Au Electrocatalysis for Oxygen Reduction

  • Francisco J. Vidal-Iglesias
  • José Solla-Gullón
  • Enrique Herrero
  • Juan M. Feliu
Part of the Lecture Notes in Energy book series (LNEN, volume 9)


This chapter reviews the recent advances on the study of the oxygen reduction reaction (ORR) on gold electrodes. The initial part is devoted to the study of the reaction on single-crystal electrodes to determine the effect of the surface structure on the reactivity of gold electrodes for this reaction. The best reactivity is found for the Au(100) electrode in alkaline medium. For the nanoparticle electrodes, the reactivity for this reaction depends on two different effects: size and surface structure effects. Regarding the size effects, the different studies found in the literature do not agree on whether the size of the nanoparticles has a significant impact on the reactivity for the ORR. This disagreement between different authors is probably due to the lack of control of the surface structure of the nanoparticles. On the other hand, significant effects are found when the surface of the nanoparticle is changed. In general, the reactivity in alkaline media increases as the fraction of {100} domains on the surface increases. In some cases, the reactivity of gold in alkaline medium is similar to that measured for platinum electrodes.


Gold Nanoparticles Oxygen Reduction Reaction Oxygen Reduction Gold Electrode Electrocatalytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been financially supported by the MICINN (Spain) (project CTQ2010-16271) and Generalitat Valenciana (project PROMETEO/2009/045, FEDER).


  1. 1.
    Adzic RR (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley, New York, pp 197–242Google Scholar
  2. 2.
    Anastasijević NA, Vesović V, Adžić RR (1987) Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode: Part I. Theory. J Electroanal Chem 229(1–2):305–316Google Scholar
  3. 3.
    Anastasijević NA, Vesović V, Adžić RR (1987) Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode: Part II. Applications. J Electroanal Chem 229(1–2):317–325Google Scholar
  4. 4.
    Alvarez-Rizatti M, Jüttner K (1983) Electrocatalysis of oxygen reduction by UPD of lead on gold single-crystal surfaces. J Electroanal Chem 144(1–2):351–363CrossRefGoogle Scholar
  5. 5.
    Sayed SM, Jüttner K (1983) Electrocatalysis of oxygen and hydrogen peroxide reduction by UPD of bismuth on poly- and mono-crystalline gold electrodes in acid solutions. Electrochim Acta 28(11):1635–1641CrossRefGoogle Scholar
  6. 6.
    Adžić RR, Marković NM (1982) Structural effects in electrocatalysis: oxygen and hydrogen peroxide reduction on single crystal gold electrodes and the effects of lead ad-atoms. J Electroanal Chem 138(2):443–447CrossRefGoogle Scholar
  7. 7.
    Markovic NM, Adzic RR, Vesovic VB (1984) Structural effects in electrocatalysis Oxygen reduction on the gold single crystal electrodes with (110) and (111) orientations. J Electroanal Chem 165:121–133CrossRefGoogle Scholar
  8. 8.
    Adžić RR, Marković NM, Vesović VB (1984) Structural effects in electrocatalysis. Oxygen reduction on the Au (100) single crystal electrode. J Electroanal Chem 165(1–2):105–120Google Scholar
  9. 9.
    Štrbac S, Adžić RR (1992) Oscillatory phenomena in oxygen and hydrogen peroxide reduction on the Au(100) electrode surface in alkaline solutions. J Electroanal Chem 337(1–2):355–364Google Scholar
  10. 10.
    Štrbac S, Anastasijević NA, Adžić RR (1992) Oxygen reduction on Au (100) and vicinal Au (910) and Au (11, 1, 1) faces in alkaline solution: a rotating disc-ring study. J Electroanal Chem 323(1–2):179–195Google Scholar
  11. 11.
    Polewska W, Vitus CM, Ocko BM, Adzic RR (1994) Direct observation of the Au(100) reconstruction during the course of O2 reduction in alkaline solution. J Electroanal Chem 364(1–2):265–269Google Scholar
  12. 12.
    Štrbac S, Anastasijević NA, Adžić RR (1994) Oxygen reduction on Au(111) and vicinal Au(332) faces: a rotating disc and disc-ring study. Electrochim Acta 39(7):983–990CrossRefGoogle Scholar
  13. 13.
    Prieto A, Hernández J, Herrero E, Feliu JM (2003) The role of anions in oxygen reduction in neutral and basic media on gold single-crystal electrodes. J Solid State Electrochem 7(9):599–606CrossRefGoogle Scholar
  14. 14.
    Koper MTM (1998) Non-linear phenomena in electrochemical systems. J Chem Soc Faraday Trans 94(10):1369–1378CrossRefGoogle Scholar
  15. 15.
    Štrbac S, Adžić RR (1996) The influence of OH- chemisorption on the catalytic properties of gold single crystal surfaces for oxygen reduction in alkaline solutions. J Electroanal Chem 403(1–2):169–181Google Scholar
  16. 16.
    Anastasijević NA, Štrbac S, Adžić RR (1988) Oxygen reduction on the Au (311) electrode surface in alkaline electrolyte. J Electroanal Chem 240(1–2):239–252Google Scholar
  17. 17.
    Strbac S, Adzic RR (1996) The influence of pH on reaction pathways for O-2 reduction on the Au(1 00) face. Electrochim Acta 41(18):2903–2908CrossRefGoogle Scholar
  18. 18.
    Wu B-l, Lei H-w, Cha C-s, Chen Y-y (1994) Investigation of the intermediates of the O2 reduction reaction on Au electrodes in alkaline solution. J Electroanal Chem 377(1–2):227–230Google Scholar
  19. 19.
    Vassilev P, Koper MTM (2007) Electrochemical reduction of oxygen on gold surfaces: a density functional theory study of intermediates and reaction paths. J Phys Chem C 111(6):2607–2613CrossRefGoogle Scholar
  20. 20.
    Blizanac BB, Lucas CA, Gallagher ME, Arenz M, Ross PN, Marković NM (2003) Anion adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) surface: the pH effect. J Phys Chem B 108(2):625–634CrossRefGoogle Scholar
  21. 21.
    Sarapuu A, Tammeveski K, Tenno TT, Sammelselg V, Kontturi K, Schiffrin DJ (2001) Electrochemical reduction of oxygen on thin-film Au electrodes in acid solution. Electrochem Commun 3(8):446–450CrossRefGoogle Scholar
  22. 22.
    El-Deab MS, Ohsaka T (2002) An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochem Commun 4(4):288–292CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Asahina S, Yoshihara S, Shirakashi T (2003) Oxygen reduction on Au nanoparticle deposited boron-doped diamond films. Electrochim Acta 48(6):741–747CrossRefGoogle Scholar
  24. 24.
    El-Deab MS, Ohsaka T (2002) Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes. Electrochim Acta 47(26):4255–4261CrossRefGoogle Scholar
  25. 25.
    El-Deab MS, Ohsaka T (2003) Electrocatalysis by nanoparticles: oxygen reduction on gold nanoparticles-electrodeposited platinum electrodes. J Electroanal Chem 553(suppl):107–115Google Scholar
  26. 26.
    El-Deab MS, Okajima T, Ohsaka T (2003) Electrochemical reduction of oxygen on gold nanoparticle-electrodeposited glassy carbon electrodes. J Electrochem Soc 150(7):A851–A857CrossRefGoogle Scholar
  27. 27.
    Yagi I, Ishida T, Uosaki K (2004) Electrocatalytic reduction of oxygen to water at Au nanoclusters vacuum-evaporated on boron-doped diamond in acidic solution. Electrochem Commun 6(8):773–779CrossRefGoogle Scholar
  28. 28.
    Guerin S, Hayden BE, Pletcher D, Rendall ME, Suchsland JP (2006) A combinatorial approach to the study of particle size effects on supported electrocatalysts: oxygen reduction on gold. J Comb Chem 8(5):679–686CrossRefGoogle Scholar
  29. 29.
    Bron M (2008) Carbon black supported gold nanoparticles for oxygen electroreduction in acidic electrolyte solution. J Electroanal Chem 624(1–2):64–68Google Scholar
  30. 30.
    Sarapuu A, Nurmik M, Mandar H, Rosental A, Laaksonen T, Kontturi K, Schiffrin DJ, Tammeveski K (2008) Electrochemical reduction of oxygen on nanostructured gold electrodes. J Electroanal Chem 612(1):78–86CrossRefGoogle Scholar
  31. 31.
    Maruyama J, Inaba M, Ogumi Z (1999) Effect of fluorinated alcohol on the kinetics of cathodic oxygen reduction at gold electrodes. Electrochim Acta 45(3):415–422CrossRefGoogle Scholar
  32. 32.
    Maruyama J, Inaba M, Morita T, Ogumi Z (2001) Effects of the molecular structure of fluorinated additives on the kinetics of cathodic oxygen reduction. J Electroanal Chem 504(2):208–216CrossRefGoogle Scholar
  33. 33.
    Tang W, Lin H, Kleiman-Shwarsctein A, Stucky GD, McFarland EW (2008) Size-dependent activity of gold nanoparticles for oxygen electroreduction in alkaline electrolyte. J Phys Chem C 112(28):10515–10519CrossRefGoogle Scholar
  34. 34.
    Inasaki T, Kobayashi S (2009) Particle size effects of gold on the kinetics of the oxygen reduction at chemically prepared Au/C catalysts. Electrochim Acta 54(21):4893–4897CrossRefGoogle Scholar
  35. 35.
    Erikson H, Jürmann G, Sarapuu A, Potter RJ, Tammeveski K (2009) Electroreduction of oxygen on carbon-supported gold catalysts. Electrochim Acta 54(28):7483–7489CrossRefGoogle Scholar
  36. 36.
    Chen W, Chen S (2009) Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. Angew Chem Int Ed 48(24):4386–4389CrossRefGoogle Scholar
  37. 37.
    Li Y, Cox JT, Zhang B (2010) Electrochemical responses and electrocatalysis at single Au nanoparticles. J Am Chem Soc 132(9):3047–3054CrossRefGoogle Scholar
  38. 38.
    Lee Y, Loew A, Sun S (2009) Surface- and structure-dependent catalytic activity of Au nanoparticles for oxygen reduction reaction. Chem Mater 22(3):755–761CrossRefGoogle Scholar
  39. 39.
    Alexeyeva N, Matisen L, Saar A, Laaksonen P, Kontturi K, Tammeveski K (2010) Kinetics of oxygen reduction on gold nanoparticle/multi-walled carbon nanotube hybrid electrodes in acid media. J Electroanal Chem 642(1):6–12CrossRefGoogle Scholar
  40. 40.
    Jirkovsky JS, Halasa M, Schiffrin DJ (2010) Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles. Phys Chem Chem Phys 12(28):8042–8052CrossRefGoogle Scholar
  41. 41.
    Kinoshita K (1990) Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J Electrochem Soc 137(3):845–848CrossRefGoogle Scholar
  42. 42.
    Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J Phys Chem B 109(30):14433–14440CrossRefGoogle Scholar
  43. 43.
    Brülle T, Ju W, Niedermayr P, Denisenko A, Paschos O, Schneider O, Stimming U (2011) Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces. Molecules 16(12):10059–10077CrossRefGoogle Scholar
  44. 44.
    Greeley J, Rossmeisl J, Hellman A, Nørskov JK (2007) Theoretical trends in particle size effects for the oxygen reduction reaction. Z Phys Chem 221(9–10):1209–1220CrossRefGoogle Scholar
  45. 45.
    Hernández J, Solla-Gullón J, Herrero E (2004) Gold nanoparticles synthesized in a water-in-oil microemulsion: electrochemical characterization and effect of the surface structure on the oxygen reduction reaction. J Electroanal Chem 574(1):185–196CrossRefGoogle Scholar
  46. 46.
    Hernández J, Solla-Gullón J, Herrero E, Feliu JM, Aldaz A (2009) In situ surface characterization and oxygen reduction reaction on shape-controlled gold nanoparticles. J Nanosci Nanotechnol 9(4):2256–2273CrossRefGoogle Scholar
  47. 47.
    Solla-Gullon J, Vidal-Iglesias FJ, Feliu JM (2011) Shape dependent electrocatalysis. Annu Rep Prog Chem C Phys Chem 107:263–297CrossRefGoogle Scholar
  48. 48.
    Koper MTM (2011) Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3(5):2054–2073CrossRefGoogle Scholar
  49. 49.
    Cheng Q, Jiang Y-X, Tian N, Zhou Z-Y, Sun S-G (2010) Electrocatalytic reduction of nitric oxide on Pt nanocrystals of different shape in sulfuric acid solutions. Electrochim Acta 55(27):8273–8279CrossRefGoogle Scholar
  50. 50.
    Vidal-Iglesias FJ, Solla-Gullón J, Rodríguez P, Herrero E, Montiel V, Feliu JM, Aldaz A (2004) Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem Commun 6(10):1080–1084CrossRefGoogle Scholar
  51. 51.
    Solla-Gullón J, Vidal-Iglesias FJ, Rodríguez P, Herrero E, Feliu JM, Aldaz A (2006) Shape-dependent electrocatalysis: CO monolayer oxidation at platinum nanoparticles. In: Brisard GM, Adzic R, Birss V, Vieckowski A (eds) Proceedings – Electrochemical Society 2005–11 (Electrocatalysis). The Electrochemical Society, Pennington, NJ, pp 1–11Google Scholar
  52. 52.
    Solla-Gullón J, Vidal-Iglesias FJ, Herrero E, Feliu JM, Aldaz A (2006) CO monolayer oxidation on semi-spherical and preferentially oriented (100) and (111) platinum nanoparticles. Electrochem Commun 8(1):189–194CrossRefGoogle Scholar
  53. 53.
    Solla-Gullón J, Vidal-Iglesias FJ, López-Cudero A, Garnier E, Feliu JM, Aldaz A (2008) Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys 10(25):3689–3698CrossRefGoogle Scholar
  54. 54.
    Sanchez-Sanchez CM, Solla-Gullon J, Vidal-Iglesias FJ, Aldaz A, Montiel V, Herrero E (2010) Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J Am Chem Soc 132(16):5622–5624CrossRefGoogle Scholar
  55. 55.
    Erikson H, Sarapuu A, Tammeveski K, Solla-Gullón J, Feliu JM (2011) Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. Electrochem Commun 13(7):734–737CrossRefGoogle Scholar
  56. 56.
    Adžić RR, Strbac S, Anastasijević N (1989) Electrocatalysis of oxygen on single crystal gold electrodes. Mater Chem Phys 22(3–4):349–375Google Scholar
  57. 57.
    Marković NM, Adžić RR, Cahan BD, Yeager EB (1994) Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J Electroanal Chem 377(1–2):249–259Google Scholar
  58. 58.
    Gontard LC, Chang LY, Hetherington CJD, Kirkland AI, Ozkaya D, Dunin-Borkowski RE (2007) Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew Chem Int Ed 46(20):3683–3685CrossRefGoogle Scholar
  59. 59.
    Hamelin A (1996) Cyclic voltammetry at gold single-crystal surfaces. 2. Behaviour of high-index faces. J Electroanal Chem 407(1–2):13–21Google Scholar
  60. 60.
    Hamelin A (1996) Cyclic voltammetry at gold single-crystal surfaces. 1. Behaviour at low-index faces. J Electroanal Chem 407(1–2):1–11Google Scholar
  61. 61.
    Herrero E, Buller LJ, Abruna HD (2001) Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem Rev 101(7):1897–1930CrossRefGoogle Scholar
  62. 62.
    Hamelin A (1979) Lead adsorption on gold single crystal stepped surfaces. J Electroanal Chem 101(2):285–290CrossRefGoogle Scholar
  63. 63.
    Hamelin A, Katayama A (1981) Lead underpotential deposition on gold single-crystal surfaces: the (100) face and its vicinal faces. J Electroanal Chem 117(2):221–232CrossRefGoogle Scholar
  64. 64.
    Hamelin A (1984) Underpotential deposition of lead on single crystal faces of gold. Part I. The influence of crystallographic orientation of the substrate. J Electroanal Chem 165(1–2):167–180CrossRefGoogle Scholar
  65. 65.
    Hamelin A, Lipkowski J (1984) Underpotential deposition of lead on gold single crystal faces. Part II. General discussion. J Electroanal Chem 171(1–2):317–330Google Scholar
  66. 66.
    Hernández J, Herrero E, Solla-Gullón J, Vidal-Iglesias FJ, Feliu JM, Aldaz A (2006) Shape-dependent electrocatalysis: oxygen reduction on gold nanoparticles. In: Brisard GM, Adzic R, Birss V, Vieckowski A (eds) Proceedings – Electrochemical Society 2005–11 (Electrocatalysis). The Electrochemical Society, Pennington, NJ, pp 200–212Google Scholar
  67. 67.
    Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2005) Characterization of the surface structure of gold nanoparticles and nanorods using structure sensitive reactions. J Phys Chem B 109(26):12651–12654CrossRefGoogle Scholar
  68. 68.
    Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2006) Methanol oxidation on gold nanoparticles in alkaline media: unusual electrocatalytic activity. Electrochim Acta 52(4):1662–1669CrossRefGoogle Scholar
  69. 69.
    Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2007) Electrochemistry of shape-controlled catalysts: oxygen reduction reaction on cubic gold nanoparticles. J Phys Chem C 111(38):14078–14083CrossRefGoogle Scholar
  70. 70.
    Sanchez-Sanchez CM, Vidal-Iglesias FJ, Solla-Gullon J, Montiel V, Aldaz A, Feliu JM, Herrero E (2010) Scanning electrochemical microscopy for studying electrocatalysis on shape-controlled gold nanoparticles and nanorods. Electrochim Acta 55(27):8252–8257CrossRefGoogle Scholar
  71. 71.
    Walczak MM, Alves CA, Lamp BD, Porter MD (1995) Electrochemical and X-ray photoelectron spectroscopic evidence for differences in the binding sites of alkanethiolate monolayers chemisorbed at gold. J Electroanal Chem 396(1–2):103–114Google Scholar
  72. 72.
    Zhong CJ, Zak J, Porter MD (1997) Voltammetric reductive desorption characteristics of alkanethiolate monolayers at single crystal Au(111) and (110) electrode surfaces. J Electroanal Chem 421(1–2):9–13Google Scholar
  73. 73.
    El-Deab MS (2009) On the preferential crystallographic orientation of Au nanoparticles: effect of electrodeposition time. Electrochim Acta 54(14):3720–3725CrossRefGoogle Scholar
  74. 74.
    El-Deab MS, Sotomura T, Ohsaka T (2005) Size and crystallographic orientation controls of gold nanoparticles electrodeposited on GC electrodes. J Electrochem Soc 152(1):C1–C6CrossRefGoogle Scholar
  75. 75.
    El-Deab MS, Arihara K, Ohsaka T (2004) Fabrication of Au(111)-like polycrystalline gold electrodes and their applications to oxygen reduction. J Electrochem Soc 151(6):E213–E218CrossRefGoogle Scholar
  76. 76.
    El-Deab MS, Sotomura T, Ohsaka T (2005) Oxygen reduction at electrochemically deposited crystallographically oriented Au(1 0 0)-like gold nanoparticles. Electrochem Commun 7(1):29–34CrossRefGoogle Scholar
  77. 77.
    El-Deab MS, Sotomura T, Ohsaka T (2005) Morphological selection of gold nanoparticles electrodeposited on various substrates. J Electrochem Soc 152(11):C730–C737CrossRefGoogle Scholar
  78. 78.
    Gao F, El-Deab MS, Okajima T, Ohsaka T (2005) Electrochemical preparation of a Au crystal with peculiar morphology and unique growth orientation and its catalysis for oxygen reduction. J Electrochem Soc 152(6):A1226–A1232CrossRefGoogle Scholar
  79. 79.
    El-Deab MS, Sotomura T, Ohsaka T (2006) Oxygen reduction at Au nanoparticles electrodeposited on different carbon substrates. Electrochim Acta 52(4):1792–1798CrossRefGoogle Scholar
  80. 80.
    Gai PL, Harmer MA (2002) Surface atomic defect structures and growth of gold nanorods. Nano Lett 2(7):771–774CrossRefGoogle Scholar
  81. 81.
    Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12(6):1765–1770CrossRefGoogle Scholar
  82. 82.
    Gao F, El-Deab MS, Ohsaka T (2005) Electrodeposition of gold nanorods with a uni-directional crystal growth and lower Au(111) facets area. Indian J Chem A 44(5):932–937Google Scholar
  83. 83.
    Zhou Z-Y, Tian N, Huang Z-Z, Chen D-J, Sun S-G (2009) Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method. Faraday Discuss 140:81–92CrossRefGoogle Scholar
  84. 84.
    Tian N, Zhou ZY, Sun SG (2008) Platinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles. J Phys Chem C 112(50):19801–19817CrossRefGoogle Scholar
  85. 85.
    Tian Y, Liu H, Zhao G, Tatsuma T (2006) Shape-controlled electrodeposition of gold nanostructures. J Phys Chem B 110(46):23478–23481CrossRefGoogle Scholar
  86. 86.
    Koblischka-Veneva A, Koblischka MR (2008) Analysis of twin boundaries using the electron backscatter diffraction (EBSD) technique. Mater Sci Eng B Solid State Mater Adv Technol 151(1):60–64CrossRefGoogle Scholar
  87. 87.
    Xu X, Jia J, Yang X, Dong S (2010) A templateless, surfactantless, simple electrochemical route to a dendritic gold nanostructure and its application to oxygen reduction. Langmuir 26(10):7627–7631CrossRefGoogle Scholar
  88. 88.
    Jena BK, Raj CR (2007) Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir 23(7):4064–4070CrossRefGoogle Scholar
  89. 89.
    Jena BK, Raj CR (2007) Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity. J Phys Chem C 111(42):15146–15153CrossRefGoogle Scholar
  90. 90.
    Kuai L, Geng B, Wang S, Zhao Y, Luo Y, Jiang H (2011) Silver and gold icosahedra: one-pot water-based synthesis and their superior performance in the electrocatalysis for oxygen reduction reactions in alkaline media. Chemistry 17(12):3482–3489CrossRefGoogle Scholar
  91. 91.
    Seo B, Choi S, Kim J (2011) Simple electrochemical deposition of Au nanoplates from Au(I) cyanide complexes and their electrocatalytic activities. ACS Appl Mater Interfaces 3(2):441–446CrossRefGoogle Scholar
  92. 92.
    Das AK, Raj CR (2011) Rapid room temperature synthesis of electrocatalytically active Au nanostructures. J Colloid Interface Sci 353(2):506–511CrossRefGoogle Scholar
  93. 93.
    Plowman BJ, O’Mullane AP, Bhargava SK (2011) The active site behaviour of electrochemically synthesised gold nanomaterials. Faraday Discuss 152:43–62CrossRefGoogle Scholar
  94. 94.
    Shim JH, Kim J, Lee C, Lee Y (2010) Electrocatalytic activity of gold and gold nanoparticles Improved by electrochemical pretreatment. J Phys Chem C 115(1):305–309CrossRefGoogle Scholar
  95. 95.
    Chen D-J, Xu B, Sun S-G, Tong YJ (2012) Electroless deposition of ultrathin Au film for surface enhanced in situ spectroelectrochemistry and reaction-driven surface reconstruction for oxygen reduction reaction. Catal Today 182(1):46–53CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Instituto de ElectroquímicaUniversidad de AlicanteAlicanteSpain

Personalised recommendations