Advertisement

Fermions Acting on Quasi-local Operators in the XXZ Model

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 40)

Abstract

This is a survey about the construction of fermions which act on the space of quasi-local operators in the XXZ model. We also include a proof of the anti-commutativity of fermionic creation operators.

Keywords

Transfer Matrix Local Operator Primary Operator Vertex Model Infinite Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Research of M.J. is supported by the Grant-in-Aid for Scientific Research B-23340039. Research of T.M. is supported by the Grant-in-Aid for Scientific Research B-22340031. Research of F.S. is supported by RFBR-CNRS grant 09-02-93106 and DIADEMS program (ANR) contract number BLAN012004. The authors would like to thank the organisers of the workshops “Infinite Analysis 11—Frontier of Integrability—” at Tokyo and “Symmetries, Integrable Systems and Representations” at Lyon, for invitation and kind hospitality. With sincere gratitude for what they got from him, T.M. and F.S. would like to express their heartiest congratulations to Professor Michio Jimbo on his 60th birthday.

References

  1. 1.
    Boos, H., Jimbo, M., Miwa, T., Smirnov, F., Takeyama, Y.: Hidden Grassmann structure in the XXZ model II: creation operators. Commun. Math. Phys. 286, 875–932 (2009) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Jimbo, M., Miwa, T., Smirnov, F.: Hidden Grassmann structure in the XXZ model III: introducing Matsubara direction. J. Phys. A 42, 304018 (2009) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Jimbo, M., Miwa, T., Miki, K., Nakayashiki, A.: Correlation functions of the XXZ model for Δ<−1. Phys. Lett. A 168, 256–263 (1992) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Jimbo, M., Miwa, T.: Quantum Knizhnik-Zamolodchikov equation at |q|=1 and correlation functions of the XXZ model in the gapless regime. J. Phys. A 29, 2923–2958 (1996) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Kitanine, N., Maillet, J.-M., Terras, V.: Correlation functions of the XXZ Heisenberg spin-\(\frac{1}{2}\)-chain in a magnetic field. Nucl. Phys. B 567, 554–582 (2000) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Göhmann, F., Klümper, A., Seel, A.: Integral representations for correlation functions of the XXZ chain at finite temperature. J. Phys. A 37, 7625–7651 (2004) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Boos, H., Korepin, V.: Quantum spin chains and Riemann zeta functions with odd arguments. J. Phys. A 34, 5311–5316 (2001) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Boos, H., Korepin, V., Smirnov, F.: Emptiness formation probability and quantum Knizhnik-Zamolodchikov equation. Nucl. Phys. B 658, 417–439 (2003) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Kato, G., Shiroishi, M., Takahashi, M., Sakai, K.: Next nearest-neighbor correlation functions of the spin-1/2 XXZ chain at critical region. J. Phys. A 36, L337–L344 (2003) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Sakai, K., Shiroishi, M., Nishiyama, Y., Takahashi, M.: Third-neighbor and other four-point correlation functions of spin-1/2 XXZ chain. J. Phys. A 37, 5097–5123 (2004) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Boos, H., Jimbo, M., Miwa, T., Smirnov, F.: Completeness of a fermionic basis in the homogeneous XXZ model. J. Math. Phys. 50, 095206 (2009) (online) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bazhanov, V., Lukyanov, S., Zamolodchikov, A.: Integrable structure of conformal field theory III: the Yang-Baxter relation. Commun. Math. Phys. 200, 297–324 (1999) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Hernandez, D., Jimbo, M.: Asymptotic representations and Drinfeld rational fractions. Compos. Math. 148, 1593–1623 (2012) MATHCrossRefGoogle Scholar
  14. 14.
    Slavnov, N.: Calculation of scalar products of wave functions and form-factors in the framework of the algebraic Bethe ansatz. Theor. Math. Phys. 79, 502–508 (1989) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Boos, H., Jimbo, M., Miwa, T., Smirnov, F.: Hidden Grassmann structure in the XXZ model IV: CFT limit. Commun. Math. Phys. 299, 825–866 (2010) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Jimbo, M., Miwa, T., Smirnov, F.: On one-point functions of descendants in sine-Gordon model. In: New Trends in Quantum Integrable Systems: Proceedings of the Infinite Analysis 09, pp. 117–137. World Scientific, Singapore (2010) Google Scholar
  17. 17.
    Jimbo, M., Miwa, T., Smirnov, F.: Hidden Grassmann structure in the XXZ model V: sine-Gordon model. Lett. Math. Phys. 96, 325–365 (2011) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Jimbo, M., Miwa, T., Smirnov, F.: Fermionic structure in the sine-Gordon model: form factors and null vectors. Nucl. Phys. B 852, 390–440 (2011) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Boos, H., Göhmann, F.: On the physical part of the factorized correlation functions of the XXZ chain. J. Phys. A 42, 1–27 (2009) CrossRefGoogle Scholar
  20. 20.
    Boos, H., Göhmann, F.: Properties of linear integral equations related to the six-vertex model with disorder parameter II. Preprint arXiv:1201.2625 [hep-th]

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of MathematicsRikkyo UniversityToshima-ku, TokyoJapan
  2. 2.Department of Mathematics, Graduate School of ScienceKyoto UniversityKyotoJapan
  3. 3.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations