Skip to main content

Nanostructured Electrocatalysts for Oxygen Reduction Reaction: First-Principles Computational Insights

  • Chapter
  • First Online:
Electrocatalysis in Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

  • 3894 Accesses

Abstract

The goal of catalyst development is to be able to adjust the structure and composition of catalytic materials to obtain the optimal electronic properties for desired chemical reactivity. Key features of the electronic structure that influence the reactivity of nanostructured catalysts are reviewed. Conclusions derived from the DFT electronic structure and the surface reactivity computations, with emphasis on the catalyst property intrinsically governed by the local, site-specific interactions, for nanostructured catalysts are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vielstich W, Lamm A, Gasteiger HA (2009) Handbook of fuel cells, vol 1–6. Wiley, Chichester

    Google Scholar 

  2. Stone H (2005) Economic analysis of stationary PEMFC systems DOE hydrogen program FY 2005 progress report 961. Battelle Memorial Institute, Columbus, OH

    Google Scholar 

  3. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt Oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35

    Article  Google Scholar 

  4. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46(3–4):249–262

    Article  Google Scholar 

  5. Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74

    Article  Google Scholar 

  6. Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443:63–66

    Article  Google Scholar 

  7. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493

    Article  Google Scholar 

  8. Somorjar GA (1993) Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  9. Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31:231–325

    Article  Google Scholar 

  10. Yoo SJ, Jeon T-Y, Lee K-S, Park K-W, Sung Y-E (2010) Effects of particle size on surface electronic and electrocatalytic properties of Pt/TiO2 nanocatalysts. Chem Commun 46(5):794–796

    Article  Google Scholar 

  11. Hayden BE, Suchsland J-P (2009) Support and particle size effects in electrocatalysis. In: Koper MTM (ed) Fuel cell catalysis: a surface science approach. Wiley, Hoboken, NJ, pp 567–592

    Chapter  Google Scholar 

  12. Maillard F, Pronkin S, Savinova ER (2009) Size effects in electro catalysis of fuel cell reactions on supported metal nanoparticles. In: Koper MTM (ed) Fuel cell catalysis: a surface science approach. Wiley, Hoboken, NJ, pp 507–566

    Chapter  Google Scholar 

  13. Kinoshita K (1990) Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J Electrochem Soc 137:845–848

    Article  Google Scholar 

  14. Bregoli LJ (1978) The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid. Electrochim Acta 23:489–492

    Article  Google Scholar 

  15. Sattler ML, Ross PN (1986) The surface structure of Pt crystallites supported on carbon black. Ultramicroscopy 20:21–28

    Article  Google Scholar 

  16. Peuckert M, Yoneda T, Dalla Betta RA, Boudart M (1986) Oxygen reduction on small supported platinum particles. J Electrochem Soc 133:944–947

    Article  Google Scholar 

  17. Giordano N, Antonucci PL, Passalacqua E, Pino L, Arico AS, Kinoshita K (1991) Relationship between physicochemical properties and electrooxidation behaviour of carbon materials. Electrochim Acta 36:1931–1935

    Article  Google Scholar 

  18. Takasu Y, Ohashi N, Zhang XG, Murakami Y, Minagawa H, Sato S, Yahikozawa K (1996) Size effects of platinum particles on the electroreduction of oxygen. Electrochim Acta 41:2595–2600

    Article  Google Scholar 

  19. Gamez A, Richard D, Gallezot P, Gloaguen F, Faure R, Durand R (1996) Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer. Electrochim Acta 41:307–314

    Article  Google Scholar 

  20. Genies L, Faure R, Durand R (1998) Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim Acta 44:1317–1327

    Article  Google Scholar 

  21. Min M, Cho J, Cho K, Kim H (2000) Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta 45:4211–4217

    Article  Google Scholar 

  22. Maillard F, Martin M, Gloaguen F, Leger JM (2002) Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition. Electrochim Acta 47:3431–3440

    Article  Google Scholar 

  23. Maryrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J Phys Chem B 109:14433–14440

    Article  Google Scholar 

  24. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45(18):2897–2901

    Article  Google Scholar 

  25. Bett J, Lundquist J, Washington E, Stonehart P (1973) Platinum crystallite size considerations for electrocatalytic oxygen reduction. Electrochim Acta 18:343–348

    Article  Google Scholar 

  26. Watanabe M, Saegusa S, Stonehart P (1988) Electro-catalytic activity on supported platinum crystallites for oxygen reduction in sulphuric acid. Chem Lett Jpn 9:1487–1490

    Article  Google Scholar 

  27. Watanabe M, Sei H, Stonehart P (1989) The influence of platinum crystallite size on the electroreduction of oxygen. J Electroanal Chem 261:375–387

    Article  Google Scholar 

  28. Yano H, Inukai J, Uchida H, Watanabe M, Babu PK, Kobayashi T, Chung JH, Oldfield E, Wieckowski A (2006) Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction: an electrochemical and 195Pt EC-NMR study. Phys Chem Chem Phys 8(42):4932–4939

    Article  Google Scholar 

  29. Yamamoto K, Imaoka T, Chun W-J, Enoki O, Katoh H, Takenaga M, Sonoi A (2009) Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat Chem 1:397–402

    Article  Google Scholar 

  30. Leontyev IN, Belenov SV, Guterman VE, Haghi-Ashtiani P, Shaganov AP, Dkhil B (2011) Catalytic activity of carbon-supported Pt nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial. J Phys Chem C 115(13):5429–5434

    Article  Google Scholar 

  31. St. John S, Dutta IP, Angelopoulos A (2010) Synthesis and characterization of electrocatalytically active platinum atom clusters and monodisperse single crystals. J Phys Chem C 114(32):13515–13525

    Article  Google Scholar 

  32. Tammeveski K, Tenno T, Claret J, Ferrater C (1997) Electrochemical reduction of oxygen on thin-film Pt electrodes in 0.1 M KOH. Electrochim Acta 42:893–897

    Article  Google Scholar 

  33. Sarapuu A, Kasikov A, Laaksonen T, Kontturi K, Tammeveski K (2008) Electrochemical reduction of oxygen on thin-film Pt electrodes in acid solutions. Electrochim Acta 53:5873–5880

    Article  Google Scholar 

  34. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  35. Shao M, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11(9):3714–3719

    Article  Google Scholar 

  36. Markovic NM, Gasteiger HA, Ross PN (1997) Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J Electrochem Soc 144:1591–1597

    Article  Google Scholar 

  37. Mukerjee S, McBreen J (1998) Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation. J Electroanal Chem 448:163–171

    Article  Google Scholar 

  38. Greeley J, Rossmeisl J, Hellman A, Norskov JK (2007) Theoretical trends in particle size effects for the oxygen reduction reaction. Z Phys Chem 221:1209–1220

    Article  Google Scholar 

  39. Balandin A (1969) Modern state of the multiplet theory of heterogeneous catalysis. Adv Catal Rel Subj 19:1–210

    Article  Google Scholar 

  40. Sabatier P (1911) Hydrogénations et déshydrogénations par catalyse. Ber Dtsch Chem Ges 44:1984–2001

    Article  Google Scholar 

  41. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci USA 108:937–943

    Article  Google Scholar 

  42. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46

    Article  Google Scholar 

  43. Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mat 3:810–815

    Article  Google Scholar 

  44. Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220

    Article  Google Scholar 

  45. Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis calculations and concepts. Adv Catal 45:71–129

    Article  Google Scholar 

  46. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mat 6:241–247

    Article  Google Scholar 

  47. Shao M, Liu P, Zhang J, Adzic RR (2007) Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. J Phys Chem B 111:6772–6775

    Article  Google Scholar 

  48. Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135

    Article  Google Scholar 

  49. Adzic RR (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley, New York, pp 197–242

    Google Scholar 

  50. Szabó A, Ostlund NS (1989) Modern quantum chemistry: introduction to advanced electronic structure theory. McGraw-Hill, New York

    Google Scholar 

  51. Pople JA (1999) Nobel lecture: quantum chemical models. Rev Mod Phys 71:1267–1274

    Article  Google Scholar 

  52. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  MathSciNet  Google Scholar 

  53. Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  MathSciNet  Google Scholar 

  54. Born M, Oppenheimer JR (1927) On the quantum theory of molecules. Ann Phys 84:457–484

    Article  MATH  Google Scholar 

  55. Levy M (1976) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Nat Acad Sci USA 76(12):6062–6065

    Article  Google Scholar 

  56. Levy M (1982) Electron densities in search of Hamiltonians. Phys Rev A 26:1200–1208

    Article  Google Scholar 

  57. Lieb EH (1985) Density Functionals for Coulomb Systems. In: Dreizler RM and da Providencia J (eds) Density functional methods in physics. Plenum, New York, pp 31–80

    Google Scholar 

  58. Hellmann H (1937) Einfuhrung in die Quantumchemie. Franz Deutsche, Leipzig, pp 285

    Google Scholar 

  59. Feynman RP (1939) Forces in molecules. Phys Rev 56(4):340–343

    Article  MATH  Google Scholar 

  60. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45(7):566–569

    Article  Google Scholar 

  61. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  62. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  63. Johnson BJ, Gill PMW, Pople JA (1993) The performance of a family of density functional methods. J Chem Phys 98:5612–5627

    Article  Google Scholar 

  64. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  Google Scholar 

  65. Fuchs M, Scheffler M (1999) Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comp Phys Comm 119:67–98

    Article  MATH  Google Scholar 

  66. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  Google Scholar 

  67. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  68. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  69. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:R558–R561

    Article  Google Scholar 

  70. Newns DM (1969) Self-consistent model of hydrogen chemisorption. Phys Rev 178:1123–1135

    Article  Google Scholar 

  71. Grimley TB (1971) Electronic structure of adsorbed atoms and molecules. J Vac Sci Technol 8:31–38

    Article  Google Scholar 

  72. Schrieffer JR (1972) Theory of chemisorption. J Vac Sci Technol 9:56

    Article  Google Scholar 

  73. Lundqvist BI, Gunnarsson O, Hjelmberg H, Nørskov JK (1979) Theoretical description of molecule-metal interaction and surface reactions. Surf Sci 89:196–225

    Article  Google Scholar 

  74. Halperin WP (1986) Quantum size effects in metal particles. Rev Mod Phys 58:533–606

    Article  Google Scholar 

  75. Ashcroft NW, Mermin ND (1981) Solid state physics. Saunders College Publishing, Philadelphia, PA

    Google Scholar 

  76. Friedel J (1969) The ordinary transport properties of metals. In: Ziman JM (ed) The physics of metals. Cambridge University Press, London, pp 250–281

    Google Scholar 

  77. Sutton AP (1996) Electronic Structure of Materials, Oxford University Press

    Google Scholar 

  78. Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819–2822

    Article  Google Scholar 

  79. Huang WJ, Sun R, Tao J, Menard LD, Nuzzo RG, Zuo JM (2008) Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat Mater 7:308–313

    Article  Google Scholar 

  80. Yaeger E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29:1527–1537

    Article  Google Scholar 

  81. Wroblowa HS, Pan Y-C, Razumney G (1976) Electroreduction of oxygen: a new mechanistic criterion. J Electroanal Chem 75:1465–1469

    Google Scholar 

  82. Wang JX, Markovic NM, Adzic RR (2004) Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J Phys Chem B 108(13):4127–4133

    Article  Google Scholar 

  83. Greeley J, Nørskov JK (2005) A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys. Surf Sci 592:104–111

    Article  Google Scholar 

  84. Zhang J, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127(36):12480–12481

    Article  Google Scholar 

  85. Jacob T (2006) The mechanism of forming H2O from H2 and O2 over a Pt catalyst via direct oxygen reduction. Fuel Cells 3–4:159–181

    Article  Google Scholar 

  86. Jacob T, Goddard WA III (2006) Water formation on Pt and Pt-based alloys: a theoretical description of a catalytic reaction. Chem Phys Chem 7(5):992–1005

    Article  Google Scholar 

  87. Jacob T, Muller RP, Goddard WA III (2003) Chemisorption of atomic oxygen on Pt(111) from DFT studies of Pt-clusters. J Phys Chem B 107:9465–9476

    Article  Google Scholar 

  88. Anderson AB (2003) Theory at the electrochemical interface: reversible potentials and potential-dependent activation energies. Electrochim Acta 48:3743–3749

    Article  Google Scholar 

  89. Li T, Balbuena PB (2003) Oxygen reduction on a platinum cluster. Chem Phys Lett 367:439–447

    Article  Google Scholar 

  90. Hyman MP, Medlin JW (2006) Mechanistic study of the electrochemical oxygen reduction reaction on Pt(111) using density functional theory. J Phys Chem B 110:15338–15344

    Article  Google Scholar 

  91. Norskov JK, Rossmeisl J, Logadotir A, Lindqvist L, Kitchin JR, Bligaard T (2004) Origin of the overpotential for oxygen reduction at a fuel cell cathode. J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  92. Tripkovic V, Skúlasona E, Siahrostamia S, Nørskova JK, Rossmeisla J (2010) The oxygen reduction reaction mechanism on Pt(1 1 1) from density functional theory calculations. Electrochim Acta 55:7975–7981

    Article  Google Scholar 

  93. Wang Y, Balbuena PB (2005) Ab initio molecular dynamics simulations of the oxygen reduction reaction on a Pt(111) surface in the presence of hydrated hedonism (H3O)+(H2O)2: direct or series pathway? J Phys Chem B 109:14896–14907

    Article  Google Scholar 

  94. Nilekar AU, Mavrikakis M (2008) Improved oxygen reduction reactivity of platinum monolayer’s on transition metal surfaces. Surf Sci 602:L89–L94

    Article  Google Scholar 

  95. Janice MJ, Taylor CD, Enrick M (2009) First-principles analysis of the initial electroreduction steps of oxygen over Pt(111). J Electrochem Soc 156:B126–B135

    Article  Google Scholar 

  96. Sha Y, Yu TH, Merinov BV, Goddard WA III (2012) Prediction of the dependence of the fuel cell oxygen reduction reactions on operating voltage from DFT calculations. J Phys Chem C 116:6166–6173

    Article  Google Scholar 

  97. Marković NM, Ross PN Jr (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229

    Article  Google Scholar 

  98. Bligaard T, Nørskov JK (2007) Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim Acta 51:5512–5516

    Article  Google Scholar 

  99. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J Chem Phys 120(21):10240–10246

    Article  Google Scholar 

  100. Wang JX, Inada H, Wu L, Zhu Y, Choi YM, Liu P, Zhou W-P, Adzic RR (2009) Oxygen reduction on well-defined core−shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131(47):17298–17302

    Article  Google Scholar 

  101. Han BC, Van der Ven A, Ceder G, Hwang B-J (2005) Surface segregation and ordering of alloy surfaces in the presence of adsorbates. Phys Rev B 72:205409–205418

    Article  Google Scholar 

  102. Ramirez-Caballero G, Balbuena PB (2008) Surface segregation of core atoms in core-shell structures. Chem Phys Lett 456:64–67

    Article  Google Scholar 

  103. Nilekar AU, Ruban AV, Mavrikakis M (2009) Surface segregation energy in low-index open surfaces of bimetallic transition metal alloys. Surf Sci 603:91–96

    Article  Google Scholar 

  104. Greeley J, Nørskov JK (2009) Combinatorial density functional theory-based screening of surface alloys for the oxygen reduction reaction. J Phys Chem C 113(12):4932–4939

    Article  Google Scholar 

  105. Greeley J, Norskov JK (2007) Electrochemical dissolution of surface alloys in acids: thermodynamic trends from first principles calculations. Electrochim Acta 52(19):5829–5836

    Article  Google Scholar 

  106. Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49(46):8602–8607

    Article  Google Scholar 

  107. Hansen HA, Rossmeisl J, Norskov JK (2008) Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni (111) surfaces studied by DFT. Phys Chem Chem Phys 10(25):3722–3730

    Article  Google Scholar 

  108. Feibelman PJ (1997) d-electron frustration and the large fcc versus hcp binding preference in O adsorption on Pt(111). Phys Rev B 56:10532–10537

    Article  Google Scholar 

  109. Hsueh K-L, Gonzalez ER, Srinivasan S (1983) Electrolyte effects on oxygen reduction kinetics at platinum: a rotating ring-disc electrode analysis. Electrochim Acta 28:691–697

    Article  Google Scholar 

  110. Frenkel AI, Hills CW, Nuzzo RG (2001) View from the inside: complexity of the atomic scale ordering in metal nanoparticles. J Phys Chem B 105:12689–12703

    Article  Google Scholar 

  111. Henry CR (2003) Adsorption and reaction at supported metal catalyst. In: Wiecowski A, Savinova ER, Vayenas CG (eds) Catalysis and electrocatalysis at nanoparticle surfaces. CRC Press, pp 239–280

    Google Scholar 

  112. Bi W, Gray GE, Fuller TF (2007) PEM fuel cell Pt/C dissolution and deposition in Nafion electrolyte. Electrochem Solid State Lett 10:B101–B104

    Article  Google Scholar 

  113. Ferreira PJ, La O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. J Electrochem Soc 152:A2256–A2271

    Article  Google Scholar 

  114. Campbell CT (1997) Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Surf Sci Rep 227:1–111

    Article  Google Scholar 

  115. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  Google Scholar 

  116. Lai X, Goodman DW (2000) Structure–reactivity correlations for oxide-supported metal catalysts: new perspectives from STM. J Mol Catal A 162:33–50

    Article  Google Scholar 

  117. Roduner E (2006) Nanoscopic materials: size-dependent phenomena. Royal Society of Chemistry, Cambridge

    Google Scholar 

  118. Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem 108:10955–10964

    Google Scholar 

  119. Shao MH, Shoemaker K, Peles A, Kaneko K, Protsailo L (2010) Pt monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts. J Am Chem Soc 132:9253–9255

    Article  Google Scholar 

  120. Mays CW, Vermaak JS, Kuhlmann-Wilsdorf D (1968) On surface stress and surface tension: II. Determination of the surface stress of gold. Surf Sci 12:134–140

    Article  Google Scholar 

  121. Wasserman HJ, Vermaak JS (1972) On the determination of the surface stress of copper and platinum. Surf Sci 32:168–174

    Article  Google Scholar 

  122. Shao M, Peles A, Shoemaker K, Gummalla M, Njoki PN, Luo J, Zhong CJ (2011) Enhanced oxygen reduction activity of platinum monolayer on gold nanoparticles. J Phys Chem Lett 2:67–72

    Article  Google Scholar 

  123. Foils SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983–7991

    Article  Google Scholar 

  124. Krueger S, Vent S, Roesch N (1997) Size dependence of bond length and binding energy in palladium and gold clusters. Berichte der Bunsengesellschaft für physikalische Chemie 101:1640–1643

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amra Peles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Peles, A. (2013). Nanostructured Electrocatalysts for Oxygen Reduction Reaction: First-Principles Computational Insights. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_21

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics