Mechano-Electric Interactions and Their Role in Electrical Function of the Heart

  • J. Jeremy Rice
  • Peter Kohl


The heart is an electrically controlled and chemically powered mechanical pump. There are complex interactions between cardiac structure and function, including electrophysiology, metabolism, and mechanics. These are based on a multitude of interdigitating regulatory loops with different inherent time-scales. This chapter will focus on the acute cross-talk between electrical and mechanical activity of the heart, and in particular its relevance for normal and abnormal heart rhythms.


Excitation-contraction coupling Mechano-electric coupling/mechano-electric feedback Heart Cardiomyocyte Calcium handling Stretch Stretch-activated channel 



Action potential


Angiotensin II


Adenosine tri-phosphate


Free cytosolic Ca2+ concentration




Excitation-contraction coupling




International Liaison Committee on Resuscitation


L-type Ca2+ channel


Mechano-electric coupling


Na+/Ca2+ exchanger


Na+/H+ exchanger


Precordial thump


Ryanodine receptor


Stretch activated channels of various ion selectivity


Sarcoplamsic/endoplasmic reticulum Ca2+-ATPase


Sarcomere length


Sarcoplasmic reticulum

TnC, TnI, TnT

Troponin C, Troponin I, Troponin T


Ventricular fibrillation


Ventricular tachycardia


  1. 1.
    Kohl P, Hunter P, Noble D. Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog Biophys Mol Biol. 1999;71:91–138.PubMedGoogle Scholar
  2. 2.
    Katz AM, Katz PB. Homogeneity out of heterogeneity. Circulation. 1989;79:712–7.PubMedGoogle Scholar
  3. 3.
    Bers DM. Excitation-contraction coupling and cardiac contractile force. 2nd ed. Boston: Kluwer Academic Publishers; 2001.Google Scholar
  4. 4.
    Eisner DA, Diaz ME, Li Y, O’Neill SC, Trafford AW. Stability and instability of regulation of intracellular calcium. Exp Physiol. 2005;90:3–12. Epub 2004 Dec 16.PubMedGoogle Scholar
  5. 5.
    Alseikhan BA, DeMaria CD, Colecraft HM, Yue DT. Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation. Proc Natl Acad Sci U S A. 2002;99:17185–90. Epub 2002 Dec 16.PubMedGoogle Scholar
  6. 6.
    Linz KW, Meyer R. Control of L-type calcium current during the action potential of guinea-pig ventricular myocytes. J Physiol. 1998;513:425–42.PubMedGoogle Scholar
  7. 7.
    Dick IE, Tadross MR, Liang H, Tay LH, Yang W, Yue DT. A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature. 2008;451:830–4.PubMedGoogle Scholar
  8. 8.
    Shannon TR, Ginsburg KS, Bers DM. Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration. Biophys J. 2000;78:334–43.PubMedGoogle Scholar
  9. 9.
    Trafford AW, Diaz ME, Eisner DA. A novel, rapid and reversible method to measure Ca buffering and time-course of total sarcoplasmic reticulum Ca content in cardiac ventricular myocytes. Pflugers Arch. 1999;437:501–3.PubMedGoogle Scholar
  10. 10.
    Dobesh DP, Konhilas JP, de Tombe PP. Cooperative activation in cardiac muscle: impact of sarcomere length. Am J Physiol Heart Circ Physiol. 2002;282:H1055–62.PubMedGoogle Scholar
  11. 11.
    Gordon AM, Regnier M, Homsher E. Skeletal and cardiac muscle contractile activation: tropomyosin “rocks and rolls”. News Physiol Sci. 2001;16:49–55.PubMedGoogle Scholar
  12. 12.
    Solaro RJ, Rarick HM. Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments. Circ Res. 1998;83:471–80.PubMedGoogle Scholar
  13. 13.
    Rice JJ, de Tombe PP. Approaches to modeling crossbridges and calcium-dependent activation in cardiac muscle. Prog Biophys Mol Biol. 2004;85:179–95.PubMedGoogle Scholar
  14. 14.
    Allen DG, Kurihara S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol. 1982;327:79–94.PubMedGoogle Scholar
  15. 15.
    Bremel RD, Weber A. Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol. 1972;238:97–101.PubMedGoogle Scholar
  16. 16.
    Hofmann PA, Fuchs F. Effect of length and cross-bridge attachment on Ca2+ binding to cardiac troponin C. Am J Physiol. 1987;253:C90–6.PubMedGoogle Scholar
  17. 17.
    Kad NM, Kim S, Warshaw DM, VanBuren P, Baker JE. Single-myosin crossbridge interactions with actin filaments regulated by troponin-tropomyosin. Proc Natl Acad Sci U S A. 2005;102:16990–5. Epub 2005 Nov 15.PubMedGoogle Scholar
  18. 18.
    Daniel TL, Trimble AC, Chase PB. Compliant realignment of binding sites in muscle: transient behavior and mechanical tuning. Biophys J. 1998;74:1611–21.PubMedGoogle Scholar
  19. 19.
    Trayanova NA, Rice JJ. Cardiac electromechanical models: from cell to organ. Front Comput Physiol Med. 2001;2:1–19.Google Scholar
  20. 20.
    Wannenburg T, Heijne GH, Geerdink JH, Van Den Dool HW, Janssen PM, De Tombe PP. Cross-bridge kinetics in rat myocardium: effect of sarcomere length and calcium activation. Am J Physiol Heart Circ Physiol. 2000;279:H779–90.PubMedGoogle Scholar
  21. 21.
    McDonald KS, Moss RL. Osmotic compression of single cardiac myocytes eliminates the reduction in Ca2+ sensitivity of tension at short sarcomere length. Circ Res. 1995;77:199–205.PubMedGoogle Scholar
  22. 22.
    Godt RE, Maughan DW. Influence of osmotic compression on calcium activation and tension in skinned muscle fibers of the rabbit. Pflugers Arch. 1981;391:334–7.PubMedGoogle Scholar
  23. 23.
    Cazorla O, Vassort G, Garnier D, Le Guennec JY. Length modulation of active force in rat cardiac myocytes: is titin the sensor? J Mol Cell Cardiol. 1999;31:1215–27.PubMedGoogle Scholar
  24. 24.
    Farman GP, Gore D, Allen E, Schoenfelt K, Irving TC, de Tombe PP. Myosin head orientation: a structural determinant for the Frank-Starling relationship. Am J Physiol Heart Circ Physiol. 2011;300:H2155–60.PubMedGoogle Scholar
  25. 25.
    McDonald KS, Wolff MR, Moss RL. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres. J Physiol. 1997;501(Pt 3):607–21.PubMedGoogle Scholar
  26. 26.
    de Tombe PP, Mateja RD, Tachampa K, Ait Mou Y, Farman GP, Irving TC. Myofilament length dependent activation. J Mol Cell Cardiol. 2010;48:851–8.PubMedGoogle Scholar
  27. 27.
    Parmley WW, Chuck L. Length-dependent changes in myocardial contractile state. Am J Physiol. 1973;224:1195–9.PubMedGoogle Scholar
  28. 28.
    Kentish JC, Wrzosek A. Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae. J Physiol. 1998;506:431–44.PubMedGoogle Scholar
  29. 29.
    Allen DG, Nichols CG, Smith GL. The effects of changes in muscle length during diastole on the calcium transient in ferret ventricular muscle. J Physiol. 1988;406:359–70.PubMedGoogle Scholar
  30. 30.
    Nichols CG. The influence of ‘diastolic’ length on the contractility of isolated cat papillary muscle. J Physiol. 1985;361:269–79.PubMedGoogle Scholar
  31. 31.
    Calaghan SC, Belus A, White E. Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle? Prog Biophys Mol Biol. 2003;82:81–95.PubMedGoogle Scholar
  32. 32.
    Rice JJ, Bers DM. The response of cardiac muscle to stretch: the role of calcium. In: Kohl F, Sachs F, editors. Cardiac mechano-electric feedback and Arrythmias: from pipette to patient, vol. 2. Philadelphia: Elsevier; 2010.Google Scholar
  33. 33.
    Cingolani HE, Alvarez BV, Ennis IL, Camilion de Hurtado MC. Stretch-induced alkalinization of feline papillary muscle: an autocrine-paracrine system. Circ Res. 1998;83:775–80.PubMedGoogle Scholar
  34. 34.
    Alvarez BV, Perez NG, Ennis IL, Camilion de Hurtado MC, Cingolani HE. Mechanisms underlying the increase in force and Ca2+ transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. Circ Res. 1999;85:716–22.PubMedGoogle Scholar
  35. 35.
    Caldiz CI, Garciarena CD, Dulce RA, et al. Mitochondrial reactive oxygen species activate the slow force response to stretch in feline myocardium. J Physiol. 2007;584:895–905.PubMedGoogle Scholar
  36. 36.
    Woo SH, Lee CO. Effects of endothelin-1 on Ca2+ signaling in guinea-pig ventricular myocytes: role of protein kinase C. J Mol Cell Cardiol. 1999;31:631–43.PubMedGoogle Scholar
  37. 37.
    Aiello EA, Villa-Abrille MC, Dulce RA, Cingolani HE, Perez NG. Endothelin-1 stimulates the Na+/Ca2+ exchanger reverse mode through intra­cellular Na+  (Na+i)-dependent and Na+ i-­independent pathways. Hypertension. 2005;45:288–93.PubMedGoogle Scholar
  38. 38.
    Rebsamen MC, Church DJ, Morabito D, Vallotton MB, Lang U. Role of cAMP and calcium influx in endothelin-1-induced ANP release in rat cardiomyocytes. Am J Physiol. 1997;273:E922–31.PubMedGoogle Scholar
  39. 39.
    Sokolovsky M, Shraga-Levine Z, Galron R. Ligand-specific stimulation/inhibition of cAMP formation by a novel endothelin receptor subtype. Biochemistry. 1994;33:11417–9.PubMedGoogle Scholar
  40. 40.
    Dyachenko V, Husse B, Rueckschloss U, Isenberg G. Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium. 2009;45:38–54.PubMedGoogle Scholar
  41. 41.
    Tavi P, Han C, Weckstrom M. Mechanisms of stretch-induced changes in [Ca2+]i in rat atrial myocytes: role of increased troponin C affinity and stretch-activated ion channels. Circ Res. 1998;83:1165–77.PubMedGoogle Scholar
  42. 42.
    Janssen PM, de Tombe PP. Uncontrolled sarcomere shortening increases intracellular Ca2+ transient in rat cardiac trabeculae. Am J Physiol. 1997;272:H1892–7.PubMedGoogle Scholar
  43. 43.
    ter Keurs HE, Wakayama Y, Sugai Y, et al. Role of sarcomere mechanics and Ca2+ overload in Ca2+waves and arrhythmias in rat cardiac muscle. Ann N Y Acad Sci. 2006;1080:248–67.PubMedGoogle Scholar
  44. 44.
    Miura M, Nishio T, Hattori T, et al. Effect of nonuniform muscle contraction on sustainability and frequency of triggered arrhythmias in rat cardiac muscle. Circulation. 2010;121:2711–7.PubMedGoogle Scholar
  45. 45.
    Poggesi C, Tesi C, Stehle R. Sarcomeric determinants of striated muscle relaxation kinetics. Pflugers Arch. 2005;449:505–17. Epub 2004 Nov 30.PubMedGoogle Scholar
  46. 46.
    Bassani JW, Yuan W, Bers DM. Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol. 1995;268:C1313–9.PubMedGoogle Scholar
  47. 47.
    Puglisi JL, Bassani RA, Bassani JW, Amin JN, Bers DM. Temperature and relative contributions of Ca transport systems in cardiac myocyte relaxation. Am J Physiol. 1996;270:H1772–8.PubMedGoogle Scholar
  48. 48.
    Janssen PM, Stull LB, Marban E. Myofilament properties comprise the rate-limiting step for cardiac relaxation at body temperature in the rat. Am J Physiol Heart Circ Physiol. 2002;282:H499–507.PubMedGoogle Scholar
  49. 49.
    Janssen PM, Hunter WC. Force, not sarcomere length, correlates with prolongation of isosarcometric contraction. Am J Physiol. 1995;269:H676–85.PubMedGoogle Scholar
  50. 50.
    Franz MR, Cima R, Wang D, Profitt D, Kurz R. Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation. 1992;86:968–78.PubMedGoogle Scholar
  51. 51.
    Craelius W. Stretch-activation of rat cardiac myocytes. Exp Physiol. 1993;78:411–23.PubMedGoogle Scholar
  52. 52.
    Kohl P, Bollensdorff C, Garny A. Effects of mechano-sensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Exp Physiol. 2006;91:307–21.PubMedGoogle Scholar
  53. 53.
    Craelius W, Chen V, El-Sherif N. Stretch activated ion channels in ventricular myocytes. Biosci Rep. 1988;8:407–14.PubMedGoogle Scholar
  54. 54.
    Baumgarten CM, Clemo HF. Swelling-activated chloride channels in cardiac physiology and pathophysiology. Prog Biophys Mol Biol. 2003;82:25–42.PubMedGoogle Scholar
  55. 55.
    Cooper PJ, Lei M, Cheng LX, Kohl P. Axial stretch increases spontaneous pacemaker activity in rabbit isolated sino-atrial node cells. J Appl Physiol. 2000;89:2099–104.PubMedGoogle Scholar
  56. 56.
    Hansen DE, Borganelli M, Stacy GPJ, Taylor LK. Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhythmic action. Circ Res. 1991;69:820–31.PubMedGoogle Scholar
  57. 57.
    White E, Le Guennec J-Y, Nigretto JM, Gannier F, Argibay JA, Garnier D. The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Exp Physiol. 1993;78:65–78.PubMedGoogle Scholar
  58. 58.
    Zeng T, Bett GCL, Sachs F. Stretch-activated whole cell currents in adult rat cardiac myocytes. Am J Physiol. 2000;278:H548–57.Google Scholar
  59. 59.
    Zabel M, Coller B, Franz MR. Amplitude and polarity of stretch-induced systolic and diastolic voltage changes depend on the timing of stretch: a means to characterize stretch-activated channels in the intact heart. Pacing Clin Electrophysiol. 1993;16:886.Google Scholar
  60. 60.
    Levine JH, Guarnieri T, Kadish AH, White RI, Calkins H, Kan JS. Changes in myocardial repolarization in patients undergoing balloon valvuloplasty for congenital pulmonary stenosis: evidence for contraction-excitation feedback in humans. Circulation. 1988;77:70–7.PubMedGoogle Scholar
  61. 61.
    Gallacher DJ, Van de Water A, van der Linde H, et al. In vivo mechanisms precipitating torsades de pointes in a canine model of drug-induced long-QT1 syndrome. Cardiovasc Res. 2007;76:247–56.PubMedGoogle Scholar
  62. 62.
    Vila-Petroff MG, Kim SH, Pepe S, et al. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol. 2001;3:867–73.Google Scholar
  63. 63.
    Iribe G, Ward CW, Camelliti P, et al. Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circ Res. 2009;104:787–95.PubMedGoogle Scholar
  64. 64.
    Pogwizd SM, Bers DM. Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med. 2004;14:61–6.PubMedGoogle Scholar
  65. 65.
    Ter Keurs HE, Wakayama Y, Miura M, Stuyvers BD, Boyden PA, Landesberg A. Spatial nonuniformity of contraction causes arrhythmogenic Ca2+waves in rat cardiac muscle. Ann N Y Acad Sci. 2005;1047:345–65.PubMedGoogle Scholar
  66. 66.
    Giordano FJ, Gerber H-P, Williams S-P, et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci U S A. 2001;98:5780–5.PubMedGoogle Scholar
  67. 67.
    Camelliti P, Green CR, LeGrice I, Kohl P. Fibroblast network in rabbit sino-atrial node: structural and functional identification of homo- and heterologous cell coupling. Circ Res. 2004;94:828–35.PubMedGoogle Scholar
  68. 68.
    Gerdes HH, Carvalho RN. Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol. 2008;20:470–5.PubMedGoogle Scholar
  69. 69.
    Bao L, Sachs F, Dahl G. Connexins are mechanosensitive. Am J Physiol Cell Physiol. 2004;278:C1389–95.Google Scholar
  70. 70.
    Suchyna TM, Johnson JH, Hamer K, et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol. 2000;115:583–98.PubMedGoogle Scholar
  71. 71.
    Kohl P, Sachs F, Franz MR. Cardiac mechano-electric feedback and arrhythmias: from pipette to patient. Philadelphia: Elsevier (Saunders); 2005.Google Scholar
  72. 72.
    Arrenberg AB, Stainier DY, Baier H, Huisken J. Optogenetic control of cardiac function. Science. 2010;330:971–4.PubMedGoogle Scholar
  73. 72a.
    Meng F, Sachs F. Orientation-based FRET sensor for real-time imaging of cellular forces. J Cell Sci. 2012;125:743–50.PubMedGoogle Scholar
  74. 73.
    Holubarsch C, Ruf T, Goldstein DJ, et al. Existence of the Frank-Starling mechanism in the failing human heart: investigations on the organ, tissue, and sarcomere levels. Circulation. 1996;94:683–9.PubMedGoogle Scholar
  75. 74.
    Slovut DP, Wenstrom JC, Moeckel RB, Wilson RF, Osborn JW, Abrams JH. Respiratory sinus dysrhythmia persists in transplanted human hearts following autonomic blockade. Clin Exp Pharmacol Physiol. 1998;25:322–30.PubMedGoogle Scholar
  76. 75.
    Donald DE, Shepherd JT. Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc Res. 1978;12:449–69.Google Scholar
  77. 76.
    Schott E. Über Ventrikelstillstand (Adams-Stokes’sche Anfälle) nebst Bemerkungen über andersartige Arhythmien passagerer Natur. Deutsches Archiv für Klinische Medizin. 1920;131:211–29.Google Scholar
  78. 77.
    Klumbies A, Paliege R, Volkmann H. Mechanical energy stimulation in asystole and extreme ­bradycardia [in German]. Z Gesamte Exp Med. 1988;43:348–52.Google Scholar
  79. 78.
    Zeh E, Rahner E. Die manuelle extrathorakale Stimulation des Herzens: zur Technik und Wirkung des ‘Prekordialschlages’. Z Kardiol. 1978;67:299–304.PubMedGoogle Scholar
  80. 79.
    Wild JB, Grover JD. The fist as a mechanical pacemaker. Lancet. 1970;2:436–7.PubMedGoogle Scholar
  81. 80.
    Zoll PM, Belgard AH, Weintraub MJ, Frank HA. External mechanical cardiac stimulation. N Engl J Med. 1976;294:1274–5.PubMedGoogle Scholar
  82. 81.
    Chan L, Reid C, Taylor B. Effect of three emergency pacing modalities on cardiac output in cardiac arrest due to ventricular asystole. Resuscitation. 2002;52:117–9.PubMedGoogle Scholar
  83. 82.
    Pellis T, Kette F, Lovisa D, et al. Utility of pre-cordial thump for treatment of out of hospital cardiac arrest: a prospective study. Resuscitation. 2009;80:17–23.PubMedGoogle Scholar
  84. 83.
    Pennington JE, Taylor J, Lown B. Chest thump for reverting ventricular tachycardia. N Engl J Med. 1970;283:1192–5.PubMedGoogle Scholar
  85. 84.
    Barrett JS. Chest thumps and the heart beat. N Engl J Med. 1971;284:393.Google Scholar
  86. 85.
    Befeler B. Mechanical stimulation of the heart: its therapeutic value in tachyarrhythmias. Chest. 1978;73:832–8.PubMedGoogle Scholar
  87. 86.
    Kohl P, King AM, Boulin C. Antiarrhythmic effects of acute mechanical stimulation. In: Kohl P, Sachs F, Franz MR, editors. Cardiac mechano-electric feedback and arrhythmias: from pipette to patient. Philadelphia: Elsevier (Saunders); 2005. p. 304–14.Google Scholar
  88. 87.
    Haman L, Parizek P, Vojacek J. Precordial thump efficacy in termination of induced ventricular arrhythmias. Resuscitation. 2009;80:14–6.PubMedGoogle Scholar
  89. 88.
    Link MS, Madias C, Maron BJ, Alsheikh-Ali AA, Rajab M, Estes NAM. Precordial thump for cardiac arrest is effective for asystole but not for ventricular fibrillation. Heart Rhythm. 2009;6:1495–500.PubMedGoogle Scholar
  90. 89.
    van Wagoner DR, Lamorgese M. Ischemia potentiates the mechanosensitive modulation of atrial ATP-sensitive potassium channels. Ann N Y Acad Sci. 1994;723:392–5.PubMedGoogle Scholar
  91. 90.
    Schotten U, Neuberger H-R, Allessie MA. The role of atrial dilatation in the domestication of atrial fibrillation. Prog Biophys Mol Biol. 2003;82:151–62.PubMedGoogle Scholar
  92. 91.
    Waxman MB, Wald RW, Finley JP, Bonet JF, Downar E, Sharma AD. Valsalva termination of ventricular tachycardia. Circulation. 1980;62:843–51.PubMedGoogle Scholar
  93. 92.
    Ambrosi P, Habib G, Kreitmann B, Faugère G, Métras D. Valsalva manoeuvre for supraventricular tachycardia in transplanted heart recipient. Lancet. 1995;346:713.PubMedGoogle Scholar
  94. 93.
    Bode F, Sachs F, Franz MR. Tarantula peptide inhibits atrial fibrillation. Nature. 2001;409:35–6.PubMedGoogle Scholar
  95. 94.
    Strobel JS, Kay GN, Walcott GP, Smith WM, Ideker RE. Defibrillation efficacy with endocardial electrodes is influenced by reductions in cardiac preload. J Interv Card Electrophysiol. 1997;1:95–102.PubMedGoogle Scholar
  96. 95.
    Trayanova N, Li W, Eason J, Kohl P. The effect of stretch-activated channels on defibrillation efficacy: a simulation study. Heart Rhythm. 2004;1:67–77.PubMedGoogle Scholar
  97. 96.
    Maron BJ, Link MS, Wang PJ, Estes III NAM. Clinical profile of Commotio cordis: an under. Appreciated cause of sudden death in the young during sports and other activities. J Cardiovasc Electrophysiol. 1999;10:114–20.PubMedGoogle Scholar
  98. 97.
    Riedinger F. Über Brusterschütterung. In: Festschrift zur dritten Saecularfeier der Alma Julia Maximiliana Leipzig. Leipzig: Verlag von F.C.W. Vogel; 1882. p. 221–34.Google Scholar
  99. 98.
    Schlomka G. Commotio cordis und ihre Folgen. Die Einwirkung stumpfer Brustwandtraumen auf das Herz. Ergebnisse der inneren. Medizin und Kinderheilkunde. 1934;47:1–91.Google Scholar
  100. 99.
    Link MS, Wang PJ, Pandian NG, et al. An experimental model of sudden cardiac death due to low-energy chest-wall impact (Commotio cordis). N Engl J Med. 1998;338:1805–11.PubMedGoogle Scholar
  101. 100.
    Kohl P, Nesbitt AD, Cooper PJ, Lei M. Sudden cardiac death by Commotio cordis: role of mechano-electric feedback. Cardiovasc Res. 2001;50:280–9.PubMedGoogle Scholar
  102. 101.
    Link MS, Wang PJ, VanderBrink BA, et al. Selective activation of the K+ ATP channel is a mechanism by which sudden death is produced by low-energy chest-wall impact (commotio cordis). Circulation. 1999;100:413–8.PubMedGoogle Scholar
  103. 102.
    Garny A, Kohl P. Mechanical induction of arrhythmias during ventricular repolarization: modeling cellular mechanisms and their interaction in two dimensions. Ann N Y Acad Sci. 2004;1015:133–43.PubMedGoogle Scholar
  104. 103.
    Li W, Kohl P, Trayanova N. Induction of ventricular arrhythmias following mechanical impact: a simulation study in 3D. J Mol Histol. 2004;35:679–86.PubMedGoogle Scholar
  105. 104.
    Towe BC, Rho R. Ultrasonic cardiac pacing in the porcine model. IEEE Trans Biomed Eng. 2006;53:1446–8.PubMedGoogle Scholar
  106. 105.
    Birks EJ, George RS, Hedger M, et al. Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy a prospective study. Circulation. 2011;123:381–90.PubMedGoogle Scholar
  107. 106.
    Boriani G, Gasparini M, Lunati M, et al. Characteristics of ventricular tachyarrhythmias occurring in ischemic versus nonischemic patients implanted with a biventricular cardioverter-defibrillator for primary or secondary prevention of sudden death. Am Heart J. 2006;152:527–36.PubMedGoogle Scholar
  108. 107.
    Sabbah HN, Gupta RC, Rastogi S, Mishra S, Mika Y, Burkhoff D. Treating heart failure with cardiac contractility modulation electrical signals. Curr Heart Fail Rep. 2006;3:21–4.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Functional Genomics and Systems BiologyIBM T.J. Watson Research CenterYorktown HeightsUSA
  2. 2.Department of Biomedical EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Cell and Molecular BiologyLoyola UniversityChicagoUSA
  4. 4.Cardiac Biophysics and Systems BiologyNational Heart and Lung Institute, Imperial College of Science, Engineering and Medicine, The Heart Science CentreHarefield, LondonUK
  5. 5.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations