Skip to main content

Bidirectional Texture Functions

  • Chapter
Visual Texture

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 2195 Accesses

Abstract

The Bidirectional Texture Function is the best recent visual texture representation which can still be simultaneously measured and modeled using state-of-the-art measurement devices and computers as well as the most advanced mathematical models of visual data. Thus it is the most important representation for the high-end and physically correct surface materials appearance modeling. This chapter surveys compression and modeling approaches available for this sophisticated textural representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashikhmin, M.: Synthesizing natural textures. In: ACM Symposium on Interactive 3D Graphics, pp. 217–226 (2001)

    Google Scholar 

  2. Ashikhmin, M., Premoze, S., Shirley, P.: A microfacet-based BRDF generator. In: Akeley, K. (ed.) ACM SIGGRAPH 2000, pp. 65–74. ACM, New York (2000)

    Google Scholar 

  3. Bennett, J., Khotanzad, A.: Multispectral random field models for synthesis and analysis of color images. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 327–332 (1998)

    Article  Google Scholar 

  4. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. B 36(2), 192–236 (1974)

    MathSciNet  MATH  Google Scholar 

  5. Blinn, J.: Models of light reflection for computer synthesized pictures. SIGGRAPH Comput. Graph. 11, 192–198 (1977)

    Article  Google Scholar 

  6. Cohen, M., Shade, J., Hiller, S.e.a.: Wang tiles for image and texture generation. ACM Trans. Graph. 22(3), 287–294 (2003)

    Article  Google Scholar 

  7. Dana, K.J., Nayar, S.K., van Ginneken, B., Koenderink, J.J.: Reflectance and texture of real-world surfaces. In: CVPR, pp. 151–157. IEEE Comput. Soc., Los Alamitos (1997)

    Google Scholar 

  8. Daubert, K., Lensch, H.P.A., Heidrich, W., Seidel, H.P.: Efficient cloth modeling and rendering. In: Rendering Techniques’01, Proceedings of 12th Eurographics Rendering Workshop, pp. 63–70. Springer, Berlin (2001)

    Google Scholar 

  9. Dong, J., Chantler, M.: Comparison of five 3D surface texture synthesis methods. In: Texture 2003, pp. 19–23. Heriot-Watt University, Edinburgh (2003)

    Google Scholar 

  10. Dong, J., Chantler, M.: Capture and synthesis of 3D surface texture. Int. J. Comput. Vis. 62(1), 177–194 (2005)

    Google Scholar 

  11. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In Fiume, E. (ed.) ACM SIGGRAPH, 2001, pp. 341–346. ACM, New York (2001). http://citeseer.nj.nec.com/efros01image.html

    Google Scholar 

  12. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proc. Int. Conf. on Computer Vision, Corfu, Greece, vol. 2, pp. 1033–1038 (1999). http://citeseer.nj.nec.com/efros99texture.html

    Google Scholar 

  13. Favaro, P., Soatto, S.: 3-D Shape Estimation and Image Restoration: Exploiting Defocus and Motion Blur. Springer, New York (2007)

    Google Scholar 

  14. Filip, J., Haindl, M.: Non-linear reflectance model for Bidirectional Texture Function synthesis. In: Kittler, J., Petrou, M., Nixon, M. (eds.) Proceedings of the 17th IAPR International Conference on Pattern Recognition, vol. I, pp. 80–83. IEEE Press, Los Alamitos (2004). http://dx.doi.org/10.1109/ICPR.2004.1334011

    Google Scholar 

  15. Filip, J., Haindl, M.: Efficient image-based Bidirectional Texture Function model. In: Chantler, M., Drbohlav, O. (eds.) Texture 2005, Proceedings of the 4th International Workshop on Texture Analysis, pp. 7–12. IEEE Press, Los Alamitos (2005)

    Google Scholar 

  16. Filip, J., Haindl, M.: BTF modelling using BRDF texels. Int. J. Comput. Math. 84(9), 1267–1283 (2007). http://dx.doi.org/10.1080/00207160701253802

    Article  MathSciNet  MATH  Google Scholar 

  17. Filip, J., Chantler, M.J., Green, P.R., Haindl, M.: A psychophysically validated metric for bidirectional texture data reduction. ACM Trans. Graph. 27(5), 138:1–138:11 (2008). http://doi.acm.org/10.1145/1457515.1409091

    Article  Google Scholar 

  18. Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10(7), 439–451 (1988)

    Article  MATH  Google Scholar 

  19. Grim, J., Haindl, M.: Texture modelling by discrete distribution mixtures. Comput. Stat. Data Anal. 41(3–4), 603–615 (2003)

    Article  MathSciNet  Google Scholar 

  20. Guthe, M., Müller, G., Schneider, M., Klein, R.: BTF-CIELab: a perceptual difference measure for quality assessment and compression of BTFs. Comput. Graph. Forum 28(1), 101–113 (2009)

    Article  Google Scholar 

  21. Haindl, M.: Texture synthesis. CWI Quart. 4(4), 305–331 (1991)

    MATH  Google Scholar 

  22. Haindl, M., Filip, J.: Fast BTF texture modelling. In: Chantler, M. (ed.) Texture 2003, Proceedings, pp. 47–52. IEEE Press, Edinburgh (2003)

    Google Scholar 

  23. Haindl, M., Filip, J.: Fast BTF texture modelling. In: Proceedings of the 3rd International Workshop on Texture Analysis and Synthesis (Texture 2003), pp. 47–52 (2003)

    Google Scholar 

  24. Haindl, M., Filip, J.: A fast probabilistic bidirectional texture function model. Lect. Notes Comput. Sci. 3212, 298–305 (2004)

    Article  Google Scholar 

  25. Haindl, M., Filip, J.: Extreme compression and modeling of bidirectional texture function. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1859–1865 (2007). http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.1139

    Article  Google Scholar 

  26. Haindl, M., Hatka, M.: BTF roller. In: Chantler, M., Drbohlav, O. (eds.) Texture 2005, Proceedings of the 4th International Workshop on Texture Analysis, pp. 89–94. IEEE Press, Los Alamitos (2005)

    Google Scholar 

  27. Haindl, M., Hatka, M.: A roller—fast sampling-based texture synthesis algorithm. In: Skala, V. (ed.) Proceedings of the 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 93–96. UNION Agency–Science Press, Plzen (2005)

    Google Scholar 

  28. Haindl, M., Hatka, M.: Near-regular BTF texture model. In: Proceedings of the 20th International Conference on Pattern Recognition, ICPR 2010, pp. 858–861. IEEE Comput. Soc., Los Alamitos (2010). http://doi.ieeecomputersociety.org/10.1109/10.1109/ICPR.2010.518

    Google Scholar 

  29. Haindl, M., Havlíček, V.: A multiresolution causal colour texture model. Lect. Notes Comput. Sci. 1876, 114–122 (2000)

    Article  Google Scholar 

  30. Haindl, M., Havlíček, V.: Texture editing using frequency swap strategy. In: Jiang, X., Petkov, N. (eds.) Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, vol. 5702, pp. 1146–1153. Springer, Berlin (2009). http://dx.doi.org/10.1007/978-3-642-03767-2_139

    Chapter  Google Scholar 

  31. Haindl, M., Havlíček, V.: A compound MRF texture model. In: Proceedings of the 20th International Conference on Pattern Recognition, ICPR 2010, pp. 1792–1795. IEEE Comput. Soc., Los Alamitos (2010). http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.442

    Chapter  Google Scholar 

  32. Haindl, M., Havlíček, M.: Bidirectional texture function simultaneous autoregressive model. In: Salerno, E., Çetin, A., Salvetti, O. (eds.) Computational Intelligence for Multimedia Understanding. Lecture Notes in Computer Science, vol. 7252, pp. 149–159. Springer, Berlin/Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-32436-9_13; http://www.springerlink.com/content/hj32551334g61647/

    Chapter  Google Scholar 

  33. Haindl, M., Havlíček, V.: A plausible texture enlargement and editing compound Markovian model. In: Salerno, E., Çetin, A., Salvetti, O. (eds.) Computational Intelligence for Multimedia Understanding. Lecture Notes in Computer Science, vol. 7252, pp. 138–148. Springer, Berlin/Heidelberg (2012) http://dx.doi.org/10.1007/978-3-642-32436-9_12; http://www.springerlink.com/content/047124j43073m202/

    Chapter  Google Scholar 

  34. Haindl, M., Vácha, P.: Illumination invariant texture retrieval. In: Tang, Y., Wang, S., Yeung, D., Yan, H., Lorette, G. (eds.) Proceedings of the 18th International Conference on Pattern Recognition, ICPR 2006, vol. III, pp. 276–279. IEEE Comput. Soc., Los Alamitos (2006) http://doi.ieeecomputersociety.org/10.1109/ICPR.2006.678

    Google Scholar 

  35. Haindl, M., Filip, J., Arnold, M.: BTF image space utmost compression and modelling method. In: Proceedings of 17th International Conference on Pattern Recognition, vol. 3, pp. 194–198. IEEE Comput. Soc., Los Alamitos (2004)

    Google Scholar 

  36. Haindl, M., Filip, J., Arnold, M.: BTF image space utmost compression and modelling method. In: Kittler, J., Petrou, M., Nixon, M. (eds.) Proceedings of the 17th IAPR International Conference on Pattern Recognition, vol. III, pp. 194–197. IEEE Press, Los Alamitos (2004). http://dx.doi.org/10.1109/ICPR.2004.1334501

    Google Scholar 

  37. Haindl, M., Grim, J., Somol, P., Pudil, P., Kudo, M.: A Gaussian mixture-based colour texture model. In: Kittler, J., Petrou, M., Nixon, M. (eds.) Proceedings of the 17th IAPR International Conference on Pattern Recognition, vol. III, pp. 177–180. IEEE Press, Los Alamitos (2004). http://dx.doi.org/10.1109/ICPR.2004.1334497

    Google Scholar 

  38. Haindl, M., Grim, J., Pudil, P.M.K.: A hybrid BTF model based on Gaussian mixtures. In: Chantler, M., Drbohlav, O. (eds.) Texture 2005, the 4th International Workshop on Texture Analysis and Synthesis in Conjunction with ICCV2005, pp. 95–100. Heriot-Watt University & IEEE, Beijing (2005)

    Google Scholar 

  39. Haindl, M., Filip, J., Vávra, R.: Digital material appearance: the curse of Tera-bytes. ERCIM News 90, 49–50 (2012). http://ercim-news.ercim.eu/en90/ri/digital-material-appearance-the-curse-of-tera-bytes

    Google Scholar 

  40. Haindl, M., Remeš, V., Havlíček, V.: Potts compound Markovian texture model. In: Proceedings of the 21st International Conference on Pattern Recognition, ICPR 2012. IEEE Comput. Soc., Los Alamitos, pp. 29–32 (2012)

    Google Scholar 

  41. Havran, V., Filip, J., Myszkowski, K.: Bidirectional texture function compression based on multi-level vector quantization. Comput. Graph. Forum 29(1), 175–190 (2010)

    Article  Google Scholar 

  42. Heeger, D., Bergen, J.: Pyramid based texture analysis/synthesis. In: ACM SIGGRAPH 95, pp. 229–238. ACM, New York (1995)

    Chapter  Google Scholar 

  43. Ho, P.M., Wong, T.T., Leung, C.S.: Compressing the illumination-adjustable images with principal component analysis. IEEE Trans. Circuits Syst. Video Technol. 15(3), 355–364 (2005)

    Article  Google Scholar 

  44. Kashyap, R.: Analysis and synthesis of image patterns by spatial interaction models. In: Kanal, L., Rosenfeld, A. (eds.) Progress in Pattern Recognition, vol. 1. Elsevier/North-Holland, Amsterdam (1981)

    Google Scholar 

  45. Kautz, J., Sattler, M., Sarlette, R., Klein, R., Seidel, H.P.: Decoupling BRDFs from surface mesostructures. In: Heidrich, W., Balakrishnan, R. (eds.) Proceedings of the Graphics Interface 2004 Conference, pp. 177–184 (2004)

    Google Scholar 

  46. Kautz, J., Boulos, S., Durand, F.: Interactive editing and modelling of bidirectional texture functions. ACM Trans. Graph. 26(3), 53 (2007)

    Article  Google Scholar 

  47. Kawasaki, H., Seo, K.D., Ohsawa, Y., Furukawa, R.: Patch-based BTF synthesis for real-time rendering. In: IEEE International Conference on Image Processing, ICIP, vol. 1, pp. 393–396. IEEE Press, New York (2005)

    Google Scholar 

  48. Koudelka, M.L., Magda, S., Belhumeur, P.N., Kriegman, D.J.: Acquisition, compression, and synthesis of bidirectional texture functions. In: Texture 2003: Third International Workshop on Texture Analysis and Synthesis, Nice, France, pp. 59–64 (2003)

    Google Scholar 

  49. Kullback, S.: Information Theory and Statistics. Dover, New York (1997)

    MATH  Google Scholar 

  50. Lafortune, E., Foo, S., Torrance, K., Greenberg, D.: Non-linear approximation of reflectance functions. In: ACM SIGGRAPH 97, pp. 117–126. ACM, New York (1997)

    Chapter  Google Scholar 

  51. Lefebvre, S., Hoppe, H.: Appearance-space texture synthesis. ACM Trans. Graph. 25(3), 541–548 (2006). BTF sampling

    Article  Google Scholar 

  52. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. 43(1), 29–44 (2001)

    Article  MATH  Google Scholar 

  53. Leung, C.S., Wong, T.T., Lam, P.M., Choy, K.H.: An RBF-based compression method for image-based relighting. IEEE Trans. Image Process. 15(4), 1031–1041 (2006). http://doi.ieeecomputersociety.org/10.1109/TIP.2005.863936

    Article  Google Scholar 

  54. Leung, C.S., Pang, W.M., Fu, C.W., Wong, T.T., Heng, P.A.: Tileable BTF. IEEE Trans. Vis. Comput. Graph. (2007)

    Google Scholar 

  55. Liu, X., Yu, Y., Shum, H.Y.: Synthesizing bidirectional texture functions for real-world surfaces. In: Fiume, E. (ed.) ACM SIGGRAPH 2001, pp. 97–106. ACM, New York (2001). http://2001citeseer.nj.nec.com/liu01synthesizing.html

    Google Scholar 

  56. Liu, X., Hu, Y., Zhang, J., Tong, X., Guo, B., Shum, H.Y.: Synthesis and rendering of bidirectional texture functions on arbitrary surfaces. IEEE Trans. Vis. Comput. Graph. 10(3), 278–289 (2004)

    Article  Google Scholar 

  57. Ma, W.C., Chao, S.H., Chen, B.Y., Chang, C.F., Ouhyoung, M., Nishita, T.: An efficient representation of complex materials for real-time rendering. In: Lau, R.W.H., Baciu, G. (eds.) VRST, pp. 150–153. ACM, New York (2004)

    Chapter  Google Scholar 

  58. Ma, W.C., Chao, S.H., Tseng, Y.T., Chuang, Y.Y., Chang, C.F., Chen, B.Y., Ouhyoung, M.: Level-of-detail representation of bidirectional texture functions for real-time rendering. In: Lastra, A., Olano, M., Luebke, D.P., Pfister, H. (eds.) Proceedings of the 2005 Symposium on Interactive 3D Graphics, SI3D 2005, pp. 187–194. ACM, New York (2005)

    Google Scholar 

  59. Magda, S., Kriegman, D.: Reconstruction of volumetric surface textures for real-time rendering. In: Akenine-Moller, T., Heidrich, W. (eds.) Proceedings of the 17th Eurographics Workshop on Rendering, pp. 19–29. Eurographics Association, Cyprus (2006). http://vision.ucsd.edu/kriegman-grp/publication.html

    Google Scholar 

  60. Malzbender, T., Gelb, D., Wolters, H.: Polynomial texture maps. In: Eurographics 2001, pp. 519–528. ACM, New York (2001)

    Google Scholar 

  61. McAllister, D., Lastra, A., Heidrich, W.: Efficient rendering of spatial bi-directional reflectance distribution functions. In: Eurographics. Blackwell Sci., Oxford (2002)

    Google Scholar 

  62. McCool, M., Ang, J., Ahmad, A.: Homomorphic factorization of BRDFs for high-performance rendering. In: Fiume, E. (ed.) ACM SIGGRAPH 2001, pp. 185–194. ACM, New York (2001). http://citeseer.nj.nec.com/mccool01homomorphic.html

    Google Scholar 

  63. Menzel, N., Guthe, M.: g-BRDFs: an intuitive and editable BTF representation. Comput. Graph. Forum 28(8), 2189–2200 (2009)

    Article  Google Scholar 

  64. Meseth, J., Müller, G., Klein, R.: Preserving realism in real-time rendering. In: Reiners, D. (ed.) OpenGL Symposium, pp. 89–96. Eurographics Association, Switzerland (2003)

    Google Scholar 

  65. Meseth, J., Müller, G., Sattler, M., Klein, R.: BTF rendering for virtual environments. In: Virtual Concept, pp. 356–363 (2003)

    Google Scholar 

  66. Meseth, J., Müller, G., Klein, R., Röder, F., Arnold, M.: Verification of rendering quality from measured BTFs. In: Third Symposium on Applied Perception in Graphics and Visualization, vol. 153, pp. 127–134 (2006)

    Chapter  Google Scholar 

  67. Müller, G., Meseth, J., Klein, R.: Compression and real-time rendering of measured BTFs using local PCA. In: Vision, Modeling and Visualisation 2003, pp. 271–280 (2003)

    Google Scholar 

  68. Müller, G., Meseth, J., Klein, R.: Fast environmental lighting for local-PCA encoded BTFs. In: Computer Graphics International 2004 (CGI 2004), pp. 198–205. IEEE Comput. Soc., Los Alamitos (2004)

    Chapter  Google Scholar 

  69. Müller, G., Sarlette, R., Klein, R.: Data-driven local coordinate systems for image-based rendering. Comput. Graph. Forum 25(3), 369–378 (2006)

    Article  Google Scholar 

  70. Neubeck, A., Zalesny, A., Van Gool, L.: Viewpoint consistent texture synthesis. In: Proceedings, 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 3DPVT 2004, pp. 388–395 (2004)

    Chapter  Google Scholar 

  71. Ngan, A., Durand, F.: Statistical acquisition of texture appearance. In: Eurographics Symposium on Rendering, Eurographics (2006)

    Google Scholar 

  72. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  73. Roweis, S.: EM algorithms for PCA and SPCA. In: NIPS’97: Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems, vol. 10, pp. 626–632 (1997)

    Google Scholar 

  74. Ruiters, R., Klein, R.: BTF compression via sparse tensor decomposition. Comput. Graph. Forum (Proc. of EGSR) 28(4), 1181–1188 (2009)

    Article  Google Scholar 

  75. Ruiters, R., Klein, R.: Heightfield and spatially varying BRDF reconstruction for materials with interreflections. Comput. Graph. Forum (Proc. of Eurographics) 28(2), 513–522 (2009)

    Article  Google Scholar 

  76. Ruiters, R., Rump, M., Klein, R.: Parallelized matrix factorization for fast BTF compression. In: Eurographics Symposium on Parallel Graphics and Visualization, pp. 25–32 (2009)

    Google Scholar 

  77. Ruiters, R., Schwartz, C., Klein, R.: Data-driven surface reflectance from sparse and irregular samples. Comput. Graph. Forum (Proc. of Eurographics) 31(2), 315–324 (2012)

    Article  Google Scholar 

  78. Sattler, M., Sarlette, R., Klein, R.: Efficient and realistic visualization of cloth. In: Eurographics Symposium on Rendering 2003 (2003)

    Google Scholar 

  79. Schröder, K., Klein, R., Zinke, A.: A volumetric approach to predictive rendering of fabrics. Comput. Graph. Forum (Proc. of EGSR 2011) 30(4), 1277–1286 (2011)

    Article  Google Scholar 

  80. Somol, P., Haindl, M.: Novel path search algorithm for image stitching and advanced texture tiling. In: Skala, V. (ed.) Proceedings of the 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 155–162. UNION Agency–Science Press, Plzen (2005)

    Google Scholar 

  81. Suen, P., Healey, G.: The analysis and recognition of real-world textures in three dimension. IEEE Trans. Pattern Anal. Mach. Intell. 22(5), 491–503 (2000)

    Article  Google Scholar 

  82. Suykens, F., Berge, K., Lagae, A., Dutr, P.: Interactive rendering with bidirectional texture functions. In: Computer Graphics Forum, pp. 463–472. Blackwell Sci., Oxford (2003)

    Google Scholar 

  83. Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., Shum, H.Y.: Synthesis of bidirectional texture functions on arbitrary surfaces. ACM Trans. Graph. 21(3), 665–672 (2002)

    Article  Google Scholar 

  84. Tsai, Y.T., Fang, K.L., Lin, W.C., Shih, Z.C.: Modeling bidirectional texture functions with multivariate spherical radial basis functions. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1356–1369 (2011). doi:10.1109/TPAMI.2010.211

    Article  Google Scholar 

  85. Vasilescu, M.A.O., Terzopoulos, D.: Tensortextures: Multilinear Image-Based Rendering. ACM SIGGRAPH 2004. ACM, Los Angeles (2004)

    Google Scholar 

  86. Wang, J., Dana, K.J.: Hybrid textons: modeling surfaces with reflectance and geometry. In: CVPR’04, vol. 1, pp. 372–378. IEEE Press, New York (2004)

    Google Scholar 

  87. Wang, J., Dana, K.: Relief texture from specularities. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 446–457 (2006)

    Article  Google Scholar 

  88. Wang, H., Wu, Q., Shi, L., Yu, Y., Ahuja, N.: Out-of-core tensor approximation of multi-dimensional matrices of visual data. ACM Trans. Graph. 24(3), 527–535 (2005)

    Article  MATH  Google Scholar 

  89. Welsch, T.: Parallax mapping with offset limiting: a per-pixel approximation of uneven surfaces. In: Tech. Rep. Revision, vol. 0.3. Infiscape Corporation. http://www.infiscape.com/rd.html (2004)

  90. Wichmann, F., Hill, N.: The psychometric function: I. Fitting, sampling, and goodness of fit. Percept. Psychophys. 63(8), 1293–1313 (2001)

    Article  Google Scholar 

  91. Wong, T.T., Leung, C.S.: Compression of illumination-adjustable images. IEEE Trans. Circuits Syst. Video Technol. 13(11), 1107–1118 (2003)

    Article  Google Scholar 

  92. Woodham, R.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980)

    Article  Google Scholar 

  93. Woodham, R.: Analysing images of curved surface. Artif. Intell. 17(5), 117–140 (1981)

    Article  Google Scholar 

  94. Wu, H., Dorsey, J., Rushmeier, H.: A sparse parametric mixture model for BTF compression, editing and rendering. Comput. Graph. Forum 30(2), 465–473 (2011)

    Article  Google Scholar 

  95. Yacov, H., Malzbender, T., Gelb, D.: Synthesis of reflectance function textures from examples. In: Chantler, M. (ed.) Proceedings of the 3rd International Workshop on Texture Analysis and Synthesis (Texture 2003), pp. 47–52. IEEE Press, New York (2003)

    Google Scholar 

  96. Zhang, J., Wang, D., Tran, G.: A wavelet-based multiresolution statistical model for texture. IEEE Trans. Image Process. 7(11), 1621–1627 (1998)

    Article  Google Scholar 

  97. Zhou, K., Du, P., Wang, L., Matsushita, Y., Shi, J., Guo, B., Shum, H.Y.: Decorating surfaces with bidirectional texture functions. IEEE Trans. Vis. Comput. Graph. 11(5), 519–528 (2005)

    Article  Google Scholar 

  98. Zhu, S., Liu, X., Wu, Y.: Exploring texture ensembles by efficient Markov chain Monte Carlo—toward a “trichromacy” theory of texture. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 554–569 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Haindl, M., Filip, J. (2013). Bidirectional Texture Functions. In: Visual Texture. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-4902-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4902-6_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4901-9

  • Online ISBN: 978-1-4471-4902-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics