Skip to main content

Cardiac Memory: From Electrical Curiosity to Clinical Diagnostic and Research Tool

  • Chapter
  • First Online:

Abstract

The term “Cardiac memory” (CM) refers to persistent changes in myocardial repolarization upon resumption of normal ventricular conduction sequence after a period of abnormal ventricular activation (such as ventricular arrhythmias, pacing, or transient conduction abnormalities) manifesting by the typical pattern of the T wave changes on the ECG. In CM T wave direction follows the direction of the preceding aberrant QRS complex.

CM is believed to reflect adaptation of the heart to the new activation sequence and is triggered by changes in myocardial strain causing local release of angiotensin II. CM involves alterations in ion channel trafficking (short-term CM), transcription and expression of multiple ion channels including Ito, IKr, ICa-L, and gap junction redistribution (long-term CM).

In the clinical setting T wave inversions due to CM are often confused with myocardial ischemia.

Recent studies demonstrated that CM can be observed not only during normal ventricular activation but continuous aberrant conduction and its magnitude depends on the aberrant QRST morphology (particularly QRS/T vector magnitude ratio) and the degree of the left ventricular dyssynchrony.

Clinical applications of CM reviewed including differential diagnosis of T wave inversions, left bundle branch block age determination and potential use in pacemaker-related clinical research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jeyaraj D, Wilson LD, Zhong J, et al. Mechano­electrical feedback as novel mechanism of cardiac electrical remodeling. Circulation. 2007;115:3145–55.

    Article  PubMed  Google Scholar 

  2. Spragg DD, Akar FG, Helm RH, et al. Abnormal conduction and repolarization in late-activated myocardium of dyssynchronously contracting hearts. Cardiovasc Res. 2005;67:77–86.

    Article  PubMed  CAS  Google Scholar 

  3. White P. Alteration of the pulse: a common clinical condition. Am J Med Sci. 1915;150:82–96.

    Article  Google Scholar 

  4. Scherf D. Alterations in the form of the T waves with changes in heart rate. Am Heart J. 1944;28:332–47.

    Article  Google Scholar 

  5. Currie GM. Transient inverted T waves after paroxysmal tachycardia. Br Heart J. 1942;4:149–52.

    Article  PubMed  CAS  Google Scholar 

  6. Campbell M. Inversion of T waves after long paroxysms of tachycardia. Br Heart J. 1942;4:49–56.

    Article  PubMed  CAS  Google Scholar 

  7. Nicolai P, Medvedowsky JL, Delaage M, et al. Wolff-Parkinson-White syndrome: T wave abnormalities during normal pathway conduction. J Electrocardiol. 1981;14:295–300.

    Article  PubMed  CAS  Google Scholar 

  8. Herweg B, Fisher JD, Ilercil A, et al. Cardiac ­memory after radiofrequency ablation of accessory pathways: the post-ablation T wave does not forget the pre-excited QRS. J Interv Card Electrophysiol. 1999;3:263–72.

    Article  PubMed  CAS  Google Scholar 

  9. Nirei T, Kasanuki H, Ohnishi S, et al. Cardiac memory in patients with intermittent Wolff-Parkinson-White syndrome. J Electrocardiol. 1997;30:323–9.

    Article  PubMed  CAS  Google Scholar 

  10. Chatterjee K, Harris A, Davies G, et al. Electrocardiographic changes subsequent to artificial ventricular depolarization. Br Heart J. 1969;31:770–9.

    Article  PubMed  CAS  Google Scholar 

  11. Gould L, Venkataraman K, Goswami MK, et al. Pacemaker-induced electrocardiographic changes simulating myocardial infarction. Chest. 1973;63:829–32.

    Article  PubMed  CAS  Google Scholar 

  12. Bauer GE. Transient bundle-branch block. Circulation. 1964;29:730–8.

    Article  PubMed  CAS  Google Scholar 

  13. Engel TR, Shah R, De Podesta LA, et al. T-wave abnormalities of intermittent left bundle-branch block. Ann Intern Med. 1978;89:204–6.

    Article  PubMed  CAS  Google Scholar 

  14. Gould L, Reddy CV, Singh B, et al. T-wave changes with intermittent left bundle branch block. Angiology. 1980;31:66–8.

    Article  PubMed  CAS  Google Scholar 

  15. Denes P, Pick A, Miller RH, et al. A characteristic precordial repolarization abnormality with intermittent left bundle-branch block. Ann Intern Med. 1978;89:55–7.

    Article  PubMed  CAS  Google Scholar 

  16. Wylie Jr JV, Zimetbaum P, Josephson ME, et al. Cardiac memory induced by QRS widening due to propafenone toxicity. Pacing Clin Electrophysiol. 2007;30:1161–4.

    Article  PubMed  Google Scholar 

  17. Rosenbaum MB, Blanco HH, Elizari MV, et al. Electrotonic modulation of the T wave and cardiac memory. Am J Cardiol. 1982;50:213–22.

    Article  PubMed  CAS  Google Scholar 

  18. Abildskov JA. Effects of activation sequence on the local recovery of ventricular excitability in the dog. Circ Res. 1976;38:240–3.

    Article  PubMed  CAS  Google Scholar 

  19. Costard-Jackle A, Goetsch B, Antz M, et al. Slow and long-lasting modulation of myocardial repolarization produced by ectopic activation in isolated rabbit hearts. Evidence for cardiac “memory”. Circulation. 1989;80:1412–20.

    Article  PubMed  CAS  Google Scholar 

  20. Castellucci VF, Frost WN, Goelet P, et al. Cell and molecular analysis of long-term sensitization in Aplysia. J Physiol Paris. 1986;81:349–57.

    PubMed  CAS  Google Scholar 

  21. Goelet P, Castellucci VF, Schacher S, et al. The long and the short of long-term memory–a molecular framework. Nature. 1986;322:419–22.

    Article  PubMed  CAS  Google Scholar 

  22. Patberg KW, Rosen MR. Molecular determinants of cardiac memory and their regulation. J Mol Cell Cardiol. 2004;36:195–204.

    Article  PubMed  CAS  Google Scholar 

  23. Ozgen N, Rosen MR. Cardiac memory: a work in progress. Heart Rhythm. 2009;6:564–70.

    Article  PubMed  Google Scholar 

  24. Plotnikov AN, Yu H, Geller JC, et al. Role of L-type calcium channels in pacing-induced short-term and long-term cardiac memory in canine heart. Circulation. 2003;107:2844–9.

    Article  PubMed  CAS  Google Scholar 

  25. Shvilkin A, Danilo Jr P, Wang J, et al. Evolution and resolution of long-term cardiac memory. Circulation. 1998;97:1810–7.

    Article  PubMed  CAS  Google Scholar 

  26. del Balzo U, Rosen MR. T wave changes persisting after ventricular pacing in canine heart are altered by 4-aminopyridine but not by lidocaine. Implications with respect to phenomenon of cardiac ‘memory’. Circulation. 1992;85:1464–72.

    Article  PubMed  Google Scholar 

  27. Plotnikov AN, Shvilkin A, Xiong W, et al. Interactions between antiarrhythmic drugs and cardiac memory. Cardiovasc Res. 2001;50:335–44.

    Article  PubMed  CAS  Google Scholar 

  28. Rosen M, Plotnikov A. The pharmacology of cardiac memory. Pharmacol Ther. 2002;94:63–75.

    Article  PubMed  CAS  Google Scholar 

  29. Ozgen N, Lau DH, Shlapakova IN, et al. Determinants of CREB degradation and KChIP2 gene transcription in cardiac memory. Heart Rhythm. 2010;7:964–70.

    Article  PubMed  Google Scholar 

  30. Janse MJ, Sosunov EA, Coronel R, et al. Repolarization gradients in the canine left ventricle before and after induction of short-term cardiac memory. Circulation. 2005;112:1711–8.

    Article  PubMed  Google Scholar 

  31. Yu H, McKinnon D, Dixon JE, et al. Transient outward current, Ito1, is altered in cardiac memory. Circulation. 1999;99:1898–905.

    Article  PubMed  CAS  Google Scholar 

  32. Obreztchikova MN, Patberg KW, Plotnikov AN, et al. I(Kr) contributes to the altered ventricular repolarization that determines long-term cardiac memory. Cardiovasc Res. 2006;71:88–96.

    Article  PubMed  CAS  Google Scholar 

  33. Coronel R, Opthof T, Plotnikov AN, et al. Long-term cardiac memory in canine heart is associated with the evolution of a transmural repolarization gradient. Cardiovasc Res. 2007;74:416–25.

    Article  PubMed  CAS  Google Scholar 

  34. Patberg KW, Plotnikov AN, Quamina A, et al. Cardiac memory is associated with decreased ­levels of the transcriptional factor CREB modulated by Angiotensin II and calcium. Circ Res. 2003;93:472–8.

    Article  PubMed  CAS  Google Scholar 

  35. Yue-Chun L, Li-Sha G, Xue-Qiang G, et al. Establishment of a canine model of cardiac memory using endocardial pacing via internal jugular vein. BMC Cardiovasc Disord. 2010;10:30.

    Article  PubMed  Google Scholar 

  36. Arisi G, Macchi E, Baruffi S, et al. Potential fields on the ventricular surface of the exposed dog heart during normal excitation. Circ Res. 1983;52:706–15.

    Article  PubMed  CAS  Google Scholar 

  37. Durrer D, van Dam RT, Freud GE, et al. Total excitation of the isolated human heart. Circulation. 1970;41:899–912.

    Article  PubMed  CAS  Google Scholar 

  38. Ramanathan C, Jia P, Ghanem R, et al. Activation and repolarization of the normal human heart under complete physiological conditions. Proc Natl Acad Sci USA. 2006;103:6309–14.

    Article  PubMed  CAS  Google Scholar 

  39. Prinzen FW, Peschar M. Relation between the pacing induced sequence of activation and left ventricular pump function in animals. Pacing Clin Electrophysiol. 2002;25:484–98.

    Article  PubMed  Google Scholar 

  40. Kooshkabadi M, Whalen P, Yoo D, et al. Stretch-activated receptors mediate cardiac memory. Pacing Clin Electrophysiol. 2009;32:330–5.

    Article  PubMed  Google Scholar 

  41. Shvilkin A, Bojovic B, Vajdic B, et al. Vectorcardiographic and electrocardiographic criteria to distinguish new and old left bundle branch block. Heart Rhythm. 2010;7:1085–92.

    Article  PubMed  Google Scholar 

  42. Shvilkin A, Bojovic B, Vajdic B, et al. Vectorcardiographic discrimination between acute and chronic left bundle branch block. Heart Rhythm Society Meeting. 2009; Abstract 3650.

    Google Scholar 

  43. van Geldorp IE, Delhaas T, Gebauer RA, et al. Impact of the permanent ventricular pacing site on left ventricular function in children: a retrospective multicentre survey. Heart. 2011;97(24):2051–5.

    Article  PubMed  Google Scholar 

  44. Vernooy K, Verbeek XA, Peschar M, et al. Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. Eur Heart J. 2005;26:91–8.

    Article  PubMed  Google Scholar 

  45. Prinzen FW, Cheriex EC, Delhaas T, et al. Asymmetric thickness of the left ventricular wall resulting from asynchronous electric activation: a study in dogs with ventricular pacing and in patients with left bundle branch block. Am Heart J. 1995;130:1045–53.

    Article  PubMed  CAS  Google Scholar 

  46. Litovsky SH, Antzelevitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res. 1988;62:116–26.

    Article  PubMed  CAS  Google Scholar 

  47. Geller JC, Rosen MR. Persistent T-wave changes after alteration of the ventricular activation sequence. New insights into cellular mechanisms of ‘cardiac memory’. Circulation. 1993;88:1811–9.

    Article  PubMed  CAS  Google Scholar 

  48. Doronin SV, Potapova IA, Lu Z, et al. Angiotensin receptor type 1 forms a complex with the transient outward potassium channel Kv4.3 and regulates its gating properties and intracellular localization. J Biol Chem. 2004;279:48231–7.

    Article  PubMed  CAS  Google Scholar 

  49. Patel PM, Plotnikov A, Kanagaratnam P, et al. Altering ventricular activation remodels gap junction distribution in canine heart. J Cardiovasc Electrophysiol. 2001;12:570–7.

    Article  PubMed  CAS  Google Scholar 

  50. Ricard P, Danilo Jr P, Cohen IS, et al. A role for the renin-angiotensin system in the evolution of cardiac memory. J Cardiovasc Electrophysiol. 1999;10:545–51.

    Article  PubMed  CAS  Google Scholar 

  51. Sosunov EA, Anyukhovsky EP, Rosen MR. Altered ventricular stretch contributes to initiation of cardiac memory. Heart Rhythm. 2008;5:106–13.

    Article  PubMed  Google Scholar 

  52. Ghosh S, Rhee EK, Avari JN, et al. Cardiac memory in patients with Wolff-Parkinson-White syndrome: noninvasive imaging of activation and repolarization before and after catheter ablation. Circulation. 2008;118:907–15.

    Article  PubMed  Google Scholar 

  53. Antzelevitch C, Shimizu W, Yan GX, et al. The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol. 1999;10:1124–52.

    Article  PubMed  CAS  Google Scholar 

  54. Anyukhovsky EP, Sosunov EA, Rosen MR. Regional differences in electrophysiological properties of epicardium, midmyocardium, and endocardium. In vitro and in vivo correlations. Circulation. 1996;94:1981–8.

    Article  PubMed  CAS  Google Scholar 

  55. Rosenbaum DS, Jeyaraj D, Rosen M. Mechanisms and implications for cardiac memory. Card Electrophysiol Clin. 2011;3:77–85.

    Article  Google Scholar 

  56. Wecke L, Gadler F, Linde C, et al. Temporal characteristics of cardiac memory in humans: vectorcardiographic quantification in a model of cardiac pacing. Heart Rhythm. 2005;2:28–34.

    Article  PubMed  Google Scholar 

  57. Wecke L, Rubulis A, Lundahl G, et al. Right ­ventricular pacing-induced electrophysiological remodeling in the human heart and its relationship to cardiac memory. Heart Rhythm. 2007;4:1477–86.

    Article  PubMed  Google Scholar 

  58. Shvilkin A, Bojovic B, Vajdic B, et al. Vectorcardiographic determinants of cardiac memory during normal ventricular activation and continuous ventricular pacing. Heart Rhythm. 2009;6:943–8.

    Article  PubMed  Google Scholar 

  59. Alessandrini RS, McPherson DD, Kadish AH, et al. Cardiac memory: a mechanical and electrical phenomenon. Am J Physiol. 1997;272:H1952–9.

    PubMed  CAS  Google Scholar 

  60. Haverkamp W, Hordt M, Breithardt G, et al. Torsade de pointes secondary to d, l-sotalol after catheter ablation of incessant atrioventricular reentrant tachycardia – evidence for a significant contribution of the “cardiac memory”. Clin Cardiol. 1998;21:55–8.

    Article  PubMed  CAS  Google Scholar 

  61. Nahlawi M, Waligora M, Spies SM, et al. Left ventricular function during and after right ventricular pacing. J Am Coll Cardiol. 2004;44:1883–8.

    Article  PubMed  Google Scholar 

  62. Nowinski K, Wecke L, Gadler F, et al. Pacing-induced electrophysiological remodeling in hypertrophic obstructive cardiomyopathy–­observations on cardiac memory. Pacing Clin Electrophysiol. 2005;28:561–7.

    Article  PubMed  Google Scholar 

  63. Sharma AD, Rizo-Patron C, Hallstrom AP, et al. Percent right ventricular pacing predicts outcomes in the DAVID trial. Heart Rhythm. 2005;2:830–4.

    Article  PubMed  Google Scholar 

  64. Steinberg JS, Fischer A, Wang P, et al. The clinical implications of cumulative right ventricular ­pacing in the multicenter automatic defibrillator trial II. J Cardiovasc Electrophysiol. 2005;16:359–65.

    Article  PubMed  Google Scholar 

  65. de Zwaan C, Bar FW, Wellens HJ. Characteristic electrocardiographic pattern indicating a critical stenosis high in left anterior descending coronary artery in patients admitted because of impending myocardial infarction. Am Heart J. 1982;103:730–6.

    Article  PubMed  Google Scholar 

  66. de Zwaan C, Bar FW, Janssen JH, et al. Angiographic and clinical characteristics of patients with unstable angina showing an ECG pattern indicating critical narrowing of the proximal LAD coronary artery. Am Heart J. 1989;117:657–65.

    Article  PubMed  Google Scholar 

  67. Shvilkin A, Ho KK, Rosen MR, et al. T-vector direction differentiates postpacing from ischemic T-wave inversion in precordial leads. Circulation. 2005;111:969–74.

    Article  PubMed  Google Scholar 

  68. Chen-Scarabelli C, Scarabelli TM. T-wave inversion: cardiac memory or myocardial ischemia? Am J Emerg Med. 2009;27:898.e891–e894.

    Article  Google Scholar 

  69. Byrne R, Filippone L. Benign persistent T-wave inversion mimicking ischemia after left bundle-branch block – cardiac memory. Am J Emerg Med. 2010;28:747.e745–6.

    Article  Google Scholar 

  70. Shvilkin A, McClennen S, Papageorgiou P, et al. Short-term cardiac memory: phenotypically heterogenous property of myocardial repolarization. J Am Coll Cardiol. 2004;43:148A.

    Article  Google Scholar 

  71. Bojovic B, Hadzievski L, Vukcevic VD, et al. Visual 3Dx: algorithms for quantitative 3-dimensional analysis of ECG signals. Conf Proc IEEE Eng Med Biol Soc. 2009;1:6751–4.

    Google Scholar 

  72. Lee KT, Chu CS, Lin TH, et al. Effect of sodium and calcium channel blockers on short-term cardiac memory in humans. Int J Cardiol. 2008;123:94–101.

    Article  PubMed  Google Scholar 

  73. Tarquini R, Guerra CT, Porciani MC, et al. Effects of cardiac resynchronization therapy on systemic inflammation and neurohormonal pathways in heart failure. Cardiol J. 2009;16:545–52.

    PubMed  Google Scholar 

  74. Wecke L, van Deursen CJ, Bergfeldt L, et al. Repolarization changes in patients with heart failure receiving cardiac resynchronization therapy-signs of cardiac memory. J Electrocardiol. 2011;44:590–8.

    Article  PubMed  Google Scholar 

  75. Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction; a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of patients with acute myocardial infarction). J Am Coll Cardiol. 2004;44:E1–211.

    Article  PubMed  Google Scholar 

  76. Fibrinolytic Therapy Trialists’ (FTT) Collaborative Group. Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Lancet. 1994;343:311–22.

    Google Scholar 

  77. Guerrero M, Harjai K, Stone GW, et al. Comparison of the prognostic effect of left versus right versus no bundle branch block on presenting electrocardiogram in acute myocardial infarction patients treated with primary angioplasty in the primary angioplasty in myocardial infarction trials. Am J Cardiol. 2005;96:482–8.

    Article  PubMed  Google Scholar 

  78. Chang AM, Shofer FS, Tabas JA, et al. Lack of association between left bundle-branch block and acute myocardial infarction in symptomatic ED patients. Am J Emerg Med. 2009;27:916–21.

    Article  PubMed  Google Scholar 

  79. Jain S, Ting HT, Bell M, et al. Utility of left bundle branch block as a diagnostic criterion for acute myocardial infarction. Am J Cardiol. 2011;107:1111–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Shvilkin MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Shvilkin, A. (2013). Cardiac Memory: From Electrical Curiosity to Clinical Diagnostic and Research Tool. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4881-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4881-4_25

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4880-7

  • Online ISBN: 978-1-4471-4881-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics