Skip to main content

Electrocatalysis of Formic Acid Oxidation

  • Chapter
  • First Online:
Electrocatalysis in Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

Abstract

Direct liquid fuel cells for portable electronic devices are plagued by poor efficiency due to high overpotentials and accumulation of intermediates on the electrocatalyst surface. Direct formic acid fuel cells have a potential to maintain low overpotentials if the electrocatalyst is tailored to promote the direct electrooxidation pathway. Through the understanding of the structural and environmental impacts on preferential selection of the more active formic acid electrooxidation pathway, a higher performing and more stable electrocatalyst is sought. This chapter overviews the formic acid electrooxidation pathways, enhancement mechanisms, and fundamental electrochemical mechanistic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gasteiger HA, Garche J (2008) Fuel cells. In: Ertl G (ed) Handbook of heterogeneous catalysis, 2nd edn. Weinheim, Wiley-VCH, pp 3081–3121

    Google Scholar 

  2. Weber M, Wang JT, Wasmus S, Savinell RF (1996) Formic acid oxidation in a polymer electrolyte fuel cell. J Electrochem Soc 143:L158–L160

    Article  Google Scholar 

  3. Ha S, Rice CA, Masel RI, Wieckowski A (2002) Methanol conditioning for improved performance of formic acid fuel cells. J Power Sources 112:655–659

    Article  Google Scholar 

  4. Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A (2002) Characteristics of formic acid fuel cells. In: Proceedings of the 40th power sources conference, pp 254–257

    Google Scholar 

  5. Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111:83–89

    Article  Google Scholar 

  6. Waszczuk P, Barnard TM, Rice C, Masel RI, Wieckowski A (2002) A nanoparticle catalyst with superior activity for electrooxidation of formic acid. Electrochem Commun 4:732

    Article  Google Scholar 

  7. Masel RI, Rice CA, Waszczuk P, Wieckowski A (2003) Fuel cells and fuel cells catalysts. US Patent 7,132,188

    Google Scholar 

  8. McGovern MS, Garnett EC, Rice C, Masel RI, Wieckowski A (2003) Effects of Nafion as a binding agent for unsupported nanoparticle catalysts. J Power Sources 115:35–39

    Article  Google Scholar 

  9. Rhee Y-W, Ha SY, Masel RI (2003) Crossover of formic acid through Nafion membranes. J Power Sources 117:35–38

    Article  Google Scholar 

  10. Rice C, Ha S, Masel RI, Wieckowski A (2003) Catalysts for direct formic acid fuel cells. J Power Sources 115:229–235

    Article  Google Scholar 

  11. Uhm S, Lee HJ, Lee J (2009) Understanding underlying processes in formic acid fuel cells. Phys Chem Chem Phys 11:9326–9336

    Article  Google Scholar 

  12. Wang X, Hu J-M, Hsing IM (2004) Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion membrane. J Electroanal Chem 562:73–80

    Article  Google Scholar 

  13. Masel RI (2012) Novel catalyst mixtures for electrochemical conversion of carbon dioxide to formic acid. US Patent Application WO2012006240A1

    Google Scholar 

  14. Law WL, Platt AM, Wimalaratne PDC, Blair SL (2009) Effect of organic impurities on the performance of direct formic acid fuel cells. J Electrochem Soc 156:B553–B557

    Article  Google Scholar 

  15. Parsons R, VanderNoot T (1988) The oxidation of small organic molecules: a survey of recent fuel cell related research. J Electroanal Chem Interfacial Electrochem 257:9–45

    Article  Google Scholar 

  16. Jarvi TD, Stuve EM (1998) Fundamental aspects of vacuum and electrocatalytic reactions of methanol and formic acid on platinum surfaces. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, New York, NY, pp 75–133

    Google Scholar 

  17. Vielstich W (2003) CO, formic acid, and methanol oxidation in acid electrolytes-mechanisms and electrocatalysis. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 466–511

    Google Scholar 

  18. Ross PN Jr (1998) The science of electrocatalysis on bimetallic surfaces. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, New York, NY, pp 43–74

    Google Scholar 

  19. Chen YX, Heinen M, Jusys Z, Behm RJ (2006) Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode? Langmuir 22: 10399–10408

    Article  Google Scholar 

  20. Larsen R, Ha S, Zakzeski J, Masel RI (2006) Unusually active palladium-based catalysts for the electrooxidation of formic acid. J Power Sources 157:78–84

    Article  Google Scholar 

  21. Beltramo GL, Shubina TE, Koper MTM (2005) Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface-enhanced Raman spectroscopy and DFT. ChemPhysChem 6:2597–2606

    Article  Google Scholar 

  22. Chen S-l, Wu B-l, Cha C-s (1997) An EQCM investigation of oxidation of formic acid at gold electrode in sulfuric acid solution. J Electroanal Chem 431:243–247

    Article  Google Scholar 

  23. Chen W, Tang Y, Bao J, Gao Y, Liu C, Xing W, Lu T (2007) Study of carbon-supported Au catalyst as the cathodic catalyst in a direct formic acid fuel cell prepared using a polyvinyl alcohol protection method. J Power Sources 167:315–318

    Article  Google Scholar 

  24. Hahn F, Beden B, Lamy C (1986) In situ infrared reflectance spectroscopic study of the adsorption of formic acid at a rhodium electrode. J Electroanal Chem Interfacial Electrochem 204:315–327

    Article  Google Scholar 

  25. Wieckowski A, Sobkowski J, Zelenay P (1977) The potential dependence and kinetics of formic acid adsorption on rhodium electrodes. J Electroanal Chem Interfacial Electrochem 84:109–116

    Article  Google Scholar 

  26. Gómez R, Weaver MJ (1997) Electrochemical infrared studies of monocrystalline iridium surfaces Part I: Electrooxidation of formic acid and methanol. J Electroanal Chem 435: 205–215

    Article  Google Scholar 

  27. Peng B, Wang H-F, Liu Z-P, Cai W-B (2010) Combined surface-enhanced infrared spectroscopy and first-principles study on electro-oxidation of formic acid at Sb-modified Pt electrodes. J Phys Chem C 114:3102–3107

    Article  Google Scholar 

  28. Wang H-F, Liu Z-P (2009) Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model. J Phys Chem C 113:17502–17508

    Article  Google Scholar 

  29. Luo Q, Feng G, Beller M, Jiao H (2012) Formic acid dehydrogenation on Ni(111) and comparison with Pd(111) and Pt(111). J Phys Chem C 116:4149–4156

    Article  Google Scholar 

  30. Capon A, Parsons R (1973) The oxidation of formic acid on noble metal electrodes: II A comparison of the behaviour of pure electrodes. J Electroanal Chem Interfacial Electrochem 44:239–254

    Article  Google Scholar 

  31. Chen YX, Heinen M, Jusys Z, Behm RJ (2006) Kinetics and mechanism of the electrooxidation of formic acid–spectroelectrochemical studies in a flow cell. Angew Chem Int Ed 45:981–985

    Article  Google Scholar 

  32. Samjeske G, Osawa M (2005) Current oscillations during formic acid oxidation on a Pt electrode: insight into the mechanism by time-resolved IR spectroscopy. Angew Chem Int Ed 44:5694–5698

    Article  Google Scholar 

  33. Miki A, Ye S, Osawa M (2002) Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem Commun 14: 1500–1501

    Article  Google Scholar 

  34. Beden B, Lamy C (1988) Infrared reflectance spectroscopy. In: Gale RJ (ed) Spectroelectrochemistry: theory and practice. Plenum, New York, NY, p 189

    Chapter  Google Scholar 

  35. Bewick A, Pons B (1985) In: Clark RJH, Hester RE (eds) Advances in infrared and raman spectroscopy. Wiley, Chichester, p 360

    Google Scholar 

  36. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroana Chem Interfacial Electrochem 60:267–273

    Article  Google Scholar 

  37. Willsau J, Heitbaum J (1986) Analysis of adsorbed intermediates and determination of surface potential shifts by dems. Electrochim Acta 31:943–948

    Article  Google Scholar 

  38. Motoo S, Watanabe M (1980) Electrocatalysis by ad-atoms: Part VII. Enhancement of CO oxidation on platinum by As ad-atoms. J Electroanal Chem Interfacial Electrochem 111:261–268

    Article  Google Scholar 

  39. Clavilier J, Parsons R, Durand R, Lamy C, Leger JM (1981) Formic acid oxidation on single crystal platinum electrodes. Comparison with polycrystalline platinum. J Electroanal Chem 124:321–326

    Article  Google Scholar 

  40. Adzic RR, Tripkovic AV, O’Grady WE (1982) Structural effects in electrocatalysis. Nature 296:137–138

    Article  Google Scholar 

  41. Iwasita T, Xia X, Herrero E, Liess H-D (1996) Early stages during the oxidation of HCOOH on single-crystal Pt electrodes as characterized by infrared spectroscopy. Langmuir 12: 4260–4265

    Article  Google Scholar 

  42. Hoshi N, Kida K, Nakamura M, Nakada M, Osada K (2006) Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J Phys Chem B 110:12480–12484

    Article  Google Scholar 

  43. Benfield RE (1992) Mean coordination numbers and the non-metal-metal transition in clusters. J Chem Soc Faraday Trans 88:1107–1110

    Article  Google Scholar 

  44. Park S, Xie Y, Weaver MJ (2002) Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation. Langmuir 18:5792–5798

    Article  Google Scholar 

  45. Chrzanowski W, Kim H, Wieckowski A (1998) Enhancement in methanol oxidation by spontaneously deposited ruthenium on low-index platinum electrodes. Catal Lett 50:69–75

    Article  Google Scholar 

  46. Neurock M, Janik M, Wieckowski A (2008) A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss 140:363–378

    Article  Google Scholar 

  47. Pavese A, Solis V, Giordano MC (1988) Electrocatalytic oxidation of formic acid on Pd + Pt alloys of different bulk composition in acidic medium. J Electroanal Chem 245(1–2): 145–156

    Google Scholar 

  48. Zhou W, Lee JY (2008) Particle size effects in Pd-catalyzed electrooxidation of formic acid. J Phys Chem C 112:3789–3793

    Article  Google Scholar 

  49. Pan Y, Zhang R, Blair SL (2009) Anode poisoning study in direct formic acid fuel cells. Electrochem Solid St Lett 12:B23–B26

    Article  Google Scholar 

  50. Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A (2006) Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J Phys Chem B 110:13393–13398

    Article  Google Scholar 

  51. Zhou Y, Liu J, Ye J, Zou Z, Ye J, Gu J, Yu T, Yangc A (2010) Poisoning and regeneration of Pd catalyst in direct formic acid fuel cell. Electrochim Acta 55:5024–5027

    Article  Google Scholar 

  52. Zhang H-X, Wang S-H, Jiang K, Andre T, Cai W-B (2012) In situ spectroscopic investigation of CO accumulation and poisoning on Pd black surfaces in concentrated HCOOH. J Power Sources 199:165–169

    Article  Google Scholar 

  53. Zhu Y, Khan Z, Masel RI (2005) The behavior of palladium catalysts in direct formic acid fuel cells. J Power Sources 139:15–20

    Article  Google Scholar 

  54. Jung WS, Han J, Ha S (2007) Analysis of palladium-based anode electrode using electrochemical impedance spectra in direct formic acid fuel cells. J Power Sources 173:53–59

    Article  Google Scholar 

  55. Gao W, Keith JA, Anton J, Jacob T (2010) Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt(1 1 1). J Am Chem Soc 132:18377–18385

    Article  Google Scholar 

  56. Leiva E, Iwasita T, Herrero E, Feliu JM (1997) Effect of adatoms in the electrocatalysis of HCOOH oxidation. A theoretical model. Langmuir 13:6287–6293

    Article  Google Scholar 

  57. Demirci UB (2007) Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J Power Sources 173:11–18

    Article  Google Scholar 

  58. Babu PK, Kim HS, Chung JH, Oldfield E, Wieckowski A (2004) Bonding and motional aspects of CO adsorbed on the surface of Pt nanoparticles decorated with Pd. J Phys Chem B 108:20228–20232

    Article  Google Scholar 

  59. Lu G-Q, Crown A, Wieckowski A (1999) Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes. J Phys Chem B 103:9700–9711

    Article  Google Scholar 

  60. Spendelow JS, Wieckowski A (2004) Noble metal decoration of single crystal platinum surfaces to create well-defined bimetallic electrocatalysts. Phys Chem Chem Phys 6: 5094–5118

    Article  Google Scholar 

  61. Yin M, Huang Y, Lv Q, Liang L, Liao J, Liu C, Xing W (2011) Improved direct electrooxidation of formic acid by increasing Au fraction on the surface of PtAu alloy catalyst with heat treatment. Electrochim Acta 58:6–11

    Article  Google Scholar 

  62. Zhang S, Shao Y, Yin G, Lin Y (2010) Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation. J Power Sources 195:1103–1106

    Article  Google Scholar 

  63. Park I-S, Lee K-S, Yoo SJ, Cho Y-H, Sung Y-E (2010) Electrocatalytic properties of Pd clusters on Au nanoparticles in formic acid electro-oxidation. Electrochim Acta 55: 4339–4345

    Article  Google Scholar 

  64. Mazumder V, Lee Y, Sun S (2010) Recent development of active nanoparticle catalysts for fuel cell reactions. Adv Funct Mater 20:1224–1231

    Article  Google Scholar 

  65. Lovic JD, Tripkovic AV, Gojkovic SL, Popovic KD, Tripkovic DV, Olszewski P, Kowal A (2005) Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. J Electroanal Chem 581:294–302

    Article  Google Scholar 

  66. Tian M, Conway BE (2008) Electrocatalysis in oscillatory kinetics of anodic oxidation of formic acid: At Pt; nanogravimetry and voltammetry studies on the role of reactive surface oxide. J Electroanal Chem 616:45–56

    Article  Google Scholar 

  67. Haan JL, Masel RI (2009) The influence of solution pH on rates of an electrocatalytic reaction: formic acid electrooxidation on platinum and palladium. Electrochim Acta 54: 4073–4078

    Article  Google Scholar 

  68. Masel RI, Zhu Y, Khan Z, Man M (2006) Low contaminant formic acid fuel for direct liquid fuel cell. US Patent 20060059769

    Google Scholar 

  69. Yu X, Pickup PG (2011) Carbon supported PtBi catalysts for direct formic acid fuel cells. Electrochim Acta 56:4037–4043

    Article  Google Scholar 

  70. Yu X, Pickup PG (2010) Pb and Sb modified Pt/C catalysts for direct formic acid fuel cells. Electrochim Acta 55:7354–7361

    Article  Google Scholar 

  71. Kristian N, Yu Y, Gunawan P, Xu R, Deng W, Liu X, Wang X (2009) Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation. Electrochim Acta 54:4916–4924

    Article  Google Scholar 

  72. Lu Y, Chen W (2012) PdAg alloy nanowires: facile one-step synthesis and high electrocatalytic activity for formic acid oxidation. ACS Catal 2:84–90

    Article  Google Scholar 

  73. Liu Z, Guo B, Tay SW, Hong L, Zhang X (2008) Physical and electrochemical characterizations of PtPb/C catalyst prepared by pyrolysis of platinum(II) and lead(II) acetylacetonate. J Power Sources 184:16–22

    Article  Google Scholar 

  74. Maxakato NW, Ozoemena KI, Arendse CJ (2010) Dynamics of electrocatalytic oxidation of ethylene glycol, methanol and formic acid at MWCNT platform electrochemically modified with Pt/Ru nanoparticles. Electroanalysis 22:519–529

    Article  Google Scholar 

  75. Seland F, Tunold R, Harrington DA (2008) Impedance study of formic acid oxidation on platinum electrodes. Electrochim Acta 53:6851–6864

    Article  Google Scholar 

  76. Suo Y, Hsing IM (2009) Size-controlled synthesis and impedance-based mechanistic understanding of Pd/C nanoparticles for formic acid oxidation. Electrochim Acta 55:210–217

    Article  Google Scholar 

  77. Uhm S, Chung ST, Lee J (2008) Characterization of direct formic acid fuel cells by impedance studies: in comparison of direct methanol fuel cells. J Power Sources 178:34–43

    Article  Google Scholar 

  78. Kang Y, Ren M, Yuan T, Qiao Y, Zou Z, Yang H (2010) Effect of Nafion aggregation in the anode catalytic layer on the performance of a direct formic acid fuel cell. J Power Sources 195:2649–2652

    Article  Google Scholar 

  79. Kang S, Lee J, Lee JK, Chung S-Y, Tak Y (2006) Influence of Bi modification of pt anode catalyst in direct formic acid fuel cells. J Phys Chem B 110:7270–7274

    Article  Google Scholar 

  80. Conway BE (2003) Electrochemical capacitors their nature, function, and applications. Electrochemistry Encyclopedia. http://electrochem.cwru.edu/encycl/art-c03-elchem-cap.htm

  81. Chung S-Y, Uhm S-H, Lee J-K, Kang S-J, Tak Y-S, Lee J-Y (2007) Electrocatalytic oxidation of HCOOH on Pt-based anodes. J Ind Eng Chem 13:339–344

    Google Scholar 

  82. Inzelt G, Kertesz V (1996) Effect of poly(aniline) pseudocapacitance on potential and EQCM frequency oscillations arising in the course of galvanostatic oxidation of formic acid on platinum. Electrochim Acta 42:229–235

    Article  Google Scholar 

  83. Uhm S, Yun Y, Tak Y, Lee J (2005) EQCM analysis of Bi oxidation mechanism on a Pt electrode. Electrochem Commun 7:1375–1379

    Article  Google Scholar 

  84. Hepel M (1999) Electrode-solution interface studies with electrochemical quartz-crystal nanobalance. In: Wieckowski A (ed) Interfacial electrochemistry: theory, experiment, and applications. Marcel Dekker, Inc., Postdam

    Google Scholar 

  85. Jerkiewicz G, Vatankhah G, S-i T, Lessard J (2011) Discovery of the potential of minimum mass for platinum electrodes. Langmuir 27:4220–4226

    Article  Google Scholar 

  86. Casado-Rivera E, Gal Z, Angelo ACD, Lind C, DiSalvo FJ, Abruna HD (2003) Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface. ChemPhysChem 4:193–199

    Article  Google Scholar 

  87. Miura A, Wang H, Leonard BM, Abruna HD, Di SFJ (2009) Synthesis of intermetallic PtZn nanoparticles by reaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts. Chem Mater 21:2661–2667

    Article  Google Scholar 

  88. Xia XH, Iwasita T (1993) Influence of underpotential deposited lead upon the oxidation of formic acid in perchloric acid at platinum electrodes. J Electrochem Soc 140:2559–2565

    Article  Google Scholar 

  89. Behrens RL, Lagutchev A, Dlott DD, Wieckowski A (2010) Broad-band sum frequency generation study of formic acid chemisorption on a Pt (1 0 0) electrode. J Electroanal Chem 649:32–36

    Article  Google Scholar 

  90. Behrens RL, Wieckowski A (2009) Electrochemical and spectroscopic studies of small organic molecule oxidation on low index platinum electrodes. Central Regional Meeting of the American Chemical Society, Cleveland, OH

    Google Scholar 

  91. Rodriguez-Lopez J, Bard AJ (2010) Scanning electrochemical microscopy: surface interrogation of adsorbed hydrogen and the open circuit catalytic decomposition of formic acid at platinum. J Am Chem Soc 132:5121–5129

    Article  Google Scholar 

  92. Chang SC, Leung LWH, Weaver MJ (1990) Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces. J Phys Chem 94:6013–6021

    Article  Google Scholar 

  93. Yang Y-Y, Zhou Z-Y, Sun S-G (2001) In situ FTIRS studies of kinetics of HCOOH oxidation on Pt(110) electrode modified with antimony adatoms. J Electroanal Chem 500:233–240

    Article  Google Scholar 

  94. Beden B, Bewick A, Lamy C (1983) A study by electrochemically modulated infrared reflectance spectroscopy of the electrosorption of formic acid at a platinum electrode. J Electroanal Chem Interfacial Electrochem 148:147–160

    Article  Google Scholar 

  95. Lamy C, Leger JM (1991) Electrocatalytic oxidation of small organic molecules at platinum single crystals. J Chim Phys Phys -Chim Biol 88:1649–1671

    Google Scholar 

  96. Arenz M, Stamenkovic V, Ross PN, Markovic NM (2004) Surface (electro-)chemistry on Pt(111) modified by a pseudomorphic Pd monolayer. Surf Sci 573:57–66

    Article  Google Scholar 

  97. Arenz M, Stamenkovic V, Schmidt TJ, Wandelt K, Ross PN, Markovic NM (2003) The electro-oxidation of formic acid on Pt–Pd single crystal bimetallic surfaces. Phys Chem Chem Phys 5:4242–4251

    Article  Google Scholar 

  98. Chen YX, Ye S, Heinen M, Jusys Z, Osawa M, Behm RJ (2006) Application of in-situ attenuated total reflection-fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures. J Chem Phys B 110:9534–9544

    Article  Google Scholar 

  99. Samjeske G, Miki A, Ye S, Osawa M (2006) Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. J Chem Phys B 110:16559–16566

    Article  Google Scholar 

  100. Bard AJ, Faulkner LR (2006) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  101. Miki A, Ye S, Senzaki T, Osawa M (2004) Surface-enhanced infrared study of catalytic electrooxidation of formaldehyde, methyl formate, and dimethoxymethane on platinum electrodes in acidic solution. J Electroanal Chem 563:23–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cynthia Ann Rice or Andrzej Wieckowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Rice, C.A., Wieckowski, A. (2013). Electrocatalysis of Formic Acid Oxidation. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics