Skip to main content

Non-Pt Cathode Electrocatalysts for Anion-Exchange-Membrane Fuel Cells

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

Abstract

This chapter provides an overview of the recent advancement in the development of non-Pt electrocatalysts for oxygen reduction reactions (ORRs) in alkaline media; catalyst materials discussed include carbon-supported transition metals (Pt/C, Pd/C, Ag/C), transition-metal macrocycles (M–N–C), and multifunctional materials (e.g., metallic alloys, metallic MnO2, macrocycle-treated metals). The important factors affecting ORR kinetics are identified through combined theoretical simulations and experimental measurements. The inconsistencies between the ORR activities observed in fuel cell tests and those observed in rotating disk electrodes, as reported by several research groups, were analyzed in details, and plausible theoretical explanations were proposed. Several promising bifunctional catalysts and their potentials as replacements for Pt in anion-exchange-membrane fuel cell (AEMFC) applications are discussed. For the AEMFC technology to mature as a low-cost high-performance energy device, further improvement of the performance and durability of the catalysts is essential; we believe that the necessary improvements can be achieved through intelligent design of multifunctional catalysts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cifrain M, Kordesch K (2003) Fundamentals and survey of systems. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, vol 1. Wiley, Milan, pp 267–280

    Google Scholar 

  2. McLean GF, Niet T, Richard SP, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hydrogen Energy 27:507–526

    Article  Google Scholar 

  3. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  4. Gamburzev S, Petrov K (2002) Silver-carbon electrocatalyst for air cathodes in alkaline fuel cells. J Appl Electrochem 32(7):805–809

    Article  Google Scholar 

  5. Schulze M, Gulzow E (2004) Degradation of nickel anodes in alkaline fuel cells. J Power Sources 127(1–2):252–263

    Article  Google Scholar 

  6. Wagner N, Shulze M, Gulzow E (2004) Long term investigation of silver cathodes for alkaline fuel cells. J Power Sources 127(1–2):264–272

    Article  Google Scholar 

  7. Choban ER, Spendelow JS, Gancs L, Wieckowski A, Kenis PJA (2005) Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media. Electrochim Acta 50(27):5390–5398

    Article  Google Scholar 

  8. Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9:2654–2675

    Article  Google Scholar 

  9. Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature. Fuel Cells 5:187–200

    Article  Google Scholar 

  10. Yu EH, Scott K (2005) Direct methanol alkaline fuel cells with catalysed anion exchange membrane electrodes. J Appl Electrochem 35:91–96

    Article  Google Scholar 

  11. Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150(4):27–31

    Article  Google Scholar 

  12. Varcoe JR, Slade RCT, Yee ELH (2006) An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells. Chem Commun 13:1428–1429

    Article  Google Scholar 

  13. Yang CC, Chiu SJ, Chien WC (2006) Development of alkaline direct methanol fuel cells based on crosslinked PVA polymer membranes. J Power Sources 162(1):21–29

    Article  Google Scholar 

  14. Varcoe JR, Slade RCT (2006) An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem Commun 8(5):839–843

    Article  Google Scholar 

  15. Lin BYS, Kirk DW, Thorpe SJ (2006) Performance of alkaline fuel cells: a possible future energy system. J Power Sources 161(1):474–483

    Article  Google Scholar 

  16. Tamain C, Poynton SD, Slade RCT, Carroll B, Varcoe JR (2007) Development of cathode architectures customized for H2/O2 metal-cation-free alkaline membrane fuel cells. J Phys Chem C 111(49):18423–18430

    Article  Google Scholar 

  17. Park JS, Park SH, Yim SD, Yoon YG, Lee WY, Kim CS (2008) Performance of solid alkaline fuel cells employing anion-exchange membranes. J Power Sources 178:620–626

    Article  Google Scholar 

  18. Unlu M, Zhou J, Kohl P (2009) Anion exchange membrane fuel cells: experimental comparison of hydroxide and carbonate conductive ions fuel cells and energy conversion. Electrochem Solid State Lett 12(3):B27–B30

    Article  Google Scholar 

  19. Gu S, Cai R, Luo T, Chen ZW, Sun MW, Liu Y, He GH, Yan YS (2009) A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. Angew Chem Int Ed 48(35):6499–6502

    Article  Google Scholar 

  20. Switzer EE, Olson TS, Datye AK, Atanassov P, Hibbs MR, Fujimoto CY, Cornelius CJ (2010) Novel KOH-free anion-exchange membrane fuel cell: performance comparison of alternative anion-exchange ionomers in catalyst ink. Electrochim Acta 55(9):3404–3408

    Article  Google Scholar 

  21. Piana M, Boccia M, Filpi A, Flammia E, Miller HA, Orsini M, Salusti F, Santiccioli S, Ciardelli F, Pucci A (2010) H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst. J Power Sources 195(18):5875–5881

    Article  Google Scholar 

  22. Fukuta K, Inoue H, Chikashige Y, Yanagi H (2010) Improved maximum power density of alkaline fuel cells (AMFCs) by the optimization of mea construction. ECS Trans 28(30):221–225

    Article  Google Scholar 

  23. Sun L, Guo J, Zhou J, Xu Q, Chu D, Chen R (2012) Novel nanostructured high-performance anion exchange ionomers for anion exchange membrane fuel cells. J Power Sources 202:70–77

    Article  Google Scholar 

  24. Bidault F, Brett DJL, Middletonc PH, Brandon NP (2009) Review of gas diffusion cathodes for alkaline fuel cells. J Power Sources 187:39–48

    Article  Google Scholar 

  25. Jiang L, Hsu A, Chu D, Chen R (2010) Ethanol electro-oxidation on Pt/C and PtSn/C catalysts in alkaline and acid solutions. Int J Hydrogen Energy 35(1):365–372

    Article  Google Scholar 

  26. Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195(11):3431–3450

    Article  Google Scholar 

  27. Jagal JH (2006) N4-macrocyclic metal complexes, 1st edn. Springer, New York, pp 41–82

    Google Scholar 

  28. Adzic R (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Elecrocatalysis, Frontier in science. Wiley, New York, pp 197–242

    Google Scholar 

  29. Lima FHB, Zhang J, Shao MH, Sasaki K, Vukmirovic MB, Ticianelli EA, Adzic R (2007) Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J Phys Chem C 111:404–410

    Article  Google Scholar 

  30. Jiang L, Hsu A, Chu D, Chen R (2009) Oxygen reduction reaction on carbon supported pt and pd in alkaline solution. J Electrochem Soc 156(3):B370–B376

    Article  Google Scholar 

  31. Hurlen T, Sandler YL, Pantier EA (1966) Reactions of oxygen and hydrogen peroxide at silver electrodes in alkaline solutions. Electrochim Acta 11:1463–1473

    Article  Google Scholar 

  32. Lima FHB, Sanches CD, Ticianelli EA (2005) Physical characterization and electrochemical activity of bimetallic platinum-silver particles for oxygen reduction in alkaline electrolyte. J Electrochem Soc 152(7):A1466–A1473

    Article  Google Scholar 

  33. Demarconnay L, Coutanceau C, Leger JM (2004) Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts – effect of the presence of methanol. Electrochim Acta 49:4513–4521

    Article  Google Scholar 

  34. Coutanceau C, Demarconnay L, Lamy C, Leger JM (2006) Development of electrocatalysts for solid alkaline fuel cell (SAFC). J Power Sources 156(1):14–19

    Article  Google Scholar 

  35. Blizanac BB, Ross PN, Markovic NM (2006) Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring disk Ag(hkl) studies. J Phys Chem B 110(10):4735–4741

    Article  Google Scholar 

  36. Han JJ, Li N, Zhang TY (2009) Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. J Power Sources 193(2):885–889

    Article  Google Scholar 

  37. Guo J, Hsu A, Chu D, Chen R (2010) Improving oxygen reduction reaction activities on carbon-supported ag nanoparticles in alkaline solutions. J Phys Chem C 114(10):4324–4330

    Article  Google Scholar 

  38. Singh P, Buttry DA (2012) Comparison of oxygen reduction reaction at silver nanoparticles and polycrystalline silver electrodes in alkaline solution. J Phys Chem C 116(19):10656–10663

    Article  Google Scholar 

  39. Varcoe JR, Slade RCT, Wright GL, Chen Y (2006) Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes. J Phys Chem B 110(42):21041–21049

    Article  Google Scholar 

  40. Poynton SD, Kizewski JP, Slade RCT, Varcoe JR (2010) Novel electrolyte membranes and non-Pt catalysts for low temperature fuel cells. Solid State Ionics 181(3–4):219–222

    Article  Google Scholar 

  41. Lu S, Pan J, Huang A, Zhuang L, Lu J (2008) Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc Natl Acad Sci USA 105(52):20611–20614

    Article  Google Scholar 

  42. Guo J, Zhou J, Chu D, Chen R (2013) Tuning the electrochemical interface of Ag/C electrodes in alkaline media with metallophthalocyanine molecules. J Phys Chem C. doi:10.1021/jp310655y

  43. Hansen H, Rossmeisl J, Nørskov JK (2008) Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys Chem Chem Phys 10:3722–3730

    Article  Google Scholar 

  44. Strmcnik D, Kodama K, Vliet DVD, Greeley J, Stamenkovic VR, Markovic NM (2009) The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat Chem 1:466–472

    Article  Google Scholar 

  45. Strmcnik D, Vliet DFVD, Chang KC, Komanicky V, Kodama K, You H, Stamenkovic VR, Markovic NM (2011) Effects of Li+, K+, and Ba2+ cations on the ORR at model and high surface area Pt and Au surfaces in alkaline solutions. J Phys Chem Lett 2(21):2733–2736

    Article  Google Scholar 

  46. Lucas CA, Thompson P, Grunder Y, Markovic NM (2011) The structure of the electrochemical double layer: Ag(111) in alkaline electrolyte. Electrochem Commun 13(11):1205–1208

    Article  Google Scholar 

  47. Blizanac BB, Ross PN, Markovic NM (2006) Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring disk Ag(hkl) studies. J Phys Chem B 110(10):4735–4741

    Article  Google Scholar 

  48. Guo J, Li H, He H, Chu D, Chen R (2011) CoPc- and CoPcF16-modified Ag nanoparticles as novel catalysts with tunable oxygen reduction activity in alkaline media. J Phys Chem C 115(17):8494–8502

    Article  Google Scholar 

  49. Jasinski R (1964) A new fuel cell cathode catalyst. Nature 201:1212–12113

    Article  Google Scholar 

  50. Alt H, Binder H, Sandstede G (1973) Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J Catal 28(1):8–19

    Article  Google Scholar 

  51. Veen JARV, Baar JFV, Kroese CJ, Coolegem JGF, Wit NE, Colijn HA (1981) Oxygen reduction on transition-metal porphyrins in acid electrolyte I. Activity. Phys Chem 85:693–700

    Article  Google Scholar 

  52. Scherson DA, Gupta SL, Fierro C, Yeager E, Kordesch M, Eldridge J, Hoffman R (1983) Cobalt tetramethoxyphenyl porphyrin – emission Mossbauer spectroscopy and O2 reduction electrochemical studies. Electrochim Acta 28(9):1205–1209

    Article  Google Scholar 

  53. Zagal J, Bindra P, Yeager E (1980) A mechanistic study of O2 reduction on water soluble phthalocyanines adsorbed on graphite electrodes. J Electrochem Soc 127:1506–1517

    Article  Google Scholar 

  54. Scherson D, Tanaka AA, Gupta SL, Tryk D, Fierro C, Holze R, Yeager EB, Lattimer RP (1986) Transition metal macrocycles supported on high area carbon: pyrolysis – mass spectrometry studies. Electrochim Acta 31(10):1247–1258

    Article  Google Scholar 

  55. Zagal J, Sen R, Yeager E (1977) Oxygen reduction by Co(II) tetrasulfonatephthalocyanine irreversibly adsorbed on a stress-annealed pyrolytic graphite electrode surface. J Electroanal Chem 83(1):207–213

    Article  Google Scholar 

  56. Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29(11):1527–1537

    Article  Google Scholar 

  57. Putten AVD, Elzing A, Visscher W, Barendrecht E (1986) Oxygen reduction on vacuum-deposited and absorbed transition-metal phthalocyanine films. J Electroanal Chem 214(1–2):523–533

    Google Scholar 

  58. Collman JP, Marrocco M, Denisovich P, Koval C, Anson FC (1979) Potent catalysis of the electroreduction of oxygen to water by dicobalt porphyrin dimers adsorbed on graphite electrodes. J Electroanal Chem 101(1):117–122

    Article  Google Scholar 

  59. Collman J, Danisovich P, Yutaka K, Marrocco M, Koval C, Anson F (1980) Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Am Chem Soc 102(19):6027–6036

    Article  Google Scholar 

  60. Liu H, Weaver M, Wang C, Chang C (1983) Dependence of electrocatalysis for oxygen reduction by adsorbed dicobalt cofacial porphyrins upon catalyst structure. J Electroanal Chem 145(2):439–447

    Article  Google Scholar 

  61. Yeager E (1986) Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J Mol Catal 38(1–2):5–25

    Google Scholar 

  62. Gupta S, Tryk D, Bae I, Aldred W, Yeager E (1989) Heat-treated polycrylonitrile-based catalysts for oxygen electroreduction. J Appl Electrochem 19(1):19–27

    Article  Google Scholar 

  63. Tse Y, Janda P, Lam H, Zhang J, Pietro W, Lever ABP (1997) Monomeric and polymeric tetra-aminophthalocyanatocobalt(II) modified electrodes: electrocatalytic reduction of oxygen. J Porphyr Phthalocyanines 1(1):3–16

    Article  Google Scholar 

  64. Ramirez G, Trollund E, Isaacs M, Armijo F, Zagal J, Costamagna J, Aguirre M (2002) Electroreduction of molecular oxygen on poly-iron-tetraaminophthalocyanine modified electrodes. J Electroanal 14:540–545

    Article  Google Scholar 

  65. Jaouen F, Marcotte S, Dodelet JP, Lindbergh G (2003) Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports. J Phys Chem B 107(6):1376–1386

    Article  Google Scholar 

  66. Lefevre M, Dodelet JP (2003) Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim Acta 48(19):2749–2760

    Article  Google Scholar 

  67. Schulenburg H, Stankov S, Schnemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H (2003) Catalysts for the oxygen reduction from heat-treated iron(III) tetramethoxyphenylporphyrin chloride: structure and stability of active sites. J Phys Chem B 107(34):9034–9041

    Article  Google Scholar 

  68. Villers D, Jacques-Bedard X, Dodelet JP (2004) Fe-based catalysts for oxygen reduction in PEM fuel cells: pretreatment of the carbon support. J Electrochem Soc 151(9):A1507–A1515

    Article  Google Scholar 

  69. Marcotte S, Villers D, Guillet N, Roue L, Dodelet JP (2004) Electroreduction of oxygen on Co-based catalysts: determination of the parameters affecting the two-electron transfer reaction in an acid medium. Electrochim Acta 50(1):179–188

    Article  Google Scholar 

  70. Barnanton S, Couranceau C, Roux C, Hahn F, Leger JM (2005) Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. J Electroanal Chem 577(2):223–234

    Article  Google Scholar 

  71. Lefevre M, Dodelet JP, Bertrand P (2005) Molecular oxygen reduction in PEM fuel cell conditions: ToF-SIMS analysis of co-based electrocatalysts. J Phys Chem B 109(35):16718–16724

    Article  Google Scholar 

  72. Jaouen F, Lefevre M, Dodelet JP, Cai M (2006) Heat-treated Fe/N/C catalysts for O2 electroreduction: are active sites hosted in micropores? J Phys Chem B 110(11):5553–5558

    Article  Google Scholar 

  73. Guillet N, Roue L, Marcotte S, Villers D, Dodelet JP, Chhim N, Trevin S (2006) Electrogeneration of hydrogen peroxide in acid medium using pyrolyzed cobalt-based catalysts: influence of the cobalt content on the electrode performance. J Appl Electrochem 36(8):863–870

    Article  Google Scholar 

  74. Baker R, Wilkinson D, Zhang J (2008) Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochim Acta 53(23):6906–6919

    Article  Google Scholar 

  75. Jaouen F, Herranz J, Lefevre M, Dodelet JP, Kramm UI, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn JR, Olson T, Pylypenko S, Atanassov P, Ustinov EA (2009) Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl Mater Interfaces 1(8):1623–1639

    Article  Google Scholar 

  76. Jaouen F, Dodelet JP (2009) O2 reduction mechanism on non-noble metal catalysts for pem fuel cells. Part I: Experimental rates of O2 electroreduction, H2O2 electroreduction, and H2O2 disproportionation. J Phys Chem C 113(34):15422–15432

    Article  Google Scholar 

  77. Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71–74

    Article  Google Scholar 

  78. Gasteiger H, Markovic NM (2009) Just a dream-or future reality. Science 324:48–49

    Article  Google Scholar 

  79. Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet JP (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:416. doi:10.1038/ncomms1427

    Article  Google Scholar 

  80. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447

    Article  Google Scholar 

  81. Herranz J, Jaouen F, Lefevre M, Kramm UI, Proietti E, Dodelet JP, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Bertrand P, Arruda TM, Mukerjee S (2011) Unveiling N-protonation and anion-binding effects on Fe/N/C catalysts for O2 reduction in proton-exchange-membrane fuel cells. J Phys Chem C 115(32):16087–16097

    Article  Google Scholar 

  82. Olson TS, Pylypenko S, Atanassov P, Asazawa K, Yamada K, Tanaka H (2010) Anion-exchange membrane fuel cells: dual-site mechanism of oxygen reduction reaction in alkaline media on cobalt–polypyrrole electrocatalysts. J Phys Chem C 114(11):5049–5059

    Article  Google Scholar 

  83. Jahnke H, Schonborn M, Zimmermann G (1976) Organic dyestuffs as catalysts for fuel cells. Top Curr Chem 61:133–181

    Article  Google Scholar 

  84. Zagal J, Sen R, Yeager E (1977) Oxygen reduction by Co(II) tetrasulfonatephthalocyanine irreversibly adsorbed on a stress-annealed pyrolytic graphite electrode surface. J Electroanal Chem 83(1):207–213

    Article  Google Scholar 

  85. Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29(11):1527–1537

    Article  Google Scholar 

  86. Putten AVD, Elzing A, Visscher W, Barendrecht E (1986) Oxygen reduction on vacuum-deposited and absorbed transition-metal phthalocyanine films. J Electroanal Chem 214(1–2):523–533

    Google Scholar 

  87. Vasudevan P, Mann SN, Tyagi S (1990) Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transit Met Chem 15(2):81–90

    Article  Google Scholar 

  88. Zagal JH (1992) Metallophthalocyanines as catalysts in electrochemical reactions. Coord Chem Rev 119:89–136

    Article  Google Scholar 

  89. Kazarinov VE, Tarasevich MR, Radyushkina KA, Andreev VN (1979) Some specific features of the metalloporphyrin/electrolyte interface and the kinetics of oxygen electroreduction. J Electroanal Chem 100(1–2):225–232

    Article  Google Scholar 

  90. Shukla A, Manoharan R, Paliteiro C, Hamnett A, Goodenough J (1984) High efficiency cathodes for alkaline air electrodes. J Appl Electrochem 15(5):774–777

    Article  Google Scholar 

  91. Zagal J, Paez M, Tanaka A, Santos J, Linkous C (1992) Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J Electroanal Chem 339(1–2):13–30

    Google Scholar 

  92. Guo J, He H, Chu D, Chen R (2012) OH -Binding effects on metallophthalocyanine catalysts for O2 reduction reaction in anion exchange membrane fuel cells. Electrocatalysis. 3:252–264

    Google Scholar 

  93. Chen R, Li H, Chu D, Wang G (2009) Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions. J Phys Chem C 113(48):20689–20697

    Article  Google Scholar 

  94. Gouerec P, Biloul A, Contamin O, Scarbeck G, Savy M, Riga J, Weng LT, Bertrand P (1997) Oxygen reduction in acid media catalyzed by heat treated cobalt tetraazaannulene supported on an active charcoal: correlations between the performances after longevity tests and the active site configuration as seen by XPS and ToF-SIMS. J Electroanal Chem 422(1–2):61–75

    Google Scholar 

  95. Ahmed J, Yuan Y, Zhou L, Kim S (2012) Carbon supported cobalt oxide nanoparticles–iron phthalocyanine as alternative cathode catalyst for oxygen reduction in microbial fuel cells. J Power Sources 208:170–175

    Article  Google Scholar 

  96. Mamlouk M, Wang X, Scott K, Horsfall J, Williams C (2011) Characterization and application of anion exchange polymer membranes with non-platinum group metals for fuel cells. Proc Inst Mech Eng A J Power Energy 225(2):152–160

    Article  Google Scholar 

  97. Mamlouk M, Kumar SM, Gouerec P, Scott K (2011) Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells. J Power Sources 196:7594–7600

    Article  Google Scholar 

  98. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892

    Article  Google Scholar 

  99. Nilekar AU, Mavrikakis M (2008) Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf Sci 602(14):L89–L94

    Article  Google Scholar 

  100. Roques J, Anderson AB (2004) Electrode potential-dependent stages in OHads formation on the Pt3Cr alloy (111) surface. J Electrochem Soc 151(11):E340–E347

    Article  Google Scholar 

  101. Liao M, Scheiner S (2002) Comparative study of metal-porphyrins, -porphyrazines, and -phthalocyanines. J Comput Chem 23(15):1391–1403

    Article  Google Scholar 

  102. Liao M, Scheiner S (2001) Electronic structure and bonding in metal phthalocyanines, metal=Fe, Co, Ni, Cu, Zn, Mg. J Chem Phys 114(22):9780–9791

    Article  Google Scholar 

  103. Shi Z, Zhang J (2007) Density functional theory study of transitional metal macrocyclic complexes’ dioxygen-binding abilities and their catalytic activities toward oxygen reduction reaction. J Phys Chem C 111(19):7084–7090

    Article  Google Scholar 

  104. Wang G, Ramesh N, Hsu A, Chu D, Chen R (2008) Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine. Mol Simulat 34:1051–1056

    Article  Google Scholar 

  105. He H, Lei Y, Xiao C, Chu D, Chen R, Wang G (2012) Molecular and electronic structures of transition-metal macrocyclic complexes as related to catalyzing oxygen reduction reactions: a density functional theory study. J Phys Chem C 116(30):16038–16046

    Article  Google Scholar 

  106. Miedema PS, Schooneveld M, Bogerd R, Rocha T, Havecker M, Gericke A, Groot F (2011) Oxygen binding to cobalt and iron phthalocyanines as determined from in situ X-ray absorption spectroscopy. J Phys Chem C 115(51):25422–25428

    Article  Google Scholar 

  107. Tanaka A, Fierro C, Scherson D, Yeager E (1987) Electrocatalytic aspects of iron phthalocyanine and its μ-oxo derivatives dispersed on high surface area carbon. J Phys Chem 91(14):3799–3807

    Article  Google Scholar 

  108. Jiang L, Hsu A, Chu D, Chen R (2010) A highly active Pd coated Ag electrocatalyst for oxygen reduction reactions in alkaline media. Electrochim Acta 55(15):4506–4511

    Article  Google Scholar 

  109. Sun W, Hsu A, Chen R (2011) Palladium-coated manganese dioxide catalysts for oxygen reduction reaction in alkaline media. J Power Sources 196:4491–4498

    Article  Google Scholar 

  110. Slanac DA, Lie A, Paulson JA, Stevenson KJ, Johnston KP (2012) Bifunctional catalysts for alkaline oxygen reduction reaction via promotion of ligand and ensemble effects at Ag/MnOx nanodomains. J Phys Chem C 116(20):11032–11039

    Article  Google Scholar 

  111. Slanac DA, Hardin WG, Johnston KP, Stevenson KJ (2012) Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. J Am Chem Soc 134(23):9812–9819

    Article  Google Scholar 

  112. Lima FHB, Castro JFR, Ticianelli E (2006) Silver-cobalt bimetallic particles for oxygen reduction in alkaline media. J Power Sources 161(2):806–812

    Article  Google Scholar 

  113. Lima FHB, Calegaro ML, Ticianelli EA (2007) Electrocatalytic Activity of Dispersed Platinum and Silver Alloys and Manganese Oxides for the Oxygen Reduction in Alkaline Electrolyte. Russian Journal of Electrochemistry 42:1283–1290.

    Article  Google Scholar 

  114. Gasteiger HA, Kocha S, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal Environ 56(1–2):9–35

    Article  Google Scholar 

  115. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    Article  Google Scholar 

  116. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  Google Scholar 

  117. Zhang J, Mo Y, Vukimirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108(20):10955–10964

    Article  Google Scholar 

  118. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeis J, Chorkendorff I, Nørskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556

    Article  Google Scholar 

  119. Wang C, Wang G, Vliet D, Chang K, Markovica NM, Stamenkovic VR (2010) Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Phys Chem Chem Phys 12:6933–6939

    Article  Google Scholar 

  120. Wang C, Chi M, Wang G, Vliet D, Li D, More K, Wang H, Schlueter JA, Markovic NM, Stamenkovic VR (2011) Nanoparticles: correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1-x nanoparticles. Adv Funct Mater 21:147–152

    Article  Google Scholar 

  121. Barth JV (2007) Molecular architectonic on metal surface. Annu Rev Phys Chem 58:375–407

    Article  Google Scholar 

  122. Lin N, Stepanow S, Ruben M, Barth JV (2009) Surface-confined supramolecular coordination chemistry. Top Curr Chem 287:1–44

    Article  Google Scholar 

  123. Bai Y, Buchner F, Kellner I, Schmid M, Vollnhals F, Steinruck H, Marbach H, Gottfried JM (2009) Adsorption of cobalt (II) octaethylporphyrin and 2H-octaethylporphyrin on Ag(111): new insight into the surface coordinative bond. New J Phys 11:125004

    Article  Google Scholar 

  124. Auwarter W, Seufert K, Klappenberger F, Reichert J, Weber-Bargioni A, Verdini A, Cvetko D, Dell’Angela M, Floreano L, Cossaro A, Bavdek G, Morgante A, Seitsonen AP, Barth JV (2010) Site-specific electronic and geometric interface structure of Co-tetraphenyl-porphyrin layers on Ag(111). Phys Rev B 81:245403

    Article  Google Scholar 

  125. Baran JD, Larsson J, Woolley R, Cong Y, Moriarty P, Cafolla A, Schulte K, Dhanak V (2010) Theoretical and experimental comparison of SnPc, PbPc, and CoPc adsorption on Ag(111). Phys Rev B 81:075413

    Article  Google Scholar 

  126. Chu D, Jiang R (2002) Novel electrocatalysts for direct methanol fuel cells. Solid State Ionics 148:591–599

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongrong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Chen, R., Guo, J., Hsu, A. (2013). Non-Pt Cathode Electrocatalysts for Anion-Exchange-Membrane Fuel Cells. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics