Skip to main content

Cardiac ATP-Sensitive Potassium Channels and Associated Channelopathies

  • Chapter
  • First Online:
Electrical Diseases of the Heart

Abstract

ATP-sensitive K+ (KATP) channels integrate cellular energy signals with membrane electrical activity. Heteromultimers of KCNJ11-encoded inwardly rectifying potassium Kir6.2 channels and ABCC9-encoded ATP-binding cassette SUR2A proteins, sarcolemmal KATP channels are vital in heart energy homeostasis. Knockout of the Kir6.2 pore compromises cardioprotection afforded by ischemic preconditioning, impairs tolerance to sympathetic surge, and aggravates the impact of endurance challenge or hemodynamic load precipitating heart failure under stress. In human cardiovascular medicine, mutations in the regulatory SUR2A subunit have been linked to KATP channelopathy-associated electrical and cardiomyopathic disorders, including syndromes of adrenergic atrial fibrillation and dilated cardiomyopathy with tachycardia. In clinical heart failure, a common polymorphism in the Kir6.2 subunit has been identified as a biomarker for impaired performance in stress-test. The Kir6.2 K23 allele, present in over half the population, has been further pinpointed as a risk factor for susceptibility to maladaptive cardiac remodeling in hypertension. Cardiovascular disorders associated with genetic variation in KATP channel genes also include myocardial infarction and ventricular fibrillation. Thus, advances in molecular medicine have enabled a growing understanding of KATP channel function in health and disease, underscoring the impact on individual and public cardiovascular wellness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terzic A, Alekseev AE, Yamada S, Reyes S, Olson TM. Advances in cardiac ATP-sensitive K+ channelopathies from molecules to populations. Circ Arrhythm Electrophysiol. 2011;4:577–85.

    Article  PubMed  CAS  Google Scholar 

  2. Alekseev AE, Hodgson DM, Karger AB, Park S, Zingman LV, Terzic A. ATP-sensitive K+ channel channel/enzyme multimer: metabolic gating in the heart. J Mol Cell Cardiol. 2005;38:895–905.

    Article  PubMed  CAS  Google Scholar 

  3. Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature. 2006;440:470–6.

    Article  PubMed  CAS  Google Scholar 

  4. Ashcroft FM. ATP-sensitive K+ channels and disease: from molecule to malady. Am J Physiol Endocrinol Metab. 2007;293:E880–9.

    Article  PubMed  CAS  Google Scholar 

  5. Reyes S, Park S, Terzic A, Alekseev AE. KATP channels process nucleotide signals in muscle thermogenic response. Crit Rev Biochem Mol Biol. 2010;45:506–19.

    Article  PubMed  CAS  Google Scholar 

  6. Lorenz E, Terzic A. Physical association between recombinant cardiac ATP-sensitive K+ channel subunits Kir6.2 and SUR2A. J Mol Cell Cardiol. 1999;31:425–34.

    Article  PubMed  CAS  Google Scholar 

  7. Zingman LV, Alekseev AE, Hodgson-Zingman DM, Terzic A. ATP-sensitive potassium channels: metabolic sensing and cardioprotection. J Appl Physiol. 2007;103:1888–93.

    Article  PubMed  CAS  Google Scholar 

  8. Flagg TP, Enkvetchakul D, Koster JC, Nichols CG. Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol Rev. 2010;90:799–829.

    Article  PubMed  CAS  Google Scholar 

  9. Arrell DK, Zlatkovic J, Kane GC, Yamada S, Terzic A. ATP-sensitive K+ channel knockout induces cardiac proteome remodeling predictive of heart disease susceptibility. J Proteome Res. 2009;8:4823–34.

    Article  PubMed  CAS  Google Scholar 

  10. Zlatkovic J, Arrell DK, Kane GC, Miki T, Seino S, Terzic A. Proteomic profiling of KATP channel-deficient hypertensive hearts maps risk for maladaptive cardiomyopathic outcome. Proteomics. 2009;9:1314–25.

    Article  PubMed  CAS  Google Scholar 

  11. Arrell DK, Zlatkovic Lindor J, Yamada S, Terzic A. KATP channel-dependent metaboproteome decoded. Cardiovasc Res. 2011;90:258–66.

    Article  PubMed  CAS  Google Scholar 

  12. Kane GC, Liu XK, Yamada S, Olson TM, Terzic A. Cardiac KATP channels in health and disease. J Mol Cell Cardiol. 2005;38:937–43.

    Article  PubMed  CAS  Google Scholar 

  13. Jovanovic N, Jovanovic S, Jovanovic A, Terzic A. Gene delivery of Kir6.2/SUR2A in conjunction with pinacidil handles intracellular Ca2+ homeostasis under metabolic stress. FASEB J. 1999;13:923–9.

    PubMed  CAS  Google Scholar 

  14. Du Q, Jovanovic S, Clelland A, Sukhodub A, Budas G, Phelan K, Murray-Tait V, Malone L, Jovanovic A. Overexpression of SUR2A generates a cardiac phenotype resistant to ischemia. FASEB J. 2006;20:1131–41.

    Article  PubMed  CAS  Google Scholar 

  15. Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest. 2005;115:2047–58.

    Article  PubMed  CAS  Google Scholar 

  16. Ashcroft FM. From molecule to malady. Nature. 2006;440:440–7.

    Article  PubMed  CAS  Google Scholar 

  17. Remedi MS, Koster JC. KATP channelopathies in the pancreas. Pflugers Arch. 2010;460:307–20.

    Article  PubMed  CAS  Google Scholar 

  18. Terzic A, Perez-Terzic C. Channelopathies: decoding disease pathogenesis. Sci Transl Med. 2010;2:42ps37.

    Article  PubMed  CAS  Google Scholar 

  19. Olson TM, Terzic A. Human KATP channelopathies: diseases of metabolic homeostasis. Pflugers Arch. 2010;460:295–306.

    Article  PubMed  CAS  Google Scholar 

  20. Olson TM, Alekseev AE, Moreau C, Liu XK, Zingman LV, Miki T, Seino S, Asirvatham SJ, Jahangir A, Terzic A. KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat Clin Pract Cardiovasc Med. 2007;4:110–6.

    Article  PubMed  CAS  Google Scholar 

  21. Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O’Cochlain F, Gao F, Karger AB, Ballew JD, Hodgson DM, Zingman LV, Pang YP, Alekseev AE, Terzic A. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet. 2004;36:382–7.

    Article  PubMed  CAS  Google Scholar 

  22. Reyes S, Park S, Johnson BD, Terzic A, Olson TM. KATP channel Kir6.2 E23K variant overrepresented in human heart failure is associated with impaired exercise stress response. Hum Genet. 2009;126:779–89.

    Article  PubMed  CAS  Google Scholar 

  23. Reyes S, Terzic A, Mahoney DW, Redfield MM, Rodeheffer RJ, Olson TM. KATP channel polymorphism is associated with left ventricular size in hypertensive individuals: a large-scale community-based study. Hum Genet. 2008;123:665–7.

    Article  PubMed  CAS  Google Scholar 

  24. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983;305:147–8.

    Article  PubMed  CAS  Google Scholar 

  25. Ardehali H, O’Rourke B. Mitochondrial KATP channels in cell survival and death. J Mol Cell Cardiol. 2005;39:7–16.

    Article  PubMed  CAS  Google Scholar 

  26. Shi NQ, Ye B, Makielski JC. Function and distribution of the SUR isoforms and splice variants. J Mol Cell Cardiol. 2005;39:51–60.

    Article  PubMed  CAS  Google Scholar 

  27. Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J. Reconstitution of I-KATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995;270:1166–70.

    Article  PubMed  CAS  Google Scholar 

  28. Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L, Bryan J, Seino S. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron. 1996;16:1011–7.

    Article  PubMed  CAS  Google Scholar 

  29. Chutkow WA, Simon MC, LeBeau MM, Burant CF. Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes. 1996;45:1439–45.

    Article  PubMed  CAS  Google Scholar 

  30. Isomoto S, Kondo C, Yamada M, Matsumoto S, Higashiguchi O, Horio Y, Matsuzawa Y, Kurachi Y. A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem. 1996;271:24321–4.

    Article  PubMed  CAS  Google Scholar 

  31. Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. Toward understanding the assembly and structure of KATP channels. Physiol Rev. 1998;78:227–45.

    PubMed  CAS  Google Scholar 

  32. Bryan J, Muñoz A, Zhang X, Düfer M, Drews G, Krippeit-Drews P, Aguilar-Bryan L. ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch. 2007;453:703–18.

    Article  PubMed  CAS  Google Scholar 

  33. Vivaudou M, Moreau CJ, Terzic A. Structure and function of ATP-sensitive K+ channels. In: Kew J, Davies C, editors. Ion channels: from structure to function. Oxford: Oxford University Press; 2009. p. 454–73.

    Google Scholar 

  34. Suzuki M, Li RA, Miki T, Uemura H, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, Ogura T, Seino S, Marbán E, Nakaya H. Functional roles of cardiac and vascular ATP-sensitive potassium channels clarified by Kir6.2-knockout mice. Circ Res. 2001;88:570–7.

    Article  PubMed  CAS  Google Scholar 

  35. Babenko AP, Gonzalez G, Aguilar-Bryan L, Bryan J. Reconstituted human cardiac KATP channels: functional identity with the native channels from the sarcolemma of human ventricular cells. Circ Res. 1998;83:1132–43.

    Article  PubMed  CAS  Google Scholar 

  36. Melamed-Frank M, Terzic A, Carrasco AJ, Nevo E, Avivi A, Levy AP. Reciprocal regulation of expression of pore-forming KATP channel genes by hypoxia. Mol Cell Biochem. 2001;225:145–50.

    Article  PubMed  CAS  Google Scholar 

  37. Flagg TP, Kurata HT, Masia R, Caputa G, Magnuson MA, Lefer DJ, Coetzee WA, Nichols CG. Differential structure of atrial and ventricular KATP channels. Circ Res. 2008;103:1458–65.

    Article  PubMed  CAS  Google Scholar 

  38. Chen HH, Oh KY, Terzic A, Burnett Jr JC. The modulating actions of sulfonylurea on atrial natriuretic peptide release in experimental acute heart failure. Eur J Heart Fail. 2000;2:33–40.

    Article  PubMed  CAS  Google Scholar 

  39. Dzeja PP, Terzic A. Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels. FASEB J. 1998;12:523–9.

    PubMed  CAS  Google Scholar 

  40. Abraham MR, Selivanov VA, Hodgson DM, Pucar D, Zingman LV, Wieringa B, Dzeja PP, Alekseev AE, Terzic A. Coupling of cell energetics with membrane metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out. J Biol Chem. 2002;277:24427–34.

    Article  PubMed  CAS  Google Scholar 

  41. Crawford RM, Ranki HJ, Botting CH, Budas GR, Jovanovic A. Creatine kinase is physically associated with the cardiac ATP-sensitive K+ channel in vivo. FASEB J. 2002;16:102–4.

    PubMed  CAS  Google Scholar 

  42. Carrasco AJ, Dzeja PP, Alekseev AE, Pucar D, Zingman LV, Abraham MR, Hodgson D, Bienengraeber M, Puceat M, Janssen E, Wieringa B, Terzic A. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc Natl Acad Sci U S A. 2001;98:7623–8.

    Article  PubMed  CAS  Google Scholar 

  43. Jovanovic S, Du Q, Crawford RM, Budas GR, Stagljar I, Jovanovic A. Glyceraldehyde 3-phosphate dehydrogenase serves as an accessory protein of the cardiac sarcolemmal KATP channel. EMBO Rep. 2005;6:848–52.

    Article  PubMed  CAS  Google Scholar 

  44. Dhar-Chowdhury P, Harrell MD, Han SY, Jankowska D, Parachuru L, Morrissey A, Srivastava S, Liu W, Malester B, Yoshida H, Coetzee WA. The glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, and pyruvate kinase are components of the KATP channel macromolecular complex and regulate its function. J Biol Chem. 2005;280:38464–70.

    Article  PubMed  CAS  Google Scholar 

  45. Liu GX, Hanley PJ, Ray J, Daut J. Long-chain acyl-coenzyme A esters and fatty acids directly link metabolism to KATP channels in the heart. Circ Res. 2001;88:918–24.

    Article  PubMed  CAS  Google Scholar 

  46. Terzic A, Jahangir A, Kurachi Y. Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. Am J Physiol. 1995;269:C525–45.

    PubMed  CAS  Google Scholar 

  47. Antcliff JF, Haider S, Proks P, Sansom MS, Ashcroft FM. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J. 2005;24:229–39.

    Article  PubMed  CAS  Google Scholar 

  48. Bienengraeber M, Alekseev AE, Abraham MR, Carrasco AJ, Moreau C, Vivaudou M, Dzeja PP, Terzic A. ATPase activity of the sulfonylurea receptor: a catalytic function for the KATP channel complex. FASEB J. 2000;14:1943–52.

    Article  PubMed  CAS  Google Scholar 

  49. Zingman LV, Hodgson DM, Bienengraeber M, Karger AB, Kathmann EC, Alekseev AE, Terzic A. Tandem function of nucleotide binding domains confers competence to sulfonylurea receptor in gating ATP-sensitive K+ channels. J Biol Chem. 2002;277:14206–10.

    Article  PubMed  CAS  Google Scholar 

  50. Park S, Lim BB, Perez-Terzic C, Mer G, Terzic A. Interaction of asymmetric ABCC9-encoded nucleotide binding domains determines KATP channel SUR2A catalytic activity. J Proteome Res. 2008;7:1721–8.

    Article  PubMed  CAS  Google Scholar 

  51. Dabrowski M, Tarasov A, Ashcroft FM. Mapping the architecture of the ATP-binding site of the KATP channel subunit Kir6.2. J Physiol. 2004;557:347–54.

    Article  PubMed  CAS  Google Scholar 

  52. Dupuis JP, Revilloud J, Moreau CJ, Vivaudou M. Three C-terminal residues from SUR contribute to the functional coupling between the KATP channel subunits SUR2A and Kir6.2. J Physiol. 2008;586:3075–85.

    Article  PubMed  CAS  Google Scholar 

  53. Zingman LV, Alekseev AE, Bienengraeber M, Hodgson D, Karger AB, Dzeja PP, Terzic A. Signaling in channel/enzyme multimers: ATPase transitions in SUR module gate ATP-sensitive K+ conductance. Neuron. 2001;31:233–45.

    Article  PubMed  CAS  Google Scholar 

  54. Park S, Terzic A. Quaternary structure of KATP channel SUR2A nucleotide binding domains resolved by synchrotron radiation X-ray scattering. J Struct Biol. 2010;169:243–51.

    Article  PubMed  CAS  Google Scholar 

  55. Karger AB, Park S, Reyes S, Bienengraeber M, Dyer RB, Terzic A, Alekseev AE. Role for SUR2A ED domain in allosteric coupling within the KATP channel complex. J Gen Physiol. 2008;131:185–96.

    Article  PubMed  CAS  Google Scholar 

  56. Alekseev AE, Reyes S, Yamada S, Hodgson-Zingman DM, Sattiraju S, Zhu Z, Sierra A, Gerbin M, Coetzee WA, Goldhamer DJ, Terzic A, Zingman LV. Sarcolemmal ATP-sensitive K+ channels control energy expenditure determining body weight. Cell Metab. 2010;11:58–69.

    Article  PubMed  CAS  Google Scholar 

  57. Zingman LV, Hodgson DM, Alekseev AE, Terzic A. Stress without distress: homeostatic role for KATP channels. Mol Psychiatry. 2003;8:253–4.

    Article  PubMed  CAS  Google Scholar 

  58. Nichols CG, Lederer WJ. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol. 1991;261:H1675–86.

    PubMed  CAS  Google Scholar 

  59. Gumina RJ, O’Cochlain DF, Kurtz CE, Bast P, Pucar D, Mishra P, Miki T, Seino S, Macura S, Terzic A. KATP channel knockout worsens myocardial calcium stress load in vivo and impairs recovery in stunned heart. Am J Physiol Heart Circ Physiol. 2007;292:H1706–13.

    CAS  Google Scholar 

  60. Li RA, Leppo M, Miki T, Seino S, Marbán E. Molecular basis of electrocardiographic ST-segment elevation. Circ Res. 2000;87:837–9.

    Article  PubMed  CAS  Google Scholar 

  61. Gross GJ. ATP-sensitive potassium channels and myocardial preconditioning. Basic Res Cardiol. 1995;90:85–8.

    Article  PubMed  CAS  Google Scholar 

  62. Grover GJ, Garlid KD. ATP-sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol. 2000;32:677–95.

    Article  PubMed  CAS  Google Scholar 

  63. Jahangir A, Terzic A. KATP channel therapeutics at the bedside. J Mol Cell Cardiol. 2005;39:99–112.

    Article  PubMed  CAS  Google Scholar 

  64. Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, Seino S, Marbán E, Nakaya H. Role of sarcolemmal KATP channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest. 2002;109:509–16.

    PubMed  CAS  Google Scholar 

  65. Suzuki M, Saito T, Sato T, Tamagawa M, Miki T, Seino S, Nakaya H. Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice. Circulation. 2003;107:682–5.

    Article  PubMed  CAS  Google Scholar 

  66. Gumina RJ, Pucar D, Bast P, Hodgson DM, Kurtz CE, Dzeja PP, Miki T, Seino S, Terzic A. Knockout of Kir6.2 negates ischemic preconditioning-­induced protection of myocardial energetics. Am J Physiol Heart Circ Physiol. 2003;284:H2106–13.

    CAS  Google Scholar 

  67. Stoller DA, Fahrenbach JP, Chalupsky K, Tan BH, Aggarwal N, Metcalfe J, Hadhazy M, Shi NQ, Makielski JC, McNally EM. Cardiomyocyte sulfonylurea receptor 2-KATP channel mediates cardioprotection and ST segment elevation. Am J Physiol Heart Circ Physiol. 2010;299:H1100–8.

    Article  PubMed  CAS  Google Scholar 

  68. Zingman LV, Hodgson DM, Bast PH, Kane GC, Perez-Terzic C, Gumina RJ, Pucar D, Bienengraeber M, Dzeja PP, Miki T, Seino S, Alekseev AE, Terzic A. Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci U S A. 2002;99:13278–83.

    Article  PubMed  CAS  Google Scholar 

  69. Liu XK, Yamada S, Kane GC, Alekseev AE, Hodgson DM, O’Cochlain F, Jahangir A, Miki T, Seino S, Terzic A. Genetic disruption of Kir6.2, the pore-forming subunit of ATP-sensitive K+ channel, predisposes to catecholamine-induced ventricular dysrhythmia. Diabetes. 2004;53:S165–8.

    Article  PubMed  CAS  Google Scholar 

  70. Tong X, Porter LM, Liu G, Dhar-Chowdhury P, Srivastava S, Pountney DJ, Yoshida H, Artman M, Fishman GI, Yu C, Iyer R, Morley GE, Gutstein DE, Coetzee WA. Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits. Am J Physiol Heart Circ Physiol. 2006;291:H543–51.

    CAS  Google Scholar 

  71. Kane GC, Lam CF, O’Cochlain F, Hodgson DM, Reyes S, Liu XK, Miki T, Seino S, Katusic ZS, Terzic A. Gene knockout of the KCNJ8-encoded Kir6.1 KATP channel imparts fatal susceptibility to endotoxemia. FASEB J. 2006;20:2271–80.

    Article  PubMed  CAS  Google Scholar 

  72. Kane GC, Behfar A, Yamada S, Perez-Terzic C, O’Cochlain F, Reyes S, Dzeja PP, Miki T, Seino S, Terzic A. ATP-sensitive K+ channel knockout compromises the metabolic benefit of exercise training, resulting in cardiac deficits. Diabetes. 2004;53:S169–75.

    Article  PubMed  CAS  Google Scholar 

  73. Stoller D, Pytel P, Katz S, Earley JU, Collins K, Metcalfe J, Lang RM, McNally EM. Impaired exercise tolerance and skeletal muscle myopathy in sulfonylurea receptor-2 mutant mice. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1144–53.

    Article  PubMed  CAS  Google Scholar 

  74. Reyes S, Kane GC, Zingman LV, Yamada S, Terzic A. Targeted disruption of KATP channels aggravates cardiac toxicity in cocaine abuse. Clin Transl Sci. 2009;2:361–5.

    Article  PubMed  CAS  Google Scholar 

  75. Reyes S, Kane GC, Miki T, Seino S, Terzic A. KATP channels confer survival advantage in cocaine overdose. Mol Psychiatry. 2007;12:1060–1.

    Article  PubMed  CAS  Google Scholar 

  76. Kane GC, Behfar A, Dyer RB, O’Cochlain DF, Liu XK, Hodgson DM, Reyes S, Miki T, Seino S, Terzic A. KCNJ11 gene knockout of the Kir6.2 KATP channel causes maladaptive remodeling and heart failure in hypertension. Hum Mol Genet. 2006;15:2285–97.

    Article  PubMed  CAS  Google Scholar 

  77. Yamada S, Kane GC, Behfar A, Liu XK, Dyer RB, Faustino RS, Miki T, Seino S, Terzic A. Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant. J Physiol. 2006;577:1053–65.

    Article  PubMed  CAS  Google Scholar 

  78. Hodgson DM, Zingman LV, Kane GC, Perez-Terzic C, Bienengraeber M, Ozcan C, Gumina RJ, Pucar D, O’Coclain F, Mann DL, Alekseev AE, Terzic A. Cellular remodeling in heart failure disrupts KATP channel-dependent stress tolerance. EMBO J. 2003;22:1732–42.

    Article  PubMed  CAS  Google Scholar 

  79. Abraham MR, Jahangir A, Alekseev AE, Terzic A. Channelopathies of inwardly rectifying potassium channels. FASEB J. 1999;13:1901–10.

    PubMed  CAS  Google Scholar 

  80. Dunne MJ, Cosgrove KE, Shepherd RM, Aynsley-Green A, Lindley KJ. Hyperinsulinism in infancy: from basic science to clinical disease. Physiol Rev. 2004;84:239–75.

    Article  PubMed  CAS  Google Scholar 

  81. Tricarico D, Servidei S, Tonali P, Jurkat-Rott K, Camerino DC. Impairment of skeletal muscle adenosine triphosphate-sensitive K+ channels in patients with hypokalemic periodic paralysis. J Clin Invest. 1999;103:675–82.

    Article  PubMed  CAS  Google Scholar 

  82. Jovanovic S, Du Q, Mukhopadhyay S, Swingler R, Buckley R, McEachen J, Jovanovic A. A patient suffering from hypokalemic periodic paralysis is deficient in skeletal muscle ATP-sensitive K+ channels. Clin Transl Sci. 2008;1:71–4.

    Article  PubMed  CAS  Google Scholar 

  83. Darbar D, Herron KJ, Ballew JD, Jahangir A, Gersh BJ, Shen WK, Hammill SC, Packer DL, Olson TM. Familial atrial fibrillation is a genetically heterogeneous disorder. J Am Coll Cardiol. 2003;41:2185–92.

    Article  PubMed  Google Scholar 

  84. Ellinor PT, Yoerger DM, Ruskin JN, MacRae CA. Familial aggregation in lone atrial fibrillation. Hum Genet. 2005;118:179–84.

    Article  PubMed  Google Scholar 

  85. Fatkin D, Otway R, Vandenberg JI. Genes and atrial fibrillation. A new look at an old problem. Circulation. 2007;116:782–92.

    Article  PubMed  Google Scholar 

  86. Lubitz SA, Yi B, Ellinor P. Genetics of atrial fibrillation. Cardiol Clin. 2009;27:25–33.

    Article  PubMed  Google Scholar 

  87. Olson TM, Alekseev AE, Liu XK, Park S, Zingman LV, Bienengraeber M, Sattiraju S, Ballew JD, Jahangir A, Terzic A. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet. 2006;15:2185–91.

    Article  PubMed  CAS  Google Scholar 

  88. Balana B, Dobrev D, Wettwer E, Christ T, Knaut M, Ravens U. Decreased ATP-sensitive K+ current density during chronic human atrial fibrillation. J Mol Cell Cardiol. 2003;35:1399–405.

    Article  PubMed  CAS  Google Scholar 

  89. Brundel BJ, Van Gelder IC, Henning RH, Tuinenburg AE, Wietses M, Grandjean JG, Wilde AA, Van Gilst WH, Crijns HJ. Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J Am Coll Cardiol. 2001;37:926–32.

    Article  PubMed  CAS  Google Scholar 

  90. Van Wagoner DR. Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res. 1993;72:973–83.

    Article  PubMed  Google Scholar 

  91. Brady PA, Alekseev AE, Aleksandrova LA, Gomez LA, Terzic A. A disrupter of actin microfilaments impairs sulfonylurea-inhibitory gating of cardiac KATP channels. Am J Physiol. 1996;271:H2710–6.

    PubMed  CAS  Google Scholar 

  92. Ravens U. Mechano-electric feedback and arrhythmias. Prog Biophys Mol Biol. 2003;82:255–66.

    Article  PubMed  Google Scholar 

  93. Haïssaguerre M, Chatel S, Sacher F, Weerasooriya R, Probst V, Loussouarn G, Horlitz M, Liersch R, Schulze-Bahr E, Wilde A, Kääb S, Koster J, Rudy Y, Le Marec H, Schott JJ. Ventricular fibrillation with prominent early repolarization associated with a rare variant of KCNJ8/KATP channel. J Cardiovasc Electrophysiol. 2009;20:93–8.

    Article  PubMed  Google Scholar 

  94. Medeiros-Domingo A, Tan BH, Crotti L, Tester DJ, Eckhardt L, Cuoretti A, Kroboth SL, Song C, Zhou Q, Kopp D, Schwartz PJ, Makielski JC, Ackerman MJ. Gain-of-function mutation S422L in the KCNJ8-encoded cardiac KATP channel Kir6.1 as a pathogenic substrate for J-wave syndromes. Heart Rhythm. 2010;7:1466–71.

    Article  PubMed  Google Scholar 

  95. Ahmad F, Seidman JG, Seidman CE. The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet. 2005;6:185–216.

    Article  PubMed  CAS  Google Scholar 

  96. Miki T, Suzuki M, Shibasaki T, Uemura H, Sato T, Yamaguchi K, Koseki H, Iwanaga T, Nakaya H, Seino S. Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1. Nat Med. 2002;8:466–72.

    Article  PubMed  CAS  Google Scholar 

  97. Chutkow WA, Pu J, Wheeler MT, Wada T, Makielski JC, Burant CF, McNally EM. Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 KATP channels. J Clin Invest. 2002;110:203–8.

    PubMed  CAS  Google Scholar 

  98. Minoretti P, Falcone C, Aldeghi A, Olivieri V, Mori F, Emanuele E, Calcagnino M, Geroldi D. A novel Val734Ile variant in the ABCC9 gene associated with myocardial infarction. Clin Chim Acta. 2006;370:124–8.

    Article  PubMed  CAS  Google Scholar 

  99. Selivanov VA, Alekseev AE, Hodgson DM, Dzeja PP, Terzic A. Nucleotide-gated KATP channels integrated with creatine and adenylate kinases: amplification, tuning and sensing of energetic signals in the compartmentalized cellular environment. Mol Cell Biochem. 2004;256:243–56.

    Article  PubMed  Google Scholar 

  100. Waldman SA, Terzic A. Molecular therapeutics from knowledge to delivery. Clin Pharmacol Ther. 2010;87:619–23.

    Article  PubMed  CAS  Google Scholar 

  101. Arrell DK, Terzic A. Network systems biology for drug discovery. Clin Pharmacol Ther. 2010;88:120–5.

    Article  PubMed  CAS  Google Scholar 

  102. Terzic A, Waldman SA. Translational medicine: path to personalized and public health. Biomark Med. 2010;4:787–90.

    Article  PubMed  Google Scholar 

  103. Alekseev AE, Reyes S, Selivanov VA, Dzeja PP, Terzic A. Compartmentation of membrane processes and nucleotide dynamics in diffusion-restricted cardiac cell microenvironment. J Mol Cell Cardiol. 2012;52:401–9.

    Article  PubMed  CAS  Google Scholar 

  104. Sattiraju S, Reyes S, Kane GC, Terzic A. KATP channel pharmacogenomics: from bench to bedside. Clin Pharmacol Ther. 2008;83:354–7.

    Article  PubMed  CAS  Google Scholar 

  105. Nelson TJ, Martinez-Fernandez A, Terzic A. KCNJ11 knockout morula re-engineered by stem cell diploid aggregation. Philos Trans R Soc Lond B Biol Sci. 2009;364:269–76.

    Article  PubMed  CAS  Google Scholar 

  106. Yamada S, Nelson TJ, Crespo-Diaz RJ, Perez-Terzic C, Liu XK, Miki T, Seino S, Behfar A, Terzic A. Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Stem Cells. 2008;26:2644–53.

    Article  PubMed  Google Scholar 

  107. Waldman SA, Terzic A. Clinical and translational science: from bench-bedside to global village. Clin Transl Sci. 2010;3:254–7.

    Article  PubMed  Google Scholar 

  108. Waldman SA, Terzic A. Clinical translational science 2020: disruptive innovation redefines the discovery-application enterprise. Clin Transl Sci. 2011;4:69–71.

    Article  PubMed  Google Scholar 

  109. Waldman SA, Terzic A. Widening the path to personalized medicine. Clin Transl Sci. 2011;4:392–4.

    Article  PubMed  Google Scholar 

  110. Waldman SA, Terzic A. Knowledge cycle transforms therapeutic innovation. Clin Pharmacol Ther. 2012;91:3–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Terzic MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Alekseev, A.E. et al. (2013). Cardiac ATP-Sensitive Potassium Channels and Associated Channelopathies. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4881-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4881-4_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4880-7

  • Online ISBN: 978-1-4471-4881-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics