Skip to main content

Review of AC–AC Frequency Converters

  • Chapter
  • First Online:

Part of the book series: Power Systems ((POWSYS))

Abstract

This chapter concentrates on the reviewing of power frequency converter topologies, exploring of various alternative topologies and comparing of their relative advantages and disadvantages. It provides an outline of the structures and control strategies of power frequency converters. Furthermore, there will be shown the basic operating characteristics of several topologies of PWM AC–AC frequency converters. The major focus is given to the fundamentals of matrix converter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmed SM, Iqbal A, Abu-Rub H, Rodriguez J, Rojas CA, Saleh M (2011) Simple carrier-based PWM technique for a three-to-nine-phase direct AC–AC converter. IEEE Trans Ind Electron 58(11):5014–5023

    Article  Google Scholar 

  2. Ahmed SM, Iqbal A, Abu-Rub H (2011) Generalized duty-ratio-based pulsewidth modulation technique for a three-to-k phase matrix converter. IEEE Trans Ind Electron 58(9):3925–3937

    Article  Google Scholar 

  3. Alesina A, Venturini M (1989) Analysis and design of optimum-amplitude nine-switch direct AC-AC converters. IEEE Trans Power Electron 4(1):101–112

    Article  Google Scholar 

  4. Alesina A, Venturini M (1988) Intrinsic amplitude limits and optimum design of 9-switches direct PWM AC-AC converters. In: Proceedings of IEEE power electronics specialists conference, PESC’88, Kyoto, Japan, pp 1284–1291

    Google Scholar 

  5. Andreu J, de Algeria I, Kortabarria I, Bidarte U, Ceballo S (2006) Matrix converter protection: active and passive strategy considerations. WSEAS Trans Power Syst 1(10):1698–1702

    Google Scholar 

  6. Andreu J, Kortabarria I, Ormaetxea E, Ibarra E, Martin JL, Apinaniz S (2012) A step forward towards the development of reliable matrix converters. IEEE Trans Ind Electron 59(1):167–183

    Article  Google Scholar 

  7. Angkititrakul S, Erickson RW (2004) Control and implementation of a new modular matrix converter. In: Proceedings of IEEE applied power electronics conference and exposition, APEC’04, vol 2, Anaheim, US, pp 813–819

    Google Scholar 

  8. Antic D, Klaassens JB, Deleroi W (1993) A new power topology, suitable for low stator frequency operation of an induction machine. In: Proceedings of IEEE applied power electronics conference and exposition, APEC’93, San Diego, US, pp 146–152

    Google Scholar 

  9. Antic D, Klaassens JB, Deleroi W (1993) An integrated boost-buck and matrix converter topology for low speed drives. In: Proceedings of the EPE’93, Brighton, UK, pp 21–26

    Google Scholar 

  10. Antic D, Klaassens JB, Deleroi W (1994) Side effects in low-speed AC drives. In: Proceedings of IEEE power electronics specialists conference, PESC’94, Taipei, Taiwan, pp 998–1002

    Google Scholar 

  11. Arrilaga J, Watson NR (2003) Power system harmonics, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  12. Arevalo SL, Zanchetta P, Wheeler PW, Trentin A, Empringham L (2010) Control and implementation of a matrix-converter-based AC ground power-supply unit for aircraft servicing. IEEE Trans Ind Electron 57(6):2076–2084

    Article  Google Scholar 

  13. Beasant RR, Beatie WC, Refsum A (1990) An approach to the realisation of a high power venturini converter. In: IEEE industrial electronics, pp 291–297

    Google Scholar 

  14. Bernet S, Bernet K, Lipo TA (1996) The auxiliary resonant commutated pole matrix converter—a new topology for high power applications. In: Proceedings of IEEE industry applications conference annual meeting, IAS’96, vol 2, San Diego, US, pp 1242–1249

    Google Scholar 

  15. Bhangu BS, Snary P, Bingham CM, Stone DA (2005) Sensorless control of deep-sea ROVs PMSMs excited by matrix converter. In: Proceedings of the European conference on power electronics and applications, EPE 2005, Dresden, Germany (CD-ROM)

    Google Scholar 

  16. Bhowmik S, Spée R (1993) A guide to the application-oriented selection of AC/AC converter topologies. IEEE Trans Power Electron 8(2):156–163

    Article  Google Scholar 

  17. Blaabjerg F, Casadei D, Klumpner C, Matteini M (2002) Comparison of two current modulation strategies for matrix converters under unbalanced input voltage conditions. IEEE Trans Ind Electron 49(2):289–296

    Article  Google Scholar 

  18. Bland MJ, Clare JC, Wheeler PW, Empringham L, Apap M (2004) An auxiliary resonant soft switching matrix converter. In: Proceedings of IEEE power electronics specialists conference, PESC’04, vol 3, Aachen, Germany, pp 2393–2399

    Google Scholar 

  19. Bucknall RWG, Ciaramella KM (2010) On the conceptual design and performance of a matrix converter for marine electric propulsion. IEEE Trans Power Electron 25(6):1497–1508

    Article  Google Scholar 

  20. Burany N (1989) Safe control of four-quadrant switches. In: Conference record of the IEEE industry applications conference annual meeting, IAS’89, pp 1190–1194

    Google Scholar 

  21. Casadei D (2005) Tutorial on matrix converters. In: Proceedings of power electronics and intelligent control for energy conservation conference, PELINCEC’05, Warsaw, Poland

    Google Scholar 

  22. Casadei D, Grandi G, Serra G, Tanti A (1993) Space vector control of matrix converters with unity input power factor and sinusoidal input/output waveforms. In: Proceedings of European conference on power electronics and applications, EPE’93, vol 7, Brighton, UK, pp 170–175

    Google Scholar 

  23. Casadei D, Serra G, Tani A (1998) Reduction of the input current harmonic content in matrix converters under input/output unbalance. IEEE Trans Ind Electron 45(3):401–411

    Article  Google Scholar 

  24. Casadei D, Serra G, Tani A, Nielsen P (1995) Performance of SVM controlled matrix converter with input and output unbalanced conditions. In: Proceedings of European conference on power electronics and applications, EPE’95, vol 2, Seville, Spain, pp 628–633

    Google Scholar 

  25. Casadei D, Serra G, Tani A, Zarri L (2006) A review on matrix converters. Przegląd Elektrotechniczny (Electr Rev) 2:15–25

    Google Scholar 

  26. Casadei D, Serra G, Tani A, Zarri L (2005) Experimental behavior of a matrix converter prototype based on new power modules. Automatika (J Cont Measure Electron Comput Commun) 46(1–2):83–91

    Google Scholar 

  27. Casadei D, Serra G, Tani A, Zarri L (2009) Optimal use of zero vectors for minimizing the output current distortion in matrix converters. IEEE Trans Ind Electron 56(2):326–336

    Article  Google Scholar 

  28. Casadei D, Serra G, Tanti A, Zaroi L (2002) Matrix converter modulation strategies: a new general approach based on space-vector representation of switch state. IEEE Trans Ind Electron 49(2):370–381

    Article  Google Scholar 

  29. Casadei D, Trentin A, Matteini M, Calvini M (2003) Matrix converter commutation strategy using both output current and input voltage sign measurement. In: Proceedings of European conference on power electronics and applications, EPE’03, Toulouse, France, pp P1–P10 (CD-ROM)

    Google Scholar 

  30. Cho JG, Cho GH (1991) Soft switched matrix converter for high frequency direct AC-to-AC power conversion. In: Proceedings of European conference on power electronics and applications, EPE’91, Florence, Italy, pp 4-196–4-201

    Google Scholar 

  31. Empringham L, de Lillo L, Khwan-On S, Brunson C, Wheeler PW, Clare JC (2011) Enabling technologies for matrix converters in aerospace applications. In: Proceedings of international conference—-workshop compatibility and power electronics, CPE’2011, Tallinn, Estonia, pp 451–456

    Google Scholar 

  32. Empringham L, Wheeler PW, Clare JC (1998) Bi-directional switch current commutation for matrix converter applications. In: Proceedings of PE matrix converter, Prague, Czech Republic, pp 42–47

    Google Scholar 

  33. Empringham L, Wheeler PW, Clare JC (1998) Intelligent commutation of matrix converter bi-directional switch cells using novel gate drive techniques. In: Proceedings of power electronics specialists conference, PESC’98, Fukuoka, Japan, pp 707–713

    Google Scholar 

  34. Enjeti PN, Ziogas PD, Lindsay JF (1991) A current source PWM inverter with instantaneous current control capability. IEEE Trans Ind Appl 27:582–588

    Article  Google Scholar 

  35. Erickson RW, Al-Naseem OA (2001) A new family of matrix converters. In: Proceedings of IEEE industrial electronics society conference, IECON’01, vol 2, Denver, US, pp 1515–1520

    Google Scholar 

  36. Fedyczak Z, Szcześniak P (2006) Koncepcja matrycowo-reaktancyjnego przemiennika częstotliwości typu \({\acute{\rm C}}\)uk (in Polish). Przegląd Elektrotechniczny (Electr Rev) 7(8):42–47

    Google Scholar 

  37. Fedyczak Z, Szcześniak P (2006) Koncepcja matrycowo-reaktancyjnego przemiennika częstotliwości typu Zeta (in Polish). Wiadomości Elektrotechniczne (Electrotech News) 3:26–29

    Google Scholar 

  38. Fedyczak Z, Szcześniak P (2012) Matrix-reactance frequency converters using an low frequency transfer matrix modulation method. Electr Power Syst Res 83(1):91–103

    Article  Google Scholar 

  39. Fedyczak F, Szcześniak P (2009) Modelling and analysis of matrix-reactance frequency converters using voltage source matrix converter and LF transfer matrix modulation method. Przegląd Elektrotechniczny (Electr Rev) 2:125–130

    Google Scholar 

  40. Fedyczak Z, Szcześniak P (2007) New matrix-reactance frequency converters—conception description. In: Orłowska-Kowalska T (ed) Power electronics and electrical drives: selected problems. Wrocław Technical University Press, Wrocław, pp 71–84

    Google Scholar 

  41. Fedyczak Z, Szcześniak P (2005) Study of matrix-reactance frequency converter with buck-boost topology. In: Proceedings of power electronics and intelligent control for energy conservation conference, PELINCEC’05, Warsaw, Poland (CD-ROM)

    Google Scholar 

  42. Fedyczak Z, Szcześniak P, Jankowski M (2005) Koncepcja matrycowo-reaktancyjnego przemiennika częstotliwości typu buck-bost (in Polish). Sterowanie w Energoelektronice i Napędzie Elektrycznym, SENE’05, number 1, Łódź, Poland, pp 101–106

    Google Scholar 

  43. Fedyczak Z, Szcześniak P, Kaniweski J (2007) Direct PWM AC choppers and frequency converters. In: Korbicz J (ed) Measurements models systems and design. Transport and Communication Publishers, Warsaw, pp 393–424

    Google Scholar 

  44. Fedyczak Z, Szcześniak P, Klytta M (2006) Matrix-reactance frequency converter based on buck-boost topology. In: Proceedings of power electronics and motion control conference, EPE-PEMC’06, Portoroz, Slovenia, pp 763–768

    Google Scholar 

  45. Fedyczak Z, Szcześniak P, Korotyeyev I (2008) Generation of matrix-reactance frequency converters based on unipolar PWM AC matrix-reactance choppers. In: Proceedings of IEEE power electronics specialists conference, PESC’08, Rhodes, Greece, pp 1821–1827

    Google Scholar 

  46. Fedyczak Z, Szcześniak P, Korotyeyev I (2008) New family of matrix-reactance frequency converters based on unipolar PWM AC matrix-reactance choppers. In: Proceedings of power electronics and motion control conference, EPE-PEMC’08, Poznań, Poland, pp 236–243

    Google Scholar 

  47. Fedyczak Z, Szcześniak P, Kaniweski J, Tadra G (2009) Implementation of three-phase frequency converters based on PWM AC matrix-reactance chopper with buck-boost topology. In: Proceedings of European conference on power electronics and applications, EPE’09, Barcelona, Spain, pp P1–P10 (CD-ROM)

    Google Scholar 

  48. Fedyczak Z, Tadra G, Klytta M (2010) Implementation of the current source matrix converter with space vector modulation. In: Proceedings of power electronics and motion control conference, EPE-PEMC’10, Ohrid, Macedonia (CD-ROM)

    Google Scholar 

  49. Fedyczak Z, Tadra G, Szczesniak P (2010) Three-phase AC systems interfaced by current source matrix converter with space vector modulation. In: International school on nonsinusoidal currents and compensation, ISNCC’2010, Łagów, Poland, pp 107–112

    Google Scholar 

  50. Fortescue CL (1918) Method of symmetrical coordinates applied to the solution of polyphase networks. Trans AIEE (part II) 37:1027–1140

    Google Scholar 

  51. Gyugi L, Pelly B (1976) Static power frequency changers: theory, performance and applications. Wiley, New York

    Google Scholar 

  52. Hava AM, Kerkman RJ, Lipo TA (1999) Simple analytical and graphical methods for carrier-based PWM-VSI drives. IEEE Trans Power Electron 14(1):49–61

    Article  Google Scholar 

  53. He B, Wang X, Lin H, She H (2009) Research on two-step voltage-controlled commutation strategies for matrix converter. In: Proceedings of IEEE international power electronics and motion control conference, IPEMC ’09, Wuhan, pp 1745–1751

    Google Scholar 

  54. Helle L, Munk-Nielsen S (2001) A novel loss reduced modulation strategy for matrix converters. In: Proceedings of IEEE power electronics specialists conference, PESC’01, vol 2, Vancouver, Canada, pp 1102–1107

    Google Scholar 

  55. Helle L, Larsen KB, Jorgensen HA, Munk-Nielsen S (2004) Evaluation of modulation schemes for three-phase to three-phase matrix converters. IEEE Trans Ind Electron 51(1):158–171

    Article  Google Scholar 

  56. Herrero L, de Pablo S, Herrero LC, de Pablo S, Martin F, Ruiz JM, Gonzalez JM, Rey AB (2007) Comparative analysis of the techniques of current commutation in matrix converters. In: Proceedings of IEEE international symposium on industrial electronics, ISIE’07, pp 521–526

    Google Scholar 

  57. Hey HL, Pinheiro H, Pinheiro JR (1995) A new soft-switching AC-AC matrix converter, with a single actived commutation auxiliary circuit. In: Proceedings of IEEE power electronics specialists conference, PESC ’95, vol 2, Atlanta, US, pp 965–970

    Google Scholar 

  58. Hofmann W, Ziegler M (2001) Multi-step commutation and control policies for matrix converters. In: Proceedings of international conference on power electronics, ISPE’01, Seoul, Korea, pp 795–802

    Google Scholar 

  59. Holmes DG, Lipo TA (2003) Pulse width modulation for power converters. Principle and practice. Wiley-IEEE, New York

    Book  Google Scholar 

  60. Hornkamp M, Loddenkötter M, Muenzer M, Simon O, Bruckmann M (2001) EconoMAC the first all-in-one IGBT module for matrix converters. In: Proceedings of drives and controls and power electronics conference, London, UK, pp 35–39

    Google Scholar 

  61. Huber L, Borojević D (1995) Space vector modulated three-phase to three-phase matrix converter with input power factor correction. IEEE Trans Ind Appl 31(6):1234–1246

    Article  Google Scholar 

  62. Huber L, Borojević D, Burany N (1989) Voltage space vector based PWM control of forced commutated cycloconverters. In: Proceedings of industrial electronics society annual conference, vol 1, IECON’89, pp 106–111

    Google Scholar 

  63. Iimori K, Shinohara K, Yamamoto K (2006) Study of dead time of PWM rectifier of voltage-source inverter without DC-link components and its operating characteristics of induction motor. IEEE Trans Ind Appl 42(2):518–525

    Article  Google Scholar 

  64. Iimori K, Shinohara K, Tarumi O, Fu Z, Muroya M (1997) New current-controlled PWM rectifier voltage source inverter without DC-link components. In: Proceedings of power conversion conference, PCC’97, vol 2, Nagaoka, Japan, pp 783–786

    Google Scholar 

  65. Ishiguro A, Furuhashi T, Okuma S (1991) A novel control method for forced commutated cycloconverters using instantaneous values of input line-to-line voltages. IEEE Trans Ind Electron 38(3):166–172

    Article  Google Scholar 

  66. Itoh J-I, Koiwa K, Kato K (2010) Input current stabilization control of a matrix converter with boost-up functionality. In: Proceedings of international power electronics conference, IPEC 2010, Sapporo, Japan

    Google Scholar 

  67. Jia S, Tseng KJ, Wang X (2005) Study on reverse recovery characteristics of reverse-blocking IGBT applied in matrix converter. In: Proceedings of IEEE applied power electronics conference and exposition, APEC’05, vol 3, Austin, US, pp 1917–1921

    Google Scholar 

  68. Jussila M, Tuusa H (2007) Comparison of simple control strategies of space-vector modulated indirect matrix converter under distorted supply voltage. IEEE Trans Power Electron 22(1):139–148

    Article  Google Scholar 

  69. Jussila M, Salo M, Tuusa H (2003) Realization of a three-phase indirect matrix converter with an indirect vector modulation method. In: Proceedings of power electronics specialist conference, PESC’03, vol 2, Acapulco, Meksyk, pp 689–694

    Google Scholar 

  70. Kanaan HY, Al-Hadad K (2003) A new average modeling and control design applied to a nine-switch matrix converter with input power factor correction. In: Proceedings of EPE’03, Toulouse, France (CD-ROM)

    Google Scholar 

  71. Kato K, Itoh J-I (2007) Improvement of input current waveforms for a matrix converter using a novel hybrid commutation method. In: Proceedings of power conversion conference, PCC’07, Nagoya, Japan, pp 763–768

    Google Scholar 

  72. Kaźmierkowski MP, Krishnan R, Blaabjerg F (2002) Control in power electronics: selected problems. Academic Press Series in Engineering, New York

    Google Scholar 

  73. Klumpner C (2005) Hybrid direct power converters with increased/higher than unity voltage transfer ratio and improved robustness against voltage supply disturbances. In: Proceedings of power electronics specialists conference, PESC’05, pp 2383–2389

    Google Scholar 

  74. Klumpner C, Blaabjerg F (2002) Experimental evaluation of ride-through capabilities for a matrix converter under short power interruptions. IEEE Trans Ind Electron 49(2):315–324

    Article  Google Scholar 

  75. Klumpner C, Blaabjerg F (2004) Short term braking capability during power interruptions for integrated matrix converter-motor drives. IEEE Trans Power Electron 2:303–311

    Article  Google Scholar 

  76. Klumpner C, Blaabjerg F (2003) Two-stage direct power converters: an alternative to matrix converters. In: IEE matrix converter seminar, Birmingham, UK

    Google Scholar 

  77. Klumpner C, Pitic C (2008) Hybrid matrix converter topologies: an exploration of benefits. In: Proceedings of power electronics specialists conference, PESC’08, Rhodes, Greece, pp 2–8

    Google Scholar 

  78. Klumpner C, Wijekoon T, Wheeler P (2005) A new class of hybrid AC/AC direct power converters. In: Proceedings of IAS annual meeting industry applications conference, IAS’05, vol 4, Hong Kong, pp 2374–2381

    Google Scholar 

  79. Koiwa K, Itoh J-I (2011) A gain design method of a damping control for a matrix converter. 2011 annual meeting IEEJ, Toyonaka-city, Osaka, Japan, pp 1–2

    Google Scholar 

  80. Koiwa K, Itoh J-I (2011) Experimental verification for a matrix converter with a V-connection AC chopper. In: Proceedings of European conference on power electronics and applications, EPE’11, Birmingham, UK, pp 1–10

    Google Scholar 

  81. Kolar JW, Baumann M, Schafmeister F, Ertl H (2002) Novel three-phase AC-DC-AC sparse matrix converter. In: Proceedings of IEEE applied power electronics conference and exposition, APEC’02, vol 2, Dallas, US, pp 777–791

    Google Scholar 

  82. Kolar JW, Drofenik U, Biela J, Heldwein M, Ertl H, Friedli T, Round SD (2008) PWM converter power density barriers. IEEJ Trans Ind Appl 128:468–480

    Article  Google Scholar 

  83. Kolar JW, Friedli T, Krismer F, Round SD (2008) The essence of three-phase AC/AC converter systems. In: Proceedings of power electronics and motion control conference, EPE-PEMC’08, Poznań, Poland, pp 27–42

    Google Scholar 

  84. Kolar JW, Friedli T, Rodriguez J, Wheeler PW (2011) Review of three-phase PWM AC–AC converter topologies. IEEE Trans Ind Electron 58(11):4988–5006

    Article  Google Scholar 

  85. Korotyeyev I, Fedyczak Z (2008) Steady and transient states modelling methods of matrix-reactance frequency converter with buck-boost topology. COMPEL (Int J Comput Math Electr Electron Eng) 28(3):626–638

    Article  Google Scholar 

  86. Korotyeyev I, Fedyczak Z, Szcześniak P (2008) Steady and transient state analysis of a matrix-reactance frequency converter based on a boost PWM AC matrix-reactance chopper. In: Proceedings of the international school on nonsinusoidal currents and compensation, ISNCC’08, Łagów, Poland (CD-ROM)

    Google Scholar 

  87. Kwon WH, Cho GH (1993) Analyses of static and dynamic characteristics of practical step-up nine-switch convertor. IEE Proc-B 140(2):139–145

    MathSciNet  Google Scholar 

  88. Kwon WH, Cho GH (1991) Analysis of non-ideal step down matrix converter based on circuit DQ transformation. In: Proceedings of power electronics specialists conference, PESC’91, Cambridge, US, pp 825–829

    Google Scholar 

  89. Lee MY, Klumpner C, Wheeler PW (2008) Experimental evaluation of the indirect three-level sparse matrix converter. In: Proceedings of IET international conference on power electronics, machines and drives, PEMD’08, York, UK, pp 50–54

    Google Scholar 

  90. Lee MY, Wheeler PW, Klumpner C (2007) Modulation method for the three-level-output-stage matrix converter under balanced and unbalanced supply condition. In: Proceedings of European conference on power electronics and applications, EPE’07, Alborg, Denmark, pp 1–10 (CD-ROM)

    Google Scholar 

  91. Lie X, Clare JC, Wheeler PW, Empringham L (2008) Space vector modulation for a capacitor clamped multi-level matrix converter. In: Proceedings of power electronics and motion control conference, EPE-PEMC’08, Poznań, Poland, pp 229–235

    Google Scholar 

  92. Loh PC, Blaabjerg F, Gao F, Baby A, Tan DA (2008) Pulsewidth modulation of neutral-point-clamped indirect matrix converter. IEEE Trans Ind Appl 44(6):1805–1814

    Article  Google Scholar 

  93. Lutz J, Schlangenotto H, Scheuerman U, De Doncker R (2011) Semiconductor power devices. Physics, characteristics, reliability. Springer, Berlin

    Google Scholar 

  94. Mahlein J, Braun M (2000) A matrix converter without diode clamped over-voltage protection. In: Proceedings of international power electronics and motion control conference, IPEMC 2000, vol 2, Beijing, China, pp 817–822

    Google Scholar 

  95. Mahlein J, Bruckmann M, Braun M (2002) Passive protection strategy for a drive system with a matrix converter and an induction machine. IEEE Trans Ind Electron 49(2):297–303

    Article  Google Scholar 

  96. Mahlein J, Igney J, Braun M, Simon O (2001) Robust matrix converter commutation without explicit sign measurement. In: Proceedings of European conference on power electronics and applications, EPE’01 (CD-ROM)

    Google Scholar 

  97. Mahlein J, Igney J, Weigold J, Braun M, Simon O (2002) Matrix converter commutation strategies with and without explicit input voltage sign measurement. IEEE Trans Ind Electron 49(2):407–414

    Article  Google Scholar 

  98. Majumdar G (2004) Future of power semiconductors. In: Proceedings of power electronics specialists conference, PESC’04, vol 1, Aachen, Germany, pp 10–15

    Google Scholar 

  99. Monteiro J, Silva JF, Pinto SF, Palma J (2009) Direct power control of matrix converter based unified power flow controllers. In: Proceedings of IEEE industrial electronics conference, IECON’09, Porto, Portugal, pp 1525–1530

    Google Scholar 

  100. Motto ER, Donlon JF, Tabata M, Takahashi H, Yu Y, Majumdar G (2004) Application characteristics of an experimental RB-IGBT (reverse blocking IGBT) module. In: Annual meeting of industry applications conference, IAS’04, vol 3, pp 1540–1544

    Google Scholar 

  101. Nielsen P, Blaabjerg F, Pedersen JK (1999) New protection issues of a matrix converter: design considerations for adjustable-speed drives. IEEE Trans Ind Appl 35(5):1150–1161

    Article  Google Scholar 

  102. Nielsen P, Blaabjerg F, Pedersen JK (1996) Space vector modulated matrix converter with minimized number of switchings and a feedforward compensation of input voltage unbalance. In: Proceedings of international power electronics, drives and energy systems for industrial, growth, PEDES’96, vol 2, pp 833–839

    Google Scholar 

  103. Nikkhajoei H (2007) A current source matrix converter for high-power applications. In: Proceedings of IEEE power electronics specialists conference, PESC’07, Orlando, US, pp 2516–2521

    Google Scholar 

  104. Obuchov AY, Otchenasch W, Zinoviev GS (2000) Buck-boost AC-AC voltage controllers. In: Proceedings of international conference on power electronics and motion control, EPE-PEMC 2000, Košice, Slovakia, pp 2.194–2.197

    Google Scholar 

  105. Ormaetxea E, Andreu J, Kortabarria I, Bidarte U, Martinez de Alegria I, Ibarra E, Olaguenaga E (2011) Matrix converter protection and computational capabilities based on a system on chip design with an FPGA. IEEE Trans Power Electron 26(1):272–287

    Article  Google Scholar 

  106. Oyama J, Xia X, Higuchi T, Yamada E (1997) Displacement angle control of matrix converter. In: Proceedings of IEEE power electronics specialists conference, PESC’97, St. Louise, US, pp 1033–1039

    Google Scholar 

  107. Pan CT, Chen TC, Shieh JJ (1993) A zero switching loss matrix converter. In: Proceedings of power electronics specialists conference, PESC’93, Seattle, US, pp 545–550

    Google Scholar 

  108. Pinto FS, Silva FJ (1999) Sliding mode control of space vector modulated matrix converter with sinusoidal input/output waveforms and near unity input power factor. In: Proceedings of European conference on power electronics and applications, EPE’99, Lausanne, Switzerland, pp 1–9

    Google Scholar 

  109. Rodriguez J (1983) A new control technique for AC-AC converters. In: Proceedings of control in power electronics and electrical drives conference, IFAC’83, Lausanne, Switzerland, pp 203–208

    Google Scholar 

  110. Rodriguez J, Rivera M, Kolar JW, Wheeler PW (2012) A review of control and modulation methods for matrix converters. IEEE Trans Ind Electron 59(1):58–70

    Article  Google Scholar 

  111. Roy G, April GE (1989) Cycloconverter operation under a new scalar control algorithm. In: Proceedings of power electronics specialists conference, PESC’89, vol 1, Milwaukee, US, pp 368–375

    Google Scholar 

  112. Roy G, April GE (1991) Direct frequency changer operation under a new scalar control algorithm. IEEE Trans Power Electron 6(1):100–107

    Article  Google Scholar 

  113. Roy G, Duguay L, Manias S, April GE (1987) Asynchronous operation of cycloconverter with improved voltage gain by employing a scalar control algorithm. In: Proceedings of IEEE-IAS annual meeting, pp 889–898

    Google Scholar 

  114. Rząsa J (2007) Wielopoziomowy przekształtnik matrycowy sterowany metodą venturiniego (in Polish). Przegląd Elektrotechniczny (Electr Rev) 2:57–64

    Google Scholar 

  115. Satish T, Mohapatra KK, Mohan N (2006) Modulation methods based on a novel carrier-based PWM scheme for matrix converter operation under unbalanced input voltages. In: Proceedings of applied power electronics conference and exposition, APEC’06, pp 127–132

    Google Scholar 

  116. Schafmeister F, Baumann M, Kolar JW (2002) Analytically closed calculation of the conduction and switching losses of three-phase AC-AC sparse matrix converters. In: Proceedings of international power electronics and motion control conference, EPE-PEMC’02, Dubrovnik, Croatia, pp 1–13 (CD-ROM)

    Google Scholar 

  117. Schonberger J, Friedli T, Round SD, Kolar JW (2007) An ultra sparse matrix converter with a novel active clamp circuit. In: Proceedings of power conversion conference, PCC’07, Nagoya, Japan, pp 784–791

    Google Scholar 

  118. She H, Lin H, He B, Wang X, Yue L, An X (2012) Implementation of voltage-based commutation in space-vector-modulated matrix converter. IEEE Trans Ind Electron 59(1):154–166

    Article  Google Scholar 

  119. She H, Lin H, Wang X, Yue L, An X, He B (2011) Nonlinear compensation method for output performance improvement of matrix converter. IEEE Trans Ind Electron 58(9):3988–3999

    Article  Google Scholar 

  120. Shi Y, Yang X, He Q, Wang Z (2004) Research on a novel multilevel matrix converter. In: Proceedings of IEEE power electronics specialists conference, PESC’04, vol 3, Aachen, Germany, pp 2413–2419

    Google Scholar 

  121. Simon O, Braun M (2001) Theory of vector modulation for matrix converters. In: Proceedings of European conference on power electronics and applications, EPE’01, Graz, Austria

    Google Scholar 

  122. Simon O, Mahlein J, Muenzer MN, Bruckmarm M (2002) Modern solutions for industrial matrix-converter applications. IEEE Trans Ind Electron 2:401–406

    Google Scholar 

  123. Sun K, Zhou D, Huang L, Matsuse K, Sasagawa K (2007) A novel commutation method of matrix converter fed induction motor drive using RB-IGBT. IEEE Trans Ind Appl 43(3):777–786

    Article  Google Scholar 

  124. Svensson T, Alakula M (1991) The modulation and control of a matrix converter synchronous machine drive. In: Proceedings of European conference on power electronics and applications, EPE’91, Florence, Italy, pp 469–476

    Google Scholar 

  125. Szcześniak P (2010) Analiza i badania właściwości układu napędowego z matrycowo reaktancyjnym przemiennikiem częstotliwości o modulacji Venturiniego (in Polish). Przegląd Elektrotechniczny (Electr Rev) 6:155–158

    Google Scholar 

  126. Szcześniak P (2009) Analysis and testing matrix-reactance frequency converters. PhD thesis (in Polish), University of Zielona Góra, Zielona Góra

    Google Scholar 

  127. Szcześniak P (2007) Basic properties comparative study of matrix-reactance frequency converter based on buck-boost topology with Venturini control strategies. In: Proceedings of compatibility in power electronics, CPE’07, Gdańsk, Poland (CD-ROM)

    Google Scholar 

  128. Szcześniak P (2010) Modele matematyczne trójfazowych przemienników częstotliwości prądu przemiennego bazujących na topologii sterownika matrycowo-reaktancyjnego typu buck-boost (in Polish). Przegląd Elektrotechniczny (Electr Rev) 2:384–389

    Google Scholar 

  129. Szcześniak P, Fedyczak Z, Klytta M (2008) Modelling and analysis of a matrix-reactance frequency converter based on buck-boost topology by DQ0 transformation. In: Proceedings of power electronics and motion control conference, EPE-PEMC’08, Poznań, Poland, pp 165–172

    Google Scholar 

  130. Takei M, Naito T, Ueno K (2003) The reverse blocking IGBT for matrix converter with ultra-thin wafer technology. In: Proceedings of IEEE international symposium on power semiconductor devices and ICs, ISPSD’03, pp 156–159

    Google Scholar 

  131. Teichmann R, Oyama J (2002) ARCP soft-switching technique in matrix converters. IEEE Trans Ind Electron 49(2):353–361

    Article  Google Scholar 

  132. Van Der Broeck H, Skudelny H, Stanke G (1986) Analysis and realization of a pulse width modulator based on voltage space vectors. In: Proceedings of IEEE-IAS’86, pp 244–251

    Google Scholar 

  133. Vargas R, Ammann U, Rodriguez J, Pontt J (2008) Predictive strategy to control common-mode voltage in loads fed by matrix converters. IEEE Trans Ind Electron 55(12):4372–4380

    Article  Google Scholar 

  134. Vargas R, Ammann U, Hudoffsky B, Rodriguez J, Wheeler P (2010) Predictive torque control of an induction machine fed by a matrix converter with reactive input power control. IEEE Trans Power Electron 25(6):1426–1438

    Article  Google Scholar 

  135. Venturini M, Alesina A (1980) The generalized transformer: a new bi-directional sinusoidal waveform frequency converter with continuously adjustable input power factor. In: Proceedings of IEEE power electronics specialists conference, PESC’80, pp 242–252

    Google Scholar 

  136. Villaça MV, Perin AA (1995) A soft switched direct frequency changer. In: Proceedings of IEEE industry applications conference, IAS’95, pp 2321–2326

    Google Scholar 

  137. Wang Y, Lu Z, Wen H, Wang Y (2005) Dead-time compensation based on the improved space vector modulation strategy for matrix converter. In: Proceedings of IEEE power electronics specialists conference, PESC’05, Recife, Brazil, pp 27–30

    Google Scholar 

  138. Wei L, Lipo TA (2001) A novel matrix converter topology with simple commutation. In: Proceedings of IEEE industry applications society annual meeting, IAS’01, vol 3, Chicago, US, pp 1749–1754

    Google Scholar 

  139. Wheeler PW, Clare J, Empringham L (2004) Enhancement of matrix converter output waveform quality using minimized commutation times. IEEE Trans Ind Electron 51(1):240–244

    Article  Google Scholar 

  140. Wheeler PW, Clare J, Empringharn L, Bland M, Apap M (2002) Gate drive level intelligence and current sensing for matrix converter current commutation. IEEE Trans Ind Electron 49(2):382–389

    Article  Google Scholar 

  141. Wheeler PW, Empringham L, Apap M, de Lilo L, Clare JC, Bradley K, Whitley C (2003) A matrix converter motor drive for an aircraft actuation system. In: Proceedings of the European conference on power electronics and applications, EPE’03, Toulouse, France (CD-ROM)

    Google Scholar 

  142. Wheeler PW, Rodriguez J, Clare JC, Empringham L, Weinstejn A (2002) Matrix converters: a technology review. IEEE Trans Ind Electron 49(2):276–288

    Article  Google Scholar 

  143. Wheeler PW, Lie X, Lee MY, Empringham L, Klumpner C, Clare J (2008) A review of multi-level matrix converter topologies. In: Proceedings of IET international conference on power electronics, machines and drives, PEMD’08, York, UK, pp 286–290

    Google Scholar 

  144. Wijekoon T, Klumper C, Zanchetta P, Wheeler PW (2008) Implementation of a hybrid AC-AC direct power converter with unity voltage transfer. IEEE Trans Power Electron 23(4):1918–1926

    Article  Google Scholar 

  145. Wilson J (1978) The forced-commutated inverter as a regenerative rectifier. IEEE Trans Ind Appl 14:335–340

    Article  Google Scholar 

  146. Xu L, Clare JC, Wheeler PW, Empringham L, Li Y (2012) Capacitor clamped multilevel matrix converter space vector modulation. IEEE Trans Ind Electron 59(1):105–115

    Article  Google Scholar 

  147. Yang X, Shi Y, He Q, Wang Z (2004) A novel multi-level matrix converter. In: Proceedings of IEEE applied power electronics conference and exposition, APEC’04, vol 2, Anaheim, US, pp 832–835

    Google Scholar 

  148. Yoon Y-D, Sul S-K (2006) Carrier-based modulation technique for matrix converter. IEEE Trans Power Electron 21(6):1691–1703

    Article  Google Scholar 

  149. Zhou D, Sun K, Liu Z, Huang L, Matsuse K, Sasagawa K (2007) A novel driving and protection circuit for reverse-blocking IGBT used in matrix converter. IEEE Trans Ind Appl 43(1):3–13

    Article  Google Scholar 

  150. Ziegler M, Hofmann W (2000) A new two steps commutation policy for low cost matrix converters. In: Proceedings of PCIM conference, Nürnberg, Germany

    Google Scholar 

  151. Ziegler M, Hofmann W (2001) New one-step commutation strategies in matrix converters. In: Proceedings of power electronics and drive systems conference, PEDS’01, vol 2, Bali, Indonesia, pp 560–564

    Google Scholar 

  152. Ziegler M, Hofmann W (1998) Semi natural two steps commutation strategy for matrix converters. In: Proceedings of power electronics specialists conference, PESC’98, Fukuoka, Japan, pp 727–731

    Google Scholar 

  153. Zinoviev GS, Obuchov AY, Otchenasch WA, Popov WI (2000) Transformerless PWM AC boost and buck-boost converters (in Russian). Technicznaja Elektrodinamika 2:36–39

    Google Scholar 

  154. Zinoviev GS, Ganin M, Levin E, Obuchov AY, Popov V (2000) New class of buck-boost AC-AC frequency converters and voltage controllers. In: Proceedings of Korea-Russia international symposium on science and technology, KORUS’2000, Ulsan, Korea, pp 303–308

    Google Scholar 

  155. Ziogas PD, Khan SI, Rashid MH (1986) Analysis and design of forced commutated cycloconverter structures with improved transfer characteristics. IEEE Trans Ind Electron IE-33:271–280

    Google Scholar 

  156. Ziogas PD, Khan SI, Rashid MH (1985) Some improved forced commutated cycloconverters structures. IEEE Trans Ind Appl 1A-21:1242–1253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Szcześniak .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Szcześniak, P. (2013). Review of AC–AC Frequency Converters. In: Three-phase AC-AC Power Converters Based on Matrix Converter Topology. Power Systems. Springer, London. https://doi.org/10.1007/978-1-4471-4896-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4896-8_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4895-1

  • Online ISBN: 978-1-4471-4896-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics