities in DMFC R&D: status of technologies and potential applications. J Power Sources 127(1–2):112–126

    Google Scholar 

  13. Wasmus S, Kuver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1–2):14–31

    Google Scholar 

  14. Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170(1):1–12

    Google Scholar 

  15. Peled E, Livshits V, Duvdevani T (2002) High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM). J Power Sources 106(1–2):245–248

    Google Scholar 

  16. Tripkovic AV, Popovic KD, Grgur BN, Blizanac B, Ross PN, Markovic NM (2002) Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim Acta 47(22–23):3707–3714

    Google Scholar 

  17. Yu EH, Scott K (2004) Development of direct methanol alkaline fuel cells using anion exchange membranes. J Power Sources 137(2):248–256

    Google Scholar 

  18. Scott K, Yu E, Vlachogiannopoulos G, Shivare M, Duteanu N (2008) Performance of a direct methanol alkaline membrane fuel cell. J Power Sources 175(1):452–457

    Google Scholar 

  19. Coutanceau C, Demarconnay L, Lamy C, Leger JM (2006) Development of electrocatalysts for solid alkaline fuel cell (SAFC). J Power Sources 156(1):14–19

    Google Scholar 

  20. Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9(21):2654–2675

    Google Scholar 

  21. Beden B, Kadirgan F, Lamy C, Leger JM (1982) Oxidation of methanol on a platinum-electrode in alkaline-medium – effect of metal Ad-atoms on the electrocatalytic activity. J Electroanal Chem 142(1–2):171–190

    Google Scholar 

  22. Tripkovic AV, Popovic KD, Momcilovic JD, Drazic DM (1998) Kinetic and mechanistic study of methanol oxidation on a Pt(100) surface in alkaline media. J Electroanal Chem 448(2):173–181

    Google Scholar 

  23. Tripkovic AV, Popovic KD, Lovic JD (2001) The influence of the oxygen-containing species on the electrooxidation of the C-1-C-4 alcohols at some platinum single crystal surfaces in alkaline solution. Electrochim Acta 46(20–21):3163–3173

    Google Scholar 

  24. Spendelow JS, Babu PK, Wieckowski A (2005) Electrocatalytic oxidation of carbon monoxide and methanol on platinum surfaces decorated with ruthenium. Curr Opin Solid State Mater Sci 9(1–2):37–48

    Google Scholar 

  25. Petrii OA (2008) Pt-Ru electrocatalysts for fuel cells: a representative review. J Solid State Electron 12(5):609–642

    Google Scholar 

  26. Petry OA, Podlovchenko BI, Frumkin AN, Lal H (1965) Behaviour of platinized-platinum and platinum-ruthenium electrodes in methanol solutions. J Electroanal Chem 10(4):253–269

    Google Scholar 

  27. Rauhe BR, Mclarnon FR, Cairns EJ (1995) Direct anodic-oxidation of methanol on supported platinum ruthenium catalyst in aqueous cesium carbonate. J Electrochem Soc 142(4):1073–1084

    Google Scholar 

  28. Tripkovic AV, Strbac S, Popovic KD (2003) Effect of temperature on the methanol oxidation at supported Pt and PtRu catalysts in alkaline solution. Electrochem Commun 5(6):484–490

    Google Scholar 

  29. Jayashree RS, Egas D, Spendelow JS, Natarajan D, Markoski LJ, Kenis PJA (2006) Air-breathing laminar flow-based direct methanol fuel cell with alkaline electrolyte. Electrochem Solid State Lett 9(5):A252–A256

    Google Scholar 

  30. Kadirgan F, Beden B, Leger JM, Lamy C (1981) Synergistic effect in the electrocatalytic oxidation of methanol on platinum + palladium alloy electrodes. J Electroanal Chem 125(1): 89–103

    Google Scholar 

  31. Watanabe M, Motoo S (1975) Electrocatalysis by Ad-atoms. 1. Enhancement of oxidation of methanol on platinum and palladium by gold Ad-atoms. J Electroanal Chem 60(3):259–266

    Google Scholar 

  32. Haruta M, Date M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A Gen 222(1–2):427–437

    Google Scholar 

  33. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650

    Google Scholar 

  34. Luo J, Njoki PN, Lin Y, Mott D, Wang LY, Zhong CJ (2006) Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 22(6):2892–2898

    Google Scholar 

  35. Zeng JH, Yang J, Lee JY, Zhou WJ (2006) Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: the promotional effect of the Au core. J Phys Chem B 110(48):24606–24611

    Google Scholar 

  36. Guo X, Guo DJ, Qiu XP, Chen LQ, Zhu WT (2008) A simple one-step preparation of high utilization AuPt nanoparticles supported on MWCNTs for methanol oxidation in alkaline medium. Electrochem Commun 10(11):1748–1751

    Google Scholar 

  37. Zhang YZ, Gu YE, Lin SX, Wei JP, Wang ZH, Wang CM, Du YL, Ye WC (2011) One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity. Electrochim Acta 56(24):8746–8751

    Google Scholar 

  38. Xu CW, Zeng R, Shen PK, Wei ZD (2005) Synergistic effect of CeO2 modified Pt/C catalysts on the alcohols oxidation. Electrochim Acta 51(6):1031–1035

    Google Scholar 

  39. Shen PK, Xu CW, Zeng R, Liu YL (2006) Electro-oxidation of methanol on NiO-promoted Pt/C and Pt/C catalysts. Electrochem Solid State 9(2):A39–A42

    Google Scholar 

  40. Wang JS, Xi JY, Bai YX, Shen Y, Sun J, Chen LQ, Zhu WT, Qiu XP (2007) Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation. J Power Sources 164(2):555–560

    Google Scholar 

  41. Justin P, Rao GR (2009) Enhanced activity of methanol electro-oxidation on Pt-V2O5/C catalysts. Catal Today 141(1–2):138–143

    Google Scholar 

  42. Feng YY, Bi LX, Liu ZH, Kong DS, Yu ZY (2012) Significantly enhanced electrocatalytic activity for methanol electro-oxidation on Ag oxide-promoted PtAg/C catalysts in alkaline electrolyte. J Catal 290:18–25

    Google Scholar 

  43. Biswas PC, Enyo M (1992) Electrooxidation of methanol on graphite-supported perovskite-modified Pt electrodes in alkaline-solution. J Electroanal Chem 322(1–2):203–220

    Google Scholar 

  44. Fleischmann M, Korinek K, Pletcher D (1971) Oxidation of organic compounds at a nickel anode in alkaline solution. J Electroanal Chem 31(1):39–49

    Google Scholar 

  45. Kowal A, Port SN, Nichols RJ (1997) Nickel hydroxide electrocatalysts for alcohol oxidation reactions: an evaluation by infrared spectroscopy and electrochemical methods. Catal Today 38(4):483–492

    Google Scholar 

  46. Rahim MAA, Hameed RMA, Khalil MW (2004) Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J Power Sources 134(2):160–169

    Google Scholar 

  47. Yi QF, Huang W, Zhang JJ, Liu XP, Li L (2008) Methanol oxidation on titanium-supported nano-scale Ni flakes. Catal Commun 9(10):2053–2058

    Google Scholar 

  48. Kazakov VA, Titova VN, Yavich AA, Petrova NV, Tarasevich MR (2004) Electrocatalytic properties of electrolytic Ni/Ru and Fe/Ru in the methanol oxidation. Russ J Electrochem 40(6):679–682

    Google Scholar 

  49. Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG (2008) Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int J Hydrogen Energy 33(16):4367–4376

    Google Scholar 

  50. Jafarian M, Moghaddam RB, Mahjani MG, Gobal F (2006) Electro-catalytic oxidation of methanol on a Ni-Cu alloy in alkaline medium. J Appl Electrochem 36(8):913–918

    Google Scholar 

  51. Casella IG, Cataldi TRI, Salvi AM, Desimoni E (1993) Electrocatalytic oxidation and liquid-chromatographic detection of aliphatic-alcohols at a nickel-based glassy-carbon modified electrode. Anal Chem 65(21):3143–3150

    Google Scholar 

  52. Ciszewski A (1995) Catalytic oxidation of methanol on a glassy carbon electrode electrochemically modified by a conductive Ni-II-curcumin film. Electroanalysis 7(12):1132–1135

    Google Scholar 

  53. Ciszewski A, Milczarek G (1997) Glassy carbon electrode modified by conductive, polymeric nickel(II) porphyrin complex as a 3D homogeneous catalytic system for methanol oxidation in basic media. J Electroanal Chem 426(1–2):125–130

    Google Scholar 

  54. Golikand AN, Asgari M, Maragheh MG, Shahrokhian S (2006) Methanol electrooxidation on a nickel electrode modified by nickel-dimethylglyoxime complex formed by electrochemical synthesis. J Electroanal Chem 588(1):155–160

    Google Scholar 

  55. Golabi SM, Nozad A (2004) Electrocatalytic oxidation of methanol on a nickel-porphyrin IX complex modified glassy carbon electrode in alkaline medium. Electroanalysis 16(3):199–209

    Google Scholar 

  56. Cardoso WS, Dias VLN, Costa WM, Rodrigues ID, Marques EP, Sousa AG, Boaventura J, Bezerra CWB, Song CJ, Liu HS, Zhang JJ, Marques ALB (2009) Nickel-dimethylglyoxime complex modified graphite and carbon paste electrodes: preparation and catalytic activity towards methanol/ethanol oxidation. J Appl Electrochem 39(1):55–64

    Google Scholar 

  57. Golikand AN, Raoof J, Baghayeri M, Asgari M, Irannejad L (2009) Nickel electrode modified by N,N-bis(salicylidene)phenylenediamine (Salophen) as a catalyst for methanol oxidation in alkaline medium. Russ J Electrochem 45(2):192–198

    Google Scholar 

  58. Taraszewska J, Roslonek G (1994) Electrocatalytic oxidation of methanol on a glassy-carbon electrode modified by nickel-hydroxide formed by ex-situ chemical precipitation. J Electroanal Chem 364(1–2):209–213

    Google Scholar 

  59. AvramovIvic M, Jovanovic V, Vlajnic G, Popic J (1997) The electrocatalytic properties of the oxides of noble metals in the electro-oxidation of some organic molecules. J Electroanal Chem 423(1–2):119–124

    Google Scholar 

  60. Borkowska Z, Tymosiak-Zielinska A, Shul G (2004) Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim Acta 49(8):1209–1220

    Google Scholar 

  61. Hernandez J, Solla-Gullon J, Herrero E, Aldaz A, Feliu JM (2006) Methanol oxidation on gold nanoparticles in alkaline media: unusual electrocatalytic activity. Electrochim Acta 52(4): 1662–1669

    Google Scholar 

  62. Bunazawa H, Yamazaki Y (2009) Ultrasonic synthesis and evaluation of non-platinum catalysts for alkaline direct methanol fuel cells. J Power Sources 190(2):210–215

    Google Scholar 

  63. Kumar KS, Haridoss P, Seshadri SK (2008) Synthesis and characterization of electrodeposited Ni-Pd alloy electrodes for methanol oxidation. Surf Coating Technol 202(9):1764–1770

    Google Scholar 

  64. Liu ZL, Zhang XH, Hong L (2009) Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation. Electrochem Commun 11(4):925–928

    MathSciNet  Google Scholar 

  65. Wang ML, Liu WW, Huang CD (2009) Investigation of PdNiO/C catalyst for methanol electrooxidation. Int J Hydrogen Energy 34(6):2758–2764

    Google Scholar 

  66. Guo B, Zhao SZ, Han GY, Zhang LW (2008) Continuous thin gold films electroless deposited on fibrous mats of polyacrylonitrile and their electrocatalytic activity towards the oxidation of methanol. Electrochim Acta 53(16):5174–5179

    Google Scholar 

  67. Ballarin B, Cassani MC, Scavetta E, Tonelli D (2008) Self-assembled gold nanoparticles modified ITO electrodes: the monolayer binder molecule effect. Electrochim Acta 53(27): 8034–8044

    Google Scholar 

  68. White JH, Sammells AF (1993) Perovskite anode electrocatalysis for direct methanol fuel-cells. J Electrochem Soc 140(8):2167–2177

    Google Scholar 

  69. Raghuveer V, Thampi KR, Xanthopoulos N, Mathieu HJ, Viswanathan B (2001) Rare earth cuprates as electrocatalysts for methanol oxidation. Solid State Ionics 140(3–4):263–274

    Google Scholar 

  70. Yu HC, Fung KZ, Guo TC, Chang WL (2004) Syntheses of perovskite oxides nanoparticles La1−x Sr x MO3−δ (M = Co and Cu) as anode electrocatalyst for direct methanol fuel cell. Electrochim Acta 50(2–3):811–816

    Google Scholar 

  71. Singh RN, Sharma T, Singh A, Anindita, Mishra D, Tiwari SK (2008) Perovskite-type La2−x Sr x NiO4 (0 <= x <= 1) as active anode materials for methanol oxidation in alkaline solutions. Electrochim Acta 53(5):2322–2330

    Google Scholar 

  72. Singh RN, Singh A, Mishra D, Anindita, Chartier P (2008) Oxidation of methanol on perovskite-type La2−x Sr x NiO4 (0 <= x <= 1) film electrodes modified by dispersed nickel in 1 M KOH. J Power Sources 185(2):776–783

    Google Scholar 

  73. Xu CW, Cheng LQ, Shen PK, Liu YL (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 9(5): 997–1001

    Google Scholar 

  74. Liang ZX, Zhao TS, Xu JB, Zhu LD (2009) Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta 54(8):2203–2208

    Google Scholar 

  75. Wang H, Xu CW, Cheng FL, Jiang SP (2007) Pd nanowire arrays as electrocatalysts for ethanol electrooxidation. Electrochem Commun 9(5):1212–1216

    Google Scholar 

  76. Elshafei AA, Elmaksoud SAA, Moussa MNH (1992) Effect of some Ad-atoms on the electrocatalytic oxidation of ethanol on a platinum-electrode in alkaline-medium. J Electroanal Chem 336(1–2):73–83

    Google Scholar 

  77. Soundararajan D, Park JH, Kim KH, Ko JM (2012) Pt-Ni alloy nanoparticles supported on CNF as catalyst for direct ethanol fuel cells. Curr Appl Phys 12(3):854–859

    Google Scholar 

  78. Matsumoto F (2012) Ethanol and methanol oxidation activity of PtPb, PtBi, and PtBi2 intermetallic compounds in alkaline media. Electrochemistry 80(3):132–138

    Google Scholar 

  79. Tusi MM, Polanco NSO, da Silva SG, Spinace EV, Neto AO (2011) The high activity of PtBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium. Electrochem Commun 13(2):143–146

    Google Scholar 

  80. Han XY, Wang DW, Liu D, Huang JS, You TY (2012) Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium. J Colloid Interface Sci 367:342–347

    Google Scholar 

  81. Dutta A, Mahapatra SS, Datta J (2011) High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications. Int J Hydrogen Energy 36(22):14898–14906

    Google Scholar 

  82. Datta J, Dutta A, Mukherjee S (2011) The beneficial role of the Cometals Pd and Au in the carbon-supported PtPdAu catalyst toward promoting ethanol oxidation kinetics in alkaline fuel cells: temperature effect and reaction mechanism. J Phys Chem C 115(31):15324–15334

    Google Scholar 

  83. Chen YG, Zhuang L, Lu JT (2007) Non-Pt anode catalysts for alkaline direct alcohol fuel cells. Chinese J Catal 28(10):870–874

    Google Scholar 

  84. He QG, Chen W, Mukerjee S, Chen SW, Laufek F (2009) Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media. J Power Sources 187(2):298–304

    Google Scholar 

  85. Jou LS, Chang JK, Twhang TJ, Sun IW (2009) Electrodeposition of palladium-copper films from 1-ethyl-3-methylimidazolium chloride-tetrafluoroborate ionic liquid on indium tin oxide electrodes. J Electrochem Soc 156(6):D193–D197

    Google Scholar 

  86. Du WX, Mackenzie KE, Milano DF, Deskins NA, Su D, Teng XW (2012) Palladium-tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium. ACS Catal 2(2): 287–297

    Google Scholar 

  87. Nguyen ST, Tan DSL, Lee JM, Chan SH, Wang JY, Wang X (2011) Tb promoted Pd/C catalysts for the electrooxidation of ethanol in alkaline media. Int J Hydrogen Energy 36(16):9645–9652

    Google Scholar 

  88. Oliveira MC, Rego R, Fernandes LS, Tavares PB (2011) Evaluation of the catalytic activity of Pd-Ag alloys on ethanol oxidation and oxygen reduction reactions in alkaline medium. J Power Sources 196(15):6092–6098

    Google Scholar 

  89. Xu CW, Shen PK (2005) Electrochemical oxidation of ethanol on Pt-CeO2/C catalysts. J Power Sources 142(1–2):27–29

    Google Scholar 

  90. Bai YX, Wu JJ, Xi JY, Wang JS, Zhu WT, Chen LQ, Qiu XP (2005) Electrochemical oxidation of ethanol on Pt-ZrO2/C catalyst. Electrochem Commun 7(11):1087–1090

    Google Scholar 

  91. Xu CW, Shen PK, Ji XH, Zeng R, Liu YL (2005) Enhanced activity for ethanol electro oxidation on Pt-MgO/C catalysts. Electrochem Commun 7(12):1305–1308

    Google Scholar 

  92. Shen PK, Xu CW (2006) Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochem Commun 8(1):184–188

    Google Scholar 

  93. Hu FP, Chen CL, Wang ZY, Wei GY, Shen PK (2006) Mechanistic study of ethanol oxidation on Pd-NiO/C electrocatalyst. Electrochim Acta 52(3):1087–1091

    Google Scholar 

  94. Xu CW, Shen PK, Liu YL (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164(2):527–531

    Google Scholar 

  95. Xu CW, Tian ZQ, Shen PK, Jiang SP (2008) Oxide (CeO2, NiO, Co(3)O(4) and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim Acta 53(5):2610–2618

    Google Scholar 

  96. Chu DB, Wang J, Wang SX, Zha LW, He JG, Hou YY, Yan YX, Lin HS, Tian ZW (2009) High activity of Pd-In2O3/CNTs electrocatalyst for electro-oxidation of ethanol. Catal Commun 10(6):955–958

    Google Scholar 

  97. Brankovic SR, McBreen J, Adzic RR (2001) Spontaneous deposition of Pd on a Ru(0001) surface. Surf Sci 479(1–3):L363–L368

    Google Scholar 

  98. Vitse F, Cooper M, Botte GG (2005) On the use of ammonia electrolysis for hydrogen production. J Power Sources 142(1–2):18–26

    Google Scholar 

  99. Bambagioni V, Bianchini C, Filippi J, OberhauserIal W, Marchionni A, Vizza F, Psaro R, Sordelli L, Foresti ML, Innocenti M (2009) Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel-zinc materials. Chemsuschem 2(1):99–112

    Google Scholar 

  100. Kim JW, Park SM (1999) Electrochemical oxidation of ethanol at thermally prepared RuO2-modified electrodes in alkaline media. J Electrochem Soc 146(3):1075–1080

    Google Scholar 

  101. Kim JW, Park SM (2003) In situ XANES studies of electrodeposited nickel oxide films with metal additives for the electro-oxidation of ethanol. J Electrochem Soc 150(11):E560–E566

    Google Scholar 

  102. Shieh DT, Hwang BJ (1995) Kinetics for electrooxidation of ethanol on thermally prepared ruthenium oxide in alkaline-solution. J Electrochem Soc 142(3):816–823

    Google Scholar 

  103. Ta KP, Newman J (1998) Mass transfer and kinetic phenomena at the nickel hydroxide electrode. J Electrochem Soc 145(11):3860–3874

    Google Scholar 

  104. Beden B, Cetin I, Kahyaoglu A, Takky D, Lamy C (1987) Electrocatalytic oxidation of saturated oxygenated compounds on gold electrodes. J Catal 104(1):37–46

    Google Scholar 

  105. Chang SC, Ho YH, Weaver MJ (1991) Applications of real-time FTIR spectroscopy to the elucidation of complex electroorganic pathways – electrooxidation of ethylene-glycol on gold, platinum, and nickel in alkaline-solution. J Am Chem Soc 113(25):9506–9513

    Google Scholar 

  106. Hahn F, Beden B, Kadirgan F, Lamy C (1987) Electrocatalytic oxidation of ethylene-glycol. 3. In-situ infrared reflectance spectroscopic study of the strongly bound species resulting from its chemisorption at a platinum-electrode in aqueous-medium. J Electroanal Chem 216(1–2): 169–180

    Google Scholar 

  107. Christensen PA, Hamnett A (1989) The oxidation of ethylene-glycol at a platinum-electrode in acid and base – an in situ FTIR study. J Electroanal Chem 260(2):347–359

    Google Scholar 

  108. Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Electro-oxidation of methanol and ethylene glycol on platinum in alkaline solution: poisoning effects and product analysis. Electrochim Acta 51(6):1085–1090

    Google Scholar 

  109. Kohlmuller H (1977) Anodic-oxidation of ethylene-glycol with noble-metal alloy catalysts. J Power Sources 1(3):249–256

    Google Scholar 

  110. Dalbay N, Kadirgan F (1991) Electrolytically Co-deposited platinum palladium electrodes and their electrocatalytic activity for ethylene-glycol oxidation – a synergistic effect. Electrochim Acta 36(2):353–356

    Google Scholar 

  111. Kadirgan F, Beden B, Lamy C (1983) Electrocatalytic oxidation of ethylene-glycol. 2. Behavior of platinum-Ad-atom electrodes in alkaline-medium. J Electroanal Chem 143(1–2):135–152

    Google Scholar 

  112. Elshafei AA, Shabanah HM, Moussa MNH (1993) Catalytic influence of underpotentially deposited submonolayers of different metals in ethylene-glycol oxidation on various noble-metal electrodes in alkaline-medium. J Power Sources 46(1):17–27

    Google Scholar 

  113. Demarconnay L, Brimaud S, Coutanceau C, Leger JM (2007) Ethylene glycol electrooxidation in alkaline medium at multi-metallic Pt based catalysts. J Electroanal Chem 601(1–2):169–180

    Google Scholar 

  114. Miyazaki K, Matsumiya T, Abe T, Kurata H, Fukutsuka T, Kojima K, Ogumi Z (2011) Electrochemical oxidation of ethylene glycol on Pt-based catalysts in alkaline solutions and quantitative analysis of intermediate products. Electrochim Acta 56(22):7610–7614

    Google Scholar 

  115. Beden B, Kadirgan F, Kahyaoglu A, Lamy C (1982) Electrocatalytic oxidation of ethylene-glycol in alkaline-medium on platinum-gold alloy electrodes modified by underpotential deposition of lead adatoms. J Electroanal Chem 135(2):329–334

    Google Scholar 

  116. Elshafei AA, Elmaksoud SAA, Fouda AS (1995) Noble-metal-modified glassy-carbon electrodes for ethylene-glycol oxidation in alkaline-medium. J Electroanal Chem 395(1–2): 181–187

    Google Scholar 

  117. Jin CC, Song YS, Chen ZD (2009) A comparative study of the electrocatalytic oxidation of ethylene glycol on PtAu nanocomposite catalysts in alkaline, neutral and acidic media. Electrochim Acta 54(16):4136–4140

    Google Scholar 

  118. Moller H, Pistorius PC (2004) The electrochemistry of gold-platinum alloys. J Electroanal Chem 570(2):243–255

    Google Scholar 

  119. Kadirgan F, Bouhiercharbonnier E, Lamy C, Leger JM, Beden B (1990) Mechanistic study of the electrooxidation of ethylene-glycol on gold and adatom-modified gold electrodes in alkaline-medium. J Electroanal Chem 286(1–2):41–61

    Google Scholar 

  120. Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Electrocatalytic oxidation of ethylene glycol in alkaline solution. J Electrochem Soc 152(4):A729–A731

    Google Scholar 

  121. Demarconnay L, Coutanceau C, Leger JM (2008) Study of the oxygen electroreduction at nanostructured PtBi catalysts in alkaline medium. Electrochim Acta 53(8):3232–3241

    Google Scholar 

  122. Miyazaki K, Sugimura N, Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2008) Perovskite-type oxides La1-xSrxMnO3 for cathode catalysts in direct ethylene glycol alkaline fuel cells. J Power Sources 178(2):683–686

    Google Scholar 

  123. Hou HY, Sun GQ, He RH, Wu ZM, Sun BY (2008) Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell. J Power Sources 182(1):95–99

    Google Scholar 

  124. Hou HY, Sun GQ, He RH, Sun BY, Jin W, Liu H, Xin Q (2008) Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell. Int J Hydrogen Energy 33(23): 7172–7176

    Google Scholar 

  125. Varcoe JR, Slade RCT (2006) An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem Commun 8(5): 839–843

    Google Scholar 

  126. Yang CC, Chiu SJ, Chien WC (2006) Development of alkaline direct methanol fuel cells based on crosslinked PVA polymer membranes. J Power Sources 162(1):21–29

    Google Scholar 

  127. Yang CC, Chiu SJ, Lee KT, Chien WC, Lin CT, Huang CA (2008) Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. J Power Sources 184(1):44–51

    Google Scholar 

  128. Yang CC, Lin CT, Chiu SJ (2008) Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application. Desalination 233(1–3):137–146

    Google Scholar 

  129. Varcoe JR, Slade RCT, Yee ELH, Poynton SD, Driscoll DJ (2007) Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes. J Power Sources 173(1):194–199

    Google Scholar 

  130. Ogumi Z, Matsuoka K, Chiba S, Matsuoka M, Iriyama Y, Abe T, Inaba M (2002) Preliminary study on direct alcohol fuel cells employing anion exchange membrane. Electrochemistry 70(12): 980–983

    Google Scholar 

  131. Yu EH, Scott K (2004) Direct methanol alkaline fuel cell with catalysed metal mesh anodes. Electrochem Commun 6(4):361–365

    Google Scholar 

  132. Fujiwara N, Siroma Z, Yamazaki SI, Ioroi T, Senoh H, Yasuda K (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185(2):621–626

    Google Scholar 

  133. Kim J, Momma T, Osaka T (2009) Cell performance of Pd-Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane. J Power Sources 189(2): 999–1002

    Google Scholar 

  134. Bianchini C, Bambagioni V, Filippi J, Marchionni A, Vizza F, Bert P, Tampucci A (2009) Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells. Electrochem Commun 11(5):1077–1080

    Google Scholar 

  135. Modestov AD, Tarasevich MR, Leykin AY, Filimonov VY (2009) MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes. J Power Sources 188(2):502–506

    Google Scholar 

  136. Shen SY, Zhao TS, Xu JB, Li YS (2010) Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J Power Sources 195(4):1001–1006

    Google Scholar 

  137. Li YS, Zhao TS, Liang ZX (2009) Effect of polymer binders in anode catalyst layer on performance of alkaline direct ethanol fuel cells. J Power Sources 190(2):223–229

    Google Scholar 

  138. Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M (2009) Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J Power Sources 190(2):241–251

    Google Scholar 

  139. Li YS, Zhao TS, Liang ZX (2009) Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells. J Power Sources 187(2):387–392

    Google Scholar 

  140. Prabhuram J, Manoharan R (1998) Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid. J Power Sources 74(1):54–61

    Google Scholar 

  141. Yu EH, Scott K, Reeve RW, Yang LX, Allen RG (2004) Characterisation of platinised Ti mesh electrodes using electrochemical methods: methanol oxidation in sodium hydroxide solutions. Electrochim Acta 49(15):2443–2452

    Google Scholar 

  142. Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5(2):187–200

    Google Scholar 

  143. Antolini E, Giorgi L, Pozio A, Passalacqua E (1999) Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC. J Power Sources 77(2):136–142

    Google Scholar 

  144. Bunazawa H, Yamazaki Y (2008) Influence of anion ionomer content and silver cathode catalyst on the performance of alkaline membrane electrode assemblies (MEAs) for direct methanol fuel cells (DMFCs). J Power Sources 182(1):48–51

    Google Scholar 

  145. Cifrain M, Kordesch KV (2004) Advances, aging mechanism and lifetime in AFCs with circulating electrolytes. J Power Sources 127(1–2):234–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ermete Antolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Antolini, E., Perez, J. (2013). Anode Catalysts for Alkaline Direct Alcohol Fuel Cells and Characteristics of the Catalyst Layer. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics