Skip to main content

Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance

  • Chapter
  • First Online:
Electrocatalysis in Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

Abstract

Minute amounts of ruthenium and iridium on platinum nanostructured thin films have been evaluated in an effort to reduce carbon corrosion and Pt dissolution during transient conditions in proton exchange membrane fuel cells. Electrochemical tests showed the catalysts had a remarkable oxygen evolution reaction (OER) activity, even greater than that of bulk, metallic thin films. Stability tests within a fuel cell environment showed that rapid Ru dissolution could be managed with the addition of Ir. Membrane electrode assemblies containing a Ru to Ir atomic ratio of 1:9 were evaluated under start-up/shutdown and cell reversal conditions for OER catalyst loadings ranging from 1 to 10 μg/cm2. These tests affirmed that electrode potentials can be controlled through the addition of OER catalysts without impacting the oxygen reduction reaction on the cathode or the hydrogen oxidation reaction on the anode. The morphology and chemical structure of the thin OER layers were characterized by scanning transmission electron microscopy and X-ray photoelectron spectroscopy in an effort to establish a correlation between interfacial properties and electrochemical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu PT, Kocha S, Paine L, Gu W, Wagner FT (2004) The effects of air purge on the degradation of PEM fuel cells during startup and shutdown procedures. In: AIChE annual meeting, New Orleans, LA

    Google Scholar 

  2. Reiser CA, Bregoli L, Patterson TW, Yi JS, Yang JD, Perry ML, Jarvi TD (2005) A reverse-current decay mechanism for fuel cells. Electrochem Solid State Lett 8(6):A273–A276

    Article  Google Scholar 

  3. Gu W, Carter RN, Yu PT, Gasteiger HA (2007) Start/stop and local H2 starvation mechanisms of carbon corrosion: model vs. experiment. ECS Trans 11(1):963–973

    Article  Google Scholar 

  4. Atanasoski RT (2011) DOE Hydrogen Program Review. Washington, DC. Available online at: http://www.hydrogen.energy.gov/pdfs/review11/fc006_atanasoski_2011_o.pdf

  5. Atanasoski RT (2011) DOE Annual Progress Report. Washington, DC. Available online at: http://www.hydrogen.energy.gov/pdfs/progress11/v_d_3_atanasoski_2011.pdf

  6. Ohma A, Shinohara K, Iiyama A, Yoshida T, Daimaru A (2011) Membrane and catalyst performance targets for automotive fuel cells by FCCJ membrane, catalyst, MEA WG. ECS Trans 41(1):775–784

    Article  Google Scholar 

  7. Yu Y, Li H, Wang HJ, Yuana XZ, Wang GJ, Pan M (2012) A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: causes, consequences, and mitigation strategies. J Power Sources 205:10–23

    Article  Google Scholar 

  8. Ye S (2008) Reversal-tolerant catalyst layers. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and application. Springer, London

    Google Scholar 

  9. Atanasoski RT (2009) Kickoff meeting for new DOE fuel cell projects. Washington, DC. Available online at: http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/atanasoski_kickoff.pdf

  10. Atanasoski RT (2010) DOE Hydrogen Program Review. Washington, DC. Available online at: http://www.hydrogen.energy.gov/pdfs/review10/fc006_atanasoski_2010_o_web.pdf

  11. Atanasoski RT (2010) DOE annual progress report. Available online at: http://www.hydrogen.energy.gov/pdfs/progress10/v_e_6_atanasoski.pdf

  12. Debe MK (2012) Nanostructured thin film electrocatalysts for PEM fuel cells – a tutorial on the fundamental characteristics and practical properties of NSTF catalysts. ECS Trans 45(2): 47–68

    Article  Google Scholar 

  13. Debe MK, Hendricks SM, Schmoeckel AK, Atanasoski RT, Vernstrom GD, Haugen GM (2006) Durability aspects of nanostructured thin film catalysts for PEM fuel cells. ECS Trans 1(8):51–66

    Article  Google Scholar 

  14. Debe MK, Schmoeckel AK, Vernstrom GD, Atanasoski RT (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J Power Sources 161(2):1002–1011

    Article  Google Scholar 

  15. Trasatti S (1991) Physical electrochemistry of ceramic oxides. Electrochim Acta 36(2): 225–241

    Article  Google Scholar 

  16. Debe MK (2003) Novel catalysts, catalyst supports and catalyst coated membrane methods. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells – fundamentals, technology and applications. Wiley, Weinheim

    Google Scholar 

  17. Atanasoski RT, Atanasoska LL, Cullen DA, Haugen GM, More KL, Vernstrom GD (2012) Fuel cells catalyst for start-up and shutdown conditions: electrochemical, XPS, and STEM evaluation of sputter-deposited Ru, Ir, and Ti on Pt-coated nanostructured thin film supports. Electrocatalysis. Electrocatal 3:284–297

    Google Scholar 

  18. Miles MH, Klaus EA, Gunn BP, Locker J, Serafin WE, Srinivasan S (1978) The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80°C in acid solutions. Electrochim Acta 23(6):521–526

    Article  Google Scholar 

  19. Trasatti S (2009) Oxygen evolution. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 1. Elsevier, Amsterdam

    Google Scholar 

  20. http://www.hydrogen.energy.gov/library.html

  21. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028):443–447

    Article  Google Scholar 

  22. Wang C, Chi MF, Li DG, van der Vliet D, Wang GF, Lin QY, Mitchell JF, More KL, Markovic NM, Stamekovic VR (2011) Synthesis of homogeneous Pt-bimetallic nanoparticles as highly efficient electrocatalysts. ACS Catal 1(10):1355–1359

    Article  Google Scholar 

  23. Chen S, Sheng W, Yabuuchi N, Ferreira PJ, Allard LF, Shao-Horn Y (2009) Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures. J Phys Chem C 113(3):1109–1125

    Article  Google Scholar 

  24. Kongkanand A, Liu Z, Dutta I, Wagner FT (2011) Electrochemical and microstructural evaluation of aged nanostructured thin film fuel cell electrocatalyst. J Electrochem Soc 158(11):B1286–B1291

    Google Scholar 

  25. Cullen DA, More KL, Reeves KS, Vernstrom GD, Atanasoska LL, Haugen GM, Atanasoski RT (2011) Characterization of durable nanostructured thin film catalysts tested under transient conditions using analytical aberration-corrected electron microscopy. ECS Trans 41(1): 1099–1103

    Article  Google Scholar 

  26. Atanasoska LL, Vernstrom GD, Haugen GM, Atanasoski RT (2011) Catalyst durability for fuel cells under start-up and shutdown conditions: evaluation of Ru and Ir sputter-deposited films on platinum in PEM environment. ECS Trans 41(1):785–795

    Article  Google Scholar 

  27. Atanasoska LL, O’Grady WE, Atanasoski RT, Pollak FH (1988) The surface structure of RuO2: a LEED, auger and XPS study of the (110) and (100) faces. Surf Sci 202:142–166

    Article  Google Scholar 

  28. Atanasoska LL, Atanasoski RT, Pollak FH, O’Grady WE (1990) Single crystal RuO2/Ti and RuO2/TiO2 interface: LEED, auger and XPS study. Surf Sci 230:95–112

    Article  Google Scholar 

  29. Atanasoska LL, Anderson SG, Meyer HM, Lin Z, Weaver JH (1987) Aluminum/polyimide interface formation: an X-ray photoelectron spectroscopy study of selective chemical bonding. J Vac Sci Technol A 5(6):3325–3333

    Article  Google Scholar 

  30. Atanasoska LL, Meyer HM, Anderson SG, Weaver JH (1988) Semiconductor/polyimide interface formation: an X-ray photoelectron spectroscopy study of germanium chemical bonding. J Vac Sci Technol A 6(4):2175–2181

    Article  Google Scholar 

  31. Atanasoska LL, Anderson SG, Meyer HM, Lin Z, Weaver JH (1990) XPS study of chemical bonding at polyimide interfaces with metal and semiconductors overlayers. Vacuum 40:85–90

    Article  Google Scholar 

  32. Atanasoska LL, Cullen DA, Hester A, Atanasoski RT (2012) XPS and STEM of the interface formation between ultra-thin Ru, Ir and Pt layers and perylene red catalyst support whiskers. In: PRiME 2012, Honolulu, HI

    Google Scholar 

  33. Atanasoska LL, Atanasoski R, Trasatti S (1990) XPS and AES study of mixed layers of IrO2 and RuO2. Vacuum 40:91–94

    Article  Google Scholar 

  34. Atanasoska LL, Gupta P, Deng C, Thompson J (2009) XPS, AES, and electrochemical study of iridium oxide coating materials for cardiovascular stent application. ECS Trans 16(38):37–48

    Article  Google Scholar 

  35. Kotz R, Stucki S, Scherson D, Kolb DM (1984) In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J Electroanal Chem 172(1): 211–219

    Article  Google Scholar 

  36. Forgie R, Bugosh G, Neyerlin KC, Liu Z, Strasser P (2010) Bimetallic Ru electrocatalysts for the OER and electrolytic water splitting in acidic media. Electrochem Solid State Lett 13(4):D36–D39

    Article  Google Scholar 

  37. Song SD, Zhang HM, Ma XP, Shao ZG, Baker RT, Yi BL (2008) Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers. Int J Hydrogen Energy 33(19):4955–4961

    Article  Google Scholar 

  38. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3(3):399–404

    Article  Google Scholar 

  39. Ma LR, Sui S, Zhai YC (2008) Preparation and characterization of Ir/TiC catalyst for oxygen evolution. J Power Sources 177(2):470–477

    Article  Google Scholar 

  40. Slavcheva E, Radev I, Bliznakov S, Topalov G, Andreev P, Budevski E (2007) Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis. Electrochim Acta 52(12):3889–3894

    Article  Google Scholar 

  41. Slavcheva E, Schnackenberg U, Mokwa W (2006) Deposition of sputtered iridium oxide – influence of oxygen flow in the reactor on the film properties. Appl Surf Sci 253(4):1964–1969

    Article  Google Scholar 

  42. Kotz R, Stucki S (1985) Oxygen evolution on ruthenium-iridium alloys. J Electrochem Soc 132(1):103–107

    Article  Google Scholar 

  43. Fuentes RE, Farell J, Weidner JW (2011) Multimetallic electrocatalysts of Pt, Ru, and Ir supported on anatase and rutile TiO2 for oxygen evolution in an acid environment. Electrochem Solid State Lett 14(3):E5–E7

    Article  Google Scholar 

  44. Mattos-Costa FI, de Lima-Neto P, Machadoa SAS, Avaca LA (1998) Characterization of surfaces modified by sol–gel derived RuxIr11-x O2 coatings for oxygen evolution in acid medium. Electrochim Acta 44(8):1515–1523

    Article  Google Scholar 

  45. Jang SE, Kim H (2010) Effect of water electrolysis catalysts on carbon corrosion in polymer electrolyte membrane fuel cells. J Am Chem Soc 132(42):14700–14701

    Article  Google Scholar 

  46. Atanasoski RT (2012) DOE Hydrogen Program Review. Washington, DC. Available online at: http://www.hydrogen.energy.gov/pdfs/review12/fc006_atanasoski_2012_o.pdf

  47. Cullen DA, More KL, Atanasoski RT (2012) Towards quantifying catalyst losses from fuel cell electrodes: an electron microscopy study. Microsc Microanal 17(S2):64544

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radoslav T. Atanasoski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Atanasoski, R.T., Atanasoska, L.L., Cullen, D.A. (2013). Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_22

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics