Skip to main content

Theoretical Study of Oxygen Reduction Reaction Catalysts: From Pt to Non-precious Metal Catalysts

  • Chapter
  • First Online:
Electrocatalysis in Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

Abstract

Fuel cells are regarded as one of the most promising candidates for stationary and mobile power generation due to their high energy yield and low environmental impact of hydrogen oxidation. The oxygen reduction reaction (ORR) at cathode is a very complex process and plays a crucial role during operation of the PEM fuel cells. However, its mechanism and the nature of intermediates involved remain vague. This chapter focuses on the recent theoretical modeling studies of ORR catalysts for PEMFC. Recent theoretical investigations on oxygen reduction electrocatalysts, such as Pt-based catalysts, non-Pt metal catalysts (Pd, Ir, CuCl), and non-precious metal catalysts (transitional metal macrocyclic complexes, conductive polymer materials, and carbon-based materials), are reviewed. The oxygen reduction mechanisms catalyzed by these catalysts are discussed based on the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacobson MZ, Colella WG, Golden DM (2005) Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 308(5730):1901–1905

    Article  Google Scholar 

  2. Dusastre V (2001) Materials for clean energy. Nature 414(6861):331

    Article  Google Scholar 

  3. Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443(7107):63–66

    Article  Google Scholar 

  4. EG&G Technical Services Inc (2004) Fuel cell handbook. 7th ed. Morgantown, West Virginia: National Energy Technology Lab, US Department of Energy

    Google Scholar 

  5. Shi Z, Zhang J, Liu ZS, Wang H, Wilkinson DP (2006) Current status of ab initio quantum chemistry study for oxygen electroreduction on fuel cell catalysts. Electrochim Acta 51(10):1905–1916

    Article  Google Scholar 

  6. Xu H, Kunz R, Fenton JM (2007) Investigation of platinum oxidation in PEM fuel cells at various relative humidities. Electrochem Solid State Lett 10(1):B1–B5

    Article  Google Scholar 

  7. Holby EF, Greeley J, Morgan D (2012) Thermodynamics and hysteresis of oxide formation and removal on platinum (111) surfaces. J Phys Chem C 116(18):9942–9946

    Google Scholar 

  8. Appleby AJ (1993) Electrocatalysis of aqueous dioxygen reduction. J Electroanal Chem 357(1–2):117–179

    Google Scholar 

  9. Markovic NM, Ross PN Jr (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci 45(4–6):117–229

    Google Scholar 

  10. Schmickler W (1999) Recent progress in theoretical electrochemistry. Annu Rep Prog Chem Sect C Phys Chem 95:117–162, Chapter 5

    Article  Google Scholar 

  11. Grimbolt J, Luntz AC, Fowler DE (1990) Low temperature adsorption of O2 on Pt (111). J Electron Spectrosc Relat Phenom 52:161–174

    Article  Google Scholar 

  12. Luntz AC, Williams MD, Bethune DS (1988) The sticking of O2 on a Pt(111) surface. J Chem Phys 89(7):4381–4395

    Article  Google Scholar 

  13. Stohr J, Gland JL, Eberhard W, Outka D, Madix RJ, Sette F, Koestner RJ, Doebler U (1983) Bonding and bond lengths of chemisorbed molecules from near-edge X-ray-absorption fine-structure studies. Phys Rev Lett 51(26):2414–2417

    Article  Google Scholar 

  14. Sexton BA (1981) Identification of adsorbed species at metal-surfaces by electron-energy loss spectroscopy (EELS). Appl Phys A 26(1):1–18

    Article  Google Scholar 

  15. Wurth W, Stohr J, Feulner P, Pan X, Bauchspiess KR, Baba Y, Hudel E, Rocker G, Menzel D (1990) Bonding, structure, and magnetism of physisorbed and chemisorbed O2 on Pt (111). Phys Rev Lett 65(19):2426–2429

    Article  Google Scholar 

  16. Puglia C, Nilsson A, Hernnas B, Karis O, Bennich P, Martensson N (1995) Physisorbed, chemisorbed and dissociated O2 on Pt(111) studied by different core level spectroscopy methods. Surf Sci 342(1–3):119–133

    Article  Google Scholar 

  17. Keith JA, Jacob T (2010) Computational simulations on the oxygen reduction reaction in electrochemical. In: Balbuena PB, Subramanian VR (eds) Theory and experiment in electrocatalysis. Springer, New York, pp 89–132

    Chapter  Google Scholar 

  18. Koper MTM (2003) Ab initio quantum-chemical calculations in electrochemistry. In: Vayenas CG, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 36. Kluwer/Plenum, New York, Chapter 2

    Google Scholar 

  19. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  MathSciNet  Google Scholar 

  20. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100

    Article  Google Scholar 

  21. Kohanoff J, Gidopoulos NI (2003) Density functional theory: basics, new trends and applications. In: Wilson S (ed) Handbook of molecular physics and quantum chemistry, vol 2. Wiley, Chichester, pp 532–568, Part 5, Chapter 26

    Google Scholar 

  22. Perdew JP (1986) Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. Phys Rev B 33(12):8822–8824

    Article  Google Scholar 

  23. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671–6687

    Article  Google Scholar 

  24. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation-energy. Phys Rev B 45(23):13244–13249

    Article  Google Scholar 

  25. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  Google Scholar 

  26. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37(2):785–789

    Article  Google Scholar 

  27. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98(2):1372–1377

    Article  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  Google Scholar 

  29. Albu TV, Mikel SE (2007) Performance of hybrid density functional theory methods toward oxygen electroreduction over platinum. Electrochim Acta 52(9):3149–3159

    Article  Google Scholar 

  30. Anderson AB, Albu TV (1999) Ab initio determination of reversible potentials and activation energies for outer-sphere oxygen reduction to water and the reverse oxidation reaction. J Am Chem Soc 121(50):11855–11863

    Article  Google Scholar 

  31. Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108(2):664–675

    Article  Google Scholar 

  32. Becke AD (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104(3):1040–1046

    Article  Google Scholar 

  33. Car R, Parrinello M (1985) Unified approach for molecular-dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474

    Article  Google Scholar 

  34. Grotendorst J, Blügel S, Marx D (eds) (2006) Computational nanoscience: do it yourself! vol 31, NIC Series. John von Neumann Institute for Computing, Jülich, pp 195–244

    Google Scholar 

  35. Tse JS (2002) Ab initio molecular dynamics with density functional theory. Annu Rev Phys Chem 53:249–290

    Article  Google Scholar 

  36. Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29(11):1527–1537

    Article  Google Scholar 

  37. Adzic RR, Wang JX (1998) Configuration and site of O2 adsorption on the Pt(111) electrode surface. J Phys Chem B 102(45):8988–8993

    Article  Google Scholar 

  38. Damjanovic A, Brusic V (1967) Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim Acta 12(6):615–628

    Article  Google Scholar 

  39. Yeager E, Razaq M, Gervasio D, Razaq A, Tryk D (1992) The electrolyte factor in O2 reduction electrocatalysis. In: Scheerson D, Tryk D, Daroux M, Xing X (eds) Structural effects in electrocatalysis and oxygen electrochemistry. Proc vol 92–11. The Electrochemical Society, Pennington NJ, p 440

    Google Scholar 

  40. Shao MH, Liu P, Adzic RR (2006) Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes. J Am Chem Soc 128(23):7408–7409

    Article  Google Scholar 

  41. Griffith JS (1956) On the magnetic properties of some haemoglobin complexes. Proc R Soc Lond A 235(1200):23–36

    Article  Google Scholar 

  42. Yeager E (1981) Recent advances in the science of the electrocatalysis. J Electrochem Soc 128(4):160C–171C

    Article  Google Scholar 

  43. Marcus RA (1997) Electron transfer reactions in chemistry. Theory and experiment. J Electroanal Chem 438(1–2):251–259

    Google Scholar 

  44. Anderson AB, Albu TV (2000) Catalytic effect of platinum on oxygen reduction: an ab initio model including electrode potential dependence. J Electrochem Soc 147(11):4229–4238

    Article  Google Scholar 

  45. Sidik RA, Anderson AB (2002) Density functional theory study of O2 electroreduction when bonded to a Pt dual site. J Electroanal Chem 528(1–2):69–76

    Google Scholar 

  46. Li T, Balbuena PB (2003) Oxygen reduction on a platinum cluster. Chem Phys Lett 367(3–4): 439–447

    Article  Google Scholar 

  47. Jinnouchi R, Okazaki K (2003) New insight into microscale transport phenomena in PEFC by quantum MD. Microscale Thermophys Eng 7(1):15–31

    Article  Google Scholar 

  48. Hyman MP, Medlin JW (2007) Effects of electronic structure modifications on the adsorption of oxygen reduction reaction intermediates on model Pt(111)-alloy surfaces. J Phys Chem C 111(45):17052–17060

    Article  Google Scholar 

  49. Li T, Balbuena PB (2001) Computational studies of the interactions of oxygen with platinum clusters. J Phys Chem B 105(41):9943–9952

    Article  Google Scholar 

  50. Wang Y, Balbuena PB (2005) Potential energy surface profile of the oxygen reduction reaction on a Pt cluster: adsorption and decomposition of OOH and H2O2. J Chem Theory Comput 1(5):935–943

    Article  Google Scholar 

  51. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650

    Article  Google Scholar 

  52. Meier J, Friedrich KA, Stimming U (2002) Novel method for the investigation of single nanoparticle reactivity. Faraday Discuss 121:365–372

    Article  Google Scholar 

  53. Lopez N, Nørskov JK (2002) Catalytic CO oxidation by a gold nanoparticle: a density functional study. J Am Chem Soc 124(38):11262–11263

    Article  Google Scholar 

  54. Maillard F, Eikerling M, Cherstiouk OV, Schreier S, Savinova E, Stimming U (2004) Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. Faraday Discuss 125:357–377

    Article  Google Scholar 

  55. Han BC, Miranda CR, Ceder G (2008) Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: a first-principles study. Phys Rev B 77(7):075410

    Article  Google Scholar 

  56. Han BC, Ceder G (2006) Effect of coadsorption and Ru alloying on the adsorption of CO on Pt. Phys Rev B 74(20):205418

    Article  Google Scholar 

  57. Xu Y, Ruban AV, Mavrikakis M (2004) Adsorption and dissociation of O2 on Pt–Co and Pt–Fe alloys. J Am Chem Soc 126(14):4717–4725

    Article  Google Scholar 

  58. Starke U, Materer N, Barbieri A, Döll R, Heinz K, Van Hove MA, Somorjai GA (1993) A low-energy-electron diffraction study of oxygen, water and ice adsorption on Pt(111). Surf Sci 287–288:432–437

    Article  Google Scholar 

  59. Gland JL, Sexton BA, Fisher GB (1980) Oxygen interactions with the Pt(111) surface. Surf Sci 95(2–3):587–602

    Article  Google Scholar 

  60. Watanabe M, Saegusa S, Stonehart P (1988) Electro-catalytic activity on supported platinum crystallites for oxygen reduction in sulphuric acid. Chem Lett 17(9):1487–1490

    Article  Google Scholar 

  61. Giordano N, Passalacqua E, Pino L, Arico AS, Antonucci V, Vivaldi M, Kinoshita K (1991) Analysis of platinum particle size and oxygen reduction in phosphoric acid. Electrochim Acta 36(13):1979–1984

    Article  Google Scholar 

  62. Takasu Y, Ohashi N, Zhang XG, Murakami Y, Minagawa H, Sato S, Yahikozawa K (1996) Size effects of platinum particles on the electroreduction of oxygen. Electrochim Acta 41(16): 2595–2600

    Article  Google Scholar 

  63. Yano H, Inukai J, Uchida H, Watanabe M, Babu PK, Kobayashi T, Chung JH, Oldfield E, Wieckowski A (2006) Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction: an electrochemical and 195Pt EC-NMR study. Phys Chem Chem Phys 8(42):4932–4939

    Article  Google Scholar 

  64. Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J Phys Chem B 109(30):14433–14440

    Article  Google Scholar 

  65. Li X, Chen G, Xie J, Zhang L, Xia D, Wu Z (2010) An electrocatalyst for methanol oxidation in DMFC: PtBi/XC-72 with Pt solid-solution structure. J Electrochem Soc 157(4):B580–B584

    Article  Google Scholar 

  66. Aricoo AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377

    Article  Google Scholar 

  67. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39(6):2184–2202

    Article  Google Scholar 

  68. Antolini E (2003) Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. J Mater Sci 38(14):2995–3005

    Article  Google Scholar 

  69. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497

    Article  Google Scholar 

  70. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2002) Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J Phys Chem B 106(46):11970–11979

    Article  Google Scholar 

  71. Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108(30):10955–10964

    Article  Google Scholar 

  72. Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 129(42):12624–12625

    Article  Google Scholar 

  73. Srivastava R, Mani P, Hahn N, Strasser P (2007) Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew Chem Int Ed 46(47):8988–8991

    Article  Google Scholar 

  74. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction-XRD, XAS, and electrochemical studies. J Phys Chem 99(13):4577–4589

    Article  Google Scholar 

  75. Arico AS, Shukla AK, Kim H, Park S, Min M, Antonucci V (2001) An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Appl Surf Sci 172(1–2):33–40

    Article  Google Scholar 

  76. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J Phys Chem B 106(16):4181–4191

    Article  Google Scholar 

  77. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cell 1(2):105–116

    Article  Google Scholar 

  78. Drillet JF, Ee A, Friedemann J, Kotz R, Schnyder B, Schmidt V (2002) Oxygen reduction at Pt and Pt70Ni30 in H2SO4/CH3OH solution. Electrochim Acta 47(12):1983–1988

    Article  Google Scholar 

  79. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction: an in situ XANES and EXAFS investigation. J Electrochem Soc 142(5):1409–1422

    Article  Google Scholar 

  80. Min M, Cho J, Cho K, Kim H (2000) Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta 45(25–26):4211–4217

    Article  Google Scholar 

  81. Neergat M, Shukla AK, Gandhi KS (2001) Platinum-based alloys as oxygen-reduction catalysts for solid-polymer-electrolyte direct methanol fuel cells. J Appl Electrochem 31(4):373–378

    Article  Google Scholar 

  82. Paffett MT, Barry JG, Gottesfeld S (1988) Oxygen reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and roughened platinum. J Electrochem Soc 135(6):1431–1436

    Article  Google Scholar 

  83. Antolini E, Passos RR, Ticianelli EA (2002) Electrocatalysis of oxygen reduction on a carbon supported platinum–vanadium alloy in polymer electrolyte fuel cells. Electrochim Acta 48(3):263–270

    Article  Google Scholar 

  84. Lai FJ, Chou HL, Sarma LS, Wang DY, Lin YC, Lee JF, Hwang BJ, Chen CC (2010) Tunable properties of PtxFe1-x electrocatalysts and their catalytic activity towards the oxygen reduction reaction. Nanoscale 2(4):573–581

    Article  Google Scholar 

  85. Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146(10):3750–3756

    Article  Google Scholar 

  86. Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357(1–2):201–224

    Google Scholar 

  87. Antolini E, Salgado JRC, Gonzalez ER (2006) The stability of Pt–M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: a literature review and tests on a Pt–Co catalyst. J Power Sources 160(2):957–968

    Article  Google Scholar 

  88. Colon-Mercado HR, Popov BN (2006) Stability of platinum based alloy cathode catalysts in PEM fuel cells. J Power Sources 155(2):253–263

    Article  Google Scholar 

  89. Duan Z, Wang G (2011) A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe). Phys Chem Chem Phys 13(45):20178–20187

    Article  Google Scholar 

  90. Nilekar AU, Mavrikakis M (2008) Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf Sci 602(14):L89–L94

    Article  Google Scholar 

  91. Shao MH, Sasaki K, Adzic RR (2006) Pd−Fe nanoparticles as electrocatalysts for oxygen reduction. J Am Chem Soc 128(11):3526–3527

    Article  Google Scholar 

  92. Fernandez JL, Raghuveer V, Manthiram A, Bard AJ (2005) Pd–Ti and Pd–Co–Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells. J Am Chem Soc 127(38):13100–13101

    Article  Google Scholar 

  93. Fernandez JL, Walsh DA, Bard AJ (2005) Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M–Co (M: Pd, Ag, Au). J Am Chem Soc 127(1):357–365

    Article  Google Scholar 

  94. Savadogo O, Lee K, Oishi K, Mitsushimas S, Kamiya N, Ota KI (2004) New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochem Commun 6(2):105–109

    Article  Google Scholar 

  95. Savadogo O, Lee K, Mitsushima S, Kamiya N, Ota KI (2004) Investigation of some new palladium alloys catalysts for the oxygen reduction reaction in an acid medium. J New Mater Electrochem Syst 7(2):77–83

    Google Scholar 

  96. Raghuveer V, Manthiram A, Bard AJ (2005) Pd–Co–Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells. J Phys Chem B 109(48):22909–22912

    Article  Google Scholar 

  97. Tarasevich MR, Zhutaeva GV, Bogdanovskaya VA, Radina MV, Ehrenburg MR, Chalykh AE (2007) Oxygen kinetics and mechanism at electrocatalysts on the base of palladium–iron system. Electrochim Acta 52(15):5108–5118

    Article  Google Scholar 

  98. Opalka SM, Huang W, Wang D, Flanagan TB, Lovvik OM, Emerson SC, She Y, Vanderspurt TH (2007) Hydrogen interactions with the PdCu ordered B2 alloy. J Alloys Compd 446–447:583–587

    Article  Google Scholar 

  99. Bittins-Cattaneo B, Wasmus S, Lopez-Mishima B, Vielstich W (1993) Reduction of oxygen in an acidic methanol/oxygen (air) fuel cell: an online MS study. J Appl Electrochem 23(6):625–630

    Article  Google Scholar 

  100. Gurau B, Smotkin ES (2003) Methanol crossover in direct methanol fuel cells: a link between power and energy density. J Power Sources 112(2):339–352

    Article  Google Scholar 

  101. Shao MH, Huang T, Liu P, Zhang J, Sasaki K, Vukmirovic MB, Adzic RR (2006) Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir 22(25):10409–10415

    Article  Google Scholar 

  102. Erikat IA, Hamad BA, Khalifeh JM (2011) A density functional study on adsorption and dissociation of O2 on Ir(100) surface. Chem Phys 385(1–3):35–40

    Article  Google Scholar 

  103. Zhang R, Liu H, Wang B, Ren J, Li Z (2011) Adsorption and dissociation of O2 on CuCl(111) surface: a density functional theory study. Appl Surf Sci 258(1):408–413

    Article  Google Scholar 

  104. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56(1–2):9–35

    Google Scholar 

  105. Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4(9):3167–3192

    Article  Google Scholar 

  106. Bezerra CWB, Zhang L, Lee KC, Liu HS, Marques ALB, Marques EP, Wang HJ, Zhang JJ (2008) A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53(15):4937–4951

    Article  Google Scholar 

  107. van Veen J, Visser C (1979) Oxygen reduction on monomeric transition-metal phthalocyanines in acid electrolyte. Electrochim Acta 24(9):921–928

    Article  Google Scholar 

  108. Wiesener K, Ohms D, Neumann V, Franke R (1989) N4 macrocycles as electrocatalysts for the cathodic reduction of oxygen. Mater Chem Phys 22(3–4):457–475

    Article  Google Scholar 

  109. Baranton S, Coutanceau C, Garnier E, Leger JM (2006) How does alpha-FePc catalysts dispersed onto high specific surface carbon support work towards oxygen reduction reaction (orr)? J Electroanal Chem 590(1):100–110

    Article  Google Scholar 

  110. Baranton S, Coutanceau C, Roux C, Hahn F, Leger JM (2005) Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. J Electroanal Chem 577(2):223–234

    Article  Google Scholar 

  111. Shi CN, Anson FC (1990) Catalytic pathways for the electroreduction of oxygen by iron tetrakis(4-N-methylpyridyl)porphyrin or iron tetraphenylporphyrin adsorbed on edge plane pyrolytic graphite electrodes. Inorg Chem 29(21):4298–4305

    Article  Google Scholar 

  112. Cardenas-Jiron GI (2002) Substituent effect in the chemical reactivity and selectivity of substituted cobalt phthalocyanines. J Phys Chem A 106(13):3202–3206

    Article  Google Scholar 

  113. Song EH, Shi CN, Anson FC (1998) Comparison of the behavior of several cobalt porphyrins as electrocatalysts for the reduction of O2 at graphite electrodes. Langmuir 14(15):4315–4321

    Article  Google Scholar 

  114. Vasudevan P, Mann SN, Tyagi S (1990) Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transit Met Chem 15(2):81–90

    Article  Google Scholar 

  115. Zhang L, Song CJ, Zhang JJ, Wang HJ, Wilkinson DP (2005) Temperature and pH dependence of oxygen reduction catalyzed by iron fluoroporphyrin adsorbed on a graphite electrode. J Electrochem Soc 152(12):A2421–A2426

    Article  Google Scholar 

  116. Kadish KM, Fremond L, Ou ZP, Shao JG, Shi CN, Anson FC, Burdet F, Gros CP, Barbe JM, Guilard R (2005) Cobalt(III) corroles as electrocatalysts for the reduction of dioxygen: reactivity of a monocorrole, biscorroles, and porphyrin-corrole dyads. J Am Chem Soc 127(15): 5625–5631

    Article  Google Scholar 

  117. Kobayashi N, Janda P, Lever ABP (1992) Cathodic reduction of oxygen and hydrogen peroxide at cobalt and iron crowned phthalocyanines adsorbed on highly oriented pyrolytic graphite electrodes. Inorg Chem 31(25):5172–5177

    Article  Google Scholar 

  118. Shi C, Steiger B, Yuasa M, Anson FC (1997) Electroreduction of O2 to H2O at unusually positive potentials catalyzed by the simplest of the cobalt porphyrins. Inorg Chem 36(20):4294–4295

    Article  Google Scholar 

  119. Song C, Zhang L, Zhang J, Wilkinson DP, Baker R (2007) Temperature dependence of oxygen reduction catalyzed by cobalt fluoro-phthalocyanine adsorbed on a graphite electrode. Fuel Cells 7(1):9–15

    Article  Google Scholar 

  120. Steiger B, Anson FC (1997) [5,10,15,20-tetrakis(4-((pentaammineruthenio)-cyano)phenyl) porphyrinato] cobalt(II) immobilized on graphite electrodes catalyzes the electroreduction of O2 to H2O, but the corresponding 4-cyano-2,6-dimethylphenyl derivative catalyzes the reduction only to H2O2. Inorg Chem 36(18):4138–4140

    Article  Google Scholar 

  121. Baker R, Wilkinson DP, Zhang JJ (2008) Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochim Acta 53(23):6906–6919

    Article  Google Scholar 

  122. Liu HS, Zhang L, Zhang JJ, Ghosh D, Jung J, Downing BW, Whittemore E (2006) Electrocatalytic reduction of O2 and H2O2 by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cell cathodes. J Power Sources 161(2):743–752

    Article  Google Scholar 

  123. Wu G, Chen Z, Artyushkova K, Garzon FH, Zelenay P (2008) Polyaniline-derived non-precious catalyst for the polymer electrolyte fuel cell cathode. ECS Trans 16(2):159–170

    Article  Google Scholar 

  124. Wu G, Artyushkova K, Ferrandon M, Kropf AJ, Myers D, Zelenay P (2009) Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Trans 25(1):1299–1311

    Article  Google Scholar 

  125. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028):443–447

    Article  Google Scholar 

  126. Sulub R, Martinez-Millan W, Smit MA (2009) Study of the catalytic activity for oxygen reduction of polythiophene modified with cobalt or nickel. Int J Electrochem Sci 4(7):1015–1027

    Google Scholar 

  127. Khomenko VG, Barsukov VZ, Katashinskii AS (2005) The catalytic activity of conducting polymers toward oxygen reduction. Electrochim Acta 50(7–8):1675–1683

    Article  Google Scholar 

  128. Martinez-Millan W, Smit MA (2009) Study of electrocatalysts for oxygen reduction based on electroconducting polymer and nickel. J Appl Polym Sci 112(5):2959–2967

    Article  Google Scholar 

  129. Qin HY, Liu ZX, Yin WX, Zhu JK, Li ZP (2008) A cobalt polypyrrole composite catalyzed cathode for the direct borohydride fuel cell. J Power Sources 185(2):909–912

    Article  Google Scholar 

  130. Chen J, Zhang WM, Officer D, Swiegers GF, Wallace GG (2007) A readily-prepared, convergent, oxygen reduction electrocatalyst. Chem Commun 32:3353–3355

    Article  Google Scholar 

  131. Cong HN, El Abbassi K, Gautier JL, Chartier P (2005) Oxygen reduction on oxide/polypyrrole composite electrodes: effect of doping anions. Electrochim Acta 50(6):1369–1376

    Article  Google Scholar 

  132. Coutanceau C, Elhourch A, Crouigneau P, Leger JM, Lamy C (1995) Conducting polymer electrodes modified by metal tetrasulfonated phthalocyanines: preparation and electrocatalytic behaviour towards dioxygen reduction in acid medium. Electrochim Acta 40(17):2739–2748

    Article  Google Scholar 

  133. Hirayama T, Manako T, Imai H (2008) A metal coordination polymer for fuel cell applications: nanostructure control toward high performance electrocatalysis. e J Surf Sci Nanotechnol 6:237–240

    Article  Google Scholar 

  134. Reddy ALM, Rajalakshmi N, Ramaprabhu S (2008) Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for H2 and alcohol fuel cells. Carbon 46(1):2–11

    Article  Google Scholar 

  135. Shao Y, Cong HN (2007) Oxygen reduction on high-area carbon cloth-supported oxide nanoparticles/polypyrrole composite electrodes. Solid State Ionics 178(23–24):1385–1389

    Article  Google Scholar 

  136. Zhang WM, Chen J, Wagner P, Swiegers GF, Wallace GG (2008) Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction. Electrochem Commun 10(4):519–522

    Article  Google Scholar 

  137. Zhou Q, Li CM, Li J, Lu JT (2008) Electrocatalysis of template-electrosynthesized cobalt−porphyrin/polyaniline nanocomposite for oxygen reduction. J Phys Chem C 112(47): 18578–18583

    Google Scholar 

  138. Lee K, Zhang L, Lui H, Hui R, Shi Z, Zhang JJ (2009) Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co–PPy/C) electrocatalysts. Electrochim Acta 54(20):4704–4711

    Article  Google Scholar 

  139. Yuan XX, Zeng X, Zhang HJ, Ma ZF, Wang CY (2010) Improved performance of proton exchange membrane fuel cells with p-toluenesulfonic acid-doped Co–PPy/C as cathode electrocatalyst. J Am Chem Soc 132(6):1754–1755

    Article  Google Scholar 

  140. Yuasa M, Yamaguchi A, Itsuki H, Tanaka K, Yamamoto M, Oyaizu K (2005) Modifying carbon particles with polypyrrole for adsorption of cobalt ions as electrocatatytic site for oxygen reduction. Chem Mater 17(17):4278–4281

    Article  Google Scholar 

  141. Alonso-Vante N, Tributsch H, Solorza-Feria O (1995) Kinetics studies of oxygen reduction in acid medium on novel semiconducting transition metal chalcogenides. Electrochim Acta 40(5):567–576

    Article  Google Scholar 

  142. Cao DX, Wieckowski A, Inukai J, Alonso-Vante N (2006) Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur. J Electrochem Soc 153(5):A869–A874

    Article  Google Scholar 

  143. Delacote C, Bonakdarpour A, Johnston CM, Zelenay P, Wieckowski A (2009) Aqueous-based synthesis of ruthenium–selenium catalyst for oxygen reduction reaction. Faraday Discuss 140:269–281

    Article  Google Scholar 

  144. Fischer C, Alonsovante N, Fiechter S, Tributsch H (1995) Electrocatalytic properties of mixed transition metal tellurides (Chevrel-phases) for oxygen reduction. J Appl Electrochem 25(11):1004–1008

    Article  Google Scholar 

  145. Lee K, Zhang L, Zhang JJ (2007) A novel methanol-tolerant Ir-Se chalcogenide electrocatalyst for oxygen reduction. J Power Sources 165(1):108–113

    Article  Google Scholar 

  146. Lewera A, Inukai J, Zhou WP, Cao D, Duong HT, Alonso-Vante N, Wieckowski A (2007) Chalcogenide oxygen reduction reaction catalysis: X-ray photoelectron spectroscopy with Ru, Ru/Se and Ru/S samples emersed from aqueous media. Electrochim Acta 52(18):5759–5765

    Article  Google Scholar 

  147. Alonso-Vante N, Jaegermann W, Tributsch H, Honle W, Yvon K (1987) Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters. J Am Chem Soc 109(11):3251–3257

    Article  Google Scholar 

  148. Alonso-Vante N, Tributsch H (1986) Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 323(6087):431–432

    Article  Google Scholar 

  149. Doi S, Ishihara A, Mitsushima S, Kamiya N, Ota KI (2007) Zirconium-based compounds for cathode of polymer electrolyte fuel cell. J Electrochem Soc 154(3):B362–B369

    Article  Google Scholar 

  150. Ishihara A, Lee K, Doi S, Mitsushima S, Kamiya N, Hara M, Domen K, Fukuda K, Ota K (2005) Tantalum oxynitride for a novel cathode of PEFC. Electrochem Solid State Lett 8(4):A201–A203

    Article  Google Scholar 

  151. Liu Y, Ishihara A, Mitsushima S, Kamiya N, Ota K (2005) Zirconium oxide for PEFCs cathode. Electrochem Solid State Lett 8(8):A400–A402

    Article  Google Scholar 

  152. Armstrong RD, Douglas AF, Williams DE (1971) A study of the sodium tungsten bronzes for use as electrocatalysts in acid electrolyte fuel cells. Energy Convers 11(1):7–10

    Article  Google Scholar 

  153. Bockris JO, Mchardy J (1973) Electrocatalysis of oxygen reduction by sodium tungsten bronze: II. The influence of traces of platinum. J Electrochem Soc 120(1):61–66

    Article  Google Scholar 

  154. Mchardy J, Bockris JO (1973) Electrocatalysis of oxygen reduction by sodium tungsten bronze: I. Surface characteristics of a bronze electrode. J Electrochem Soc 120(1):53–60

    Article  Google Scholar 

  155. Houston JE, Laramore GE, Park RL (1974) Surface electronic properties of tungsten, tungsten carbide, and platinum. Science 185(4147):258–260

    Article  Google Scholar 

  156. Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalyst. Science 181(4099):547–549

    Article  Google Scholar 

  157. Binder H, Kohling A, Kuhn W, Lindner W, Sandsted G (1969) Tungsten carbide electrodes for fuel cells with acid electrolyte. Nature 224:1299–1300

    Article  Google Scholar 

  158. Izhar S, Yoshida M, Nagai M (2009) Characterization and performances of cobalt–tungsten and molybdenum–tungsten carbides as anode catalyst for PEFC. Electrochim Acta 54(4): 1255–1262

    Article  Google Scholar 

  159. Nikolov I, Vitanov T (1980) The effect of method of preparation on the corrosion resistance and catalytic activity during corrosion of tungsten carbide I. Corrosion resistance of tungsten carbide in sulfuric acid. J Power Sources 5(3):273–281

    Article  Google Scholar 

  160. Palanker VS, Sokolsky DV, Mazulevsky EA, Baybatyrov EN (1976) Highly dispersed tungsten carbide for fuel cells with an acidic electrolyte. J Power Sources 1(2):169–176

    Article  Google Scholar 

  161. Rees EJ, Essaki K, Brady CDA, Burstein GT (2009) Hydrogen electrocatalysts from microwave-synthesised nanoparticulate carbides. J Power Sources 188(1):75–81

    Article  Google Scholar 

  162. Yang XG, Wang CY (2005) Nanostructured tungsten carbide catalysts for polymer electrolyte fuel cells. Appl Phys Lett 86(22):224104

    Article  Google Scholar 

  163. Zhong HX, Zhang HM, Liu G, Liang YM, Hu JW, Yi BL (2006) A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride. Electrochem Commun 8(5): 707–712

    Article  Google Scholar 

  164. Xia DG, Liu SZ, Wang ZY, Chen G, Zhang LJ, Zhang L, Hui SQ, Zhang JJ (2008) Methanol-tolerant MoN electrocatalyst synthesized through heat treatment of molybdenum tetraphenylporphyrin for four-electron oxygen reduction reaction. J Power Sources 177(2):296–302

    Article  Google Scholar 

  165. Takagaki A, Takahashi Y, Yin FX, Takanabe K, Kubota J, Domen K (2009) Highly dispersed niobium catalyst on carbon black by polymerized complex method as PEFC cathode catalyst fuel cells and energy conversion. J Electrochem Soc 156(7):B811–B815

    Article  Google Scholar 

  166. Yin FX, Takanabe K, Kubota J, Domen K (2010) Polymerized complex synthesis of niobium- and zirconium-based electrocatalysts for PEFC cathodes. J Electrochem Soc 157(2):B240–B244

    Article  Google Scholar 

  167. Biddinger EJ, Deak D, Ozkan US (2009) Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts. Top Catal 52(11):1566–1574

    Article  Google Scholar 

  168. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764

    Article  Google Scholar 

  169. Kundu S, Nagaiah TC, Xia W, Wang Y, Dommele SV, Bitter JH, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M (2009) Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J Phys Chem C 113(32):14302–14310

    Article  Google Scholar 

  170. Lee KR, Lee KU, Lee JW, Ahn BT, Woo SI (2010) Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media. Electrochem Commun 12(8):1052–1055

    Article  Google Scholar 

  171. Maldonado S, Stevenson KJ (2005) Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J Phys Chem B 109(10):4707–4716

    Article  Google Scholar 

  172. Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115(22):11170–11176

    Article  Google Scholar 

  173. Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2007) Oxygen reduction reaction activity and surface properties of nanostructured nitrogen-containing carbon. J Mol Catal A Chem 264(1–2):73–81

    Article  Google Scholar 

  174. Qu L, Liu Y, Baek JB, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326

    Article  Google Scholar 

  175. Imran Jafri R, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20(34):7114–7117

    Article  Google Scholar 

  176. Titov A, Zapol P, Kral P, Liu DJ, Iddir H, Baishya K, Curtiss LA (2009) Catalytic Fe-xN sites in carbon nanotubes. J Phys Chem C 113(52):21629–21634

    Article  Google Scholar 

  177. Kurak KA, Anderson AB (2009) Nitrogen-treated graphite and oxygen electroreduction on pyridinic edge sites. J Phys Chem C 113(16):6730–6734

    Article  Google Scholar 

  178. Okamoto Y (2009) First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon. Appl Surf Sci 256(1):335–341

    Article  Google Scholar 

  179. Geng D, Chen Y, Chen Y, Li Y, Li R, Sun X, Ye S, Knights S (2011) High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ Sci 4(3):760–764

    Article  Google Scholar 

  180. Chlistunoff J (2011) RRDE and voltammetric study of ORR on pyrolyzed Fe/polyaniline catalyst. On the origins of variable tafel slopes. J Phys Chem C 115(14):6496–6507

    Article  Google Scholar 

  181. Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki J (2008) Carbon alloy catalysts: active sites for oxygen reduction reaction. J Phys Chem C 112(38):14706–14709

    Article  Google Scholar 

  182. Matter PH, Zhang L, Ozkan US (2006) The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J Catal 239(1):83–96

    Article  Google Scholar 

  183. Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44(8):1429–1437

    Article  Google Scholar 

  184. Subramanian NP, Li X, Nallathambi V, Kumaraguru SP, Colon-Mercado H, Wu G, Lee JW, Popov BN (2009) Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Power Sources 188(1):38–44

    Article  Google Scholar 

  185. Rao CV, Cabrera CR, Ishikawa Y (2010) In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction. J Phys Chem Lett 1(18):2622–2627

    Article  Google Scholar 

  186. Wang XQ, Lee JS, Zhu Q, Liu J, Wang Y, Dai S (2010) Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chem Mater 22(7):2178–2180

    Article  Google Scholar 

  187. Jasinski R (1964) A new fuel cell cathode catalyst. Nature 201(4925):1212–1213

    Article  Google Scholar 

  188. Sun S, Jiang N, Xia D (2011) Density functional theory study of the oxygen reduction reaction on metalloporphyrins and metallophthalocyanines. J Phys Chem C 115(19):9511–9517

    Article  Google Scholar 

  189. Shi Z, Zhang J (2007) Density functional theory study of transitional metal macrocyclic complexes’ dioxygen-binding abilities and their catalytic activities toward oxygen reduction reaction. J Phys Chem C 111(19):7084–7090

    Article  Google Scholar 

  190. Sun Y, Chen K, Jia L, Li H (2011) Toward understanding macrocycle specificity of iron on the dioxygen-binding ability: a theoretical study. Phys Chem Chem Phys 13(30):13800–13808

    Article  Google Scholar 

  191. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, Macfarlane DR, Forsyth SA, Forsyth M (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297(5583):983–987

    Article  Google Scholar 

  192. Hepel M, Chen YM, Stephenson RJ (1996) Effect of the composition of polypyrrole substrate on the electrode position of copper and nickel. Electrochem Soc 143(2):498–505

    Article  Google Scholar 

  193. Shi Z, Liu H, Lee K, Dy E, Chlistunoff J, Blair M, Zelenay P, Zhang J, Liu ZS (2011) Theoretical study of possible active site structures in cobalt–polypyrrole catalysts for oxygen reduction reaction. J Phys Chem C 115(33):16672–16680

    Article  Google Scholar 

  194. Dipojono HK, Saputro AG, Aspera SM, Kasai H (2011) Density functional theory study on the interaction of O2 molecule with cobalt–(6)pyrrole clusters. Jpn J Appl Phys 50(5):055702

    Article  Google Scholar 

  195. Dipojono HK, Saputro AG, Belkada R, Nakanishi H, Kasai H, David M, Dy ES (2009) Adsorption of O2 on cobalt–(n)pyrrole molecules. J Phys Soc Jpn 78(9):094710

    Article  Google Scholar 

  196. Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J, Miyata S (2009) X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. J Power Sources 187(1):93–97

    Article  Google Scholar 

  197. Biddinger EJ, Ozkan US (2010) Role of graphitic edge plane exposure in carbon nanostructures for oxygen reduction reaction. J Phys Chem C 114(36):15306–15314

    Article  Google Scholar 

  198. Kim H, Lee K, Woo SI, Jung Y (2011) On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys Chem Chem Phys 13(39):17505–17510

    Article  Google Scholar 

  199. Calle-Vallejo F, Martínez JI, Rossmeisl J (2011) Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Phys Chem Chem Phys 13(34):15639–15643

    Article  Google Scholar 

  200. Yu L, Pan X, Cao X, Hu P, Bao X (2011) Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J Catal 282(1):183–190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dingguo Xia or Jiujun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Chen, X., Xia, D., Shi, Z., Zhang, J. (2013). Theoretical Study of Oxygen Reduction Reaction Catalysts: From Pt to Non-precious Metal Catalysts. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics