Skip to main content

Endothelial Dysfunction in Microvascular Angina

  • Chapter
  • First Online:
Chest Pain with Normal Coronary Arteries

Abstract

A large proportion of patients with chest discomfort, thought to be angina pectoris, have “normal” or non-obstructive epicardial coronary arteries at angiography. However, absence of angiographic evidence of stenosis is not a sufficient criterion to fully determine the health status of the coronary vasculature as related to exclusion of ischemic heart disease (IHD). Endothelial and vascular smooth muscle dysfunction, at both the microvascular and macrovascular level, may negatively influence myocyte oxygenation and cannot be directly visualized by coronary angiography. Alternative techniques that measure coronary blood flow changes in response to stressors or resistance changes are required to more fully evaluate coronary microvascular function. Of the pathophysiological mechanisms proposed to explain functional impairment of the microvasculature as well as IHD, endothelial dysfunction is one central etiologic substrate. While dysfunctional endothelium clearly impacts coronary vasomotor properties and blood flow responses, endothelium-independent vascular smooth muscle dysfunction also has a role in the development of IHD and related symptoms like angina and is a predictor of adverse outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosamond W, Flegal K, Furie K, et al. Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117(4):e25–146.

    PubMed  Google Scholar 

  2. Blumgart HL, Schlessinger MJ, Davis D. Studies on the relation of the clinical manifestations of angina pectoris, coronary thrombosis, and myocardial infarction to the pathologic findings with particular reference to the significance of the collateral circulation. Am Heart J. 1940;19:1–90.

    Google Scholar 

  3. Likoff W, Kasparian H, Segal BL, Forman H, Novack P. Coronary arteriography. Correlation with electrocardiographic response to measured exercise. Am J Cardiol. 1966;18(2):160–3.

    PubMed  CAS  Google Scholar 

  4. Likoff W, Kasparian H, Segal BL, Novack P, Lehman JS. Clinical correlation of coronary arteriography. Am J Cardiol. 1965;16:159–64.

    PubMed  CAS  Google Scholar 

  5. Likoff W, Segal BL, Kasparian H. Paradox of normal selective coronary arteriograms in patients considered to have unmistakable coronary heart disease. N Engl J Med. 1967;276(19):1063–6.

    PubMed  CAS  Google Scholar 

  6. Dart AM, Davies HA, Dalal J, Ruttley M, Henderson AH. ‘Angina’ and normal coronary arteriograms: a follow-up study. Eur Heart J. 1980;1(2):97–100.

    PubMed  CAS  Google Scholar 

  7. Kemp Jr HG. Left ventricular function in patients with the anginal syndrome and normal coronary arteriograms. Am J Cardiol. 1973;32(3):375–6.

    PubMed  Google Scholar 

  8. Lichtlen PR, Bargheer K, Wenzlaff P. Long-term prognosis of patients with anginalike chest pain and normal coronary angiographic findings. J Am Coll Cardiol. 1995;25(5):1013–18.

    PubMed  CAS  Google Scholar 

  9. Papanicolaou MN, Califf RM, Hlatky MA, et al. Prognostic implications of angiographically normal and insignificantly narrowed coronary arteries. Am J Cardiol. 1986;58(13):1181–7.

    PubMed  CAS  Google Scholar 

  10. Pasternak RC, Thibault GE, Savoia M, DeSanctis RW, Hutter Jr AM. Chest pain with angiographically insignificant coronary arterial obstruction. Clinical presentation and long-term follow-up. Am J Med. 1980;68(6):813–17.

    PubMed  CAS  Google Scholar 

  11. Proudfit WL, Shirey EK, Sones Jr FM. Selective cine coronary arteriography. Correlation with clinical findings in 1,000 patients. Circulation. 1966;33(6):901–10.

    PubMed  CAS  Google Scholar 

  12. Kemp HG, Kronmal RA, Vlietstra RE, Frye RL. Seven year survival of patients with normal or near normal coronary arteriograms: a CASS registry study. J Am Coll Cardiol. 1986;7(3):479–83.

    PubMed  CAS  Google Scholar 

  13. Shaw LJ, Shaw RE, Merz CN, et al. Impact of ethnicity and gender differences on angiographic coronary artery disease prevalence and in-hospital mortality in the American College of Cardiology-National Cardiovascular Data Registry. Circulation. 2008;117(14):1787–801.

    PubMed  Google Scholar 

  14. Kemp HG, Elliott WC, Gorlin R. The anginal syndrome with normal coronary arteriography. Trans Assoc Am Physicians. 1967; 80:59–70.

    PubMed  CAS  Google Scholar 

  15. Arbogast R, Bourassa MG. Myocardial function during atrial pacing in patients with angina pectoris and normal coronary arteriograms. Comparison with patients having significant coronary artery disease. Am J Cardiol. 1973;32(3):257–63.

    PubMed  CAS  Google Scholar 

  16. Cannon 3rd RO, Watson RM, Rosing DR, Epstein SE. Angina caused by reduced vasodilator reserve of the small coronary arteries. J Am Coll Cardiol. 1983;1(6):1359–73.

    PubMed  Google Scholar 

  17. Chauhan A, Mullins PA, Petch MC, Schofield PM. Is coronary flow reserve in response to papaverine really normal in syndrome X? Circulation. 1994;89(5):1998–2004.

    PubMed  CAS  Google Scholar 

  18. Chauhan A, Mullins PA, Thuraisingham SI, Taylor G, Petch MC, Schofield PM. Abnormal cardiac pain perception in syndrome X. J Am Coll Cardiol. 1994;24(2):329–35.

    PubMed  CAS  Google Scholar 

  19. Cox ID, Botker HE, Bagger JP, Sonne HS, Kristensen BO, Kaski JC. Elevated endothelin concentrations are associated with reduced coronary vasomotor responses in patients with chest pain and normal coronary arteriograms. J Am Coll Cardiol. 1999;34(2):455–60.

    PubMed  CAS  Google Scholar 

  20. Egashira K, Inou T, Hirooka Y, Yamada A, Urabe Y, Takeshita A. Evidence of impaired endothelium-dependent coronary vasodilatation in patients with angina pectoris and normal coronary angiograms. N Engl J Med. 1993;328(23):1659–64.

    PubMed  CAS  Google Scholar 

  21. Frobert O, Molgaard H, Botker HE, Bagger JP. Autonomic balance in patients with angina and a normal coronary angiogram. Eur Heart J. 1995;16(10):1356–60.

    PubMed  CAS  Google Scholar 

  22. Gulli G, Cemin R, Pancera P, Menegatti G, Vassanelli C, Cevese A. Evidence of parasympathetic impairment in some patients with cardiac syndrome X. Cardiovasc Res. 2001;52(2):208–16.

    PubMed  CAS  Google Scholar 

  23. Lanza GA, Andreotti F, Sestito A, Sciahbasi A, Crea F, Maseri A. Platelet aggregability in cardiac syndrome X. Eur Heart J. 2001;22(20):1924–30.

    PubMed  CAS  Google Scholar 

  24. Quyyumi AA, Cannon 3rd RO, Panza JA, Diodati JG, Epstein SE. Endothelial dysfunction in patients with chest pain and normal coronary arteries. Circulation. 1992;86(6):1864–71.

    PubMed  CAS  Google Scholar 

  25. Lekakis JP, Papamichael CM, Vemmos CN, Voutsas AA, Stamatelopoulos SF, Moulopoulos SD. Peripheral vascular endothelial dysfunction in patients with angina pectoris and normal coronary arteriograms. J Am Coll Cardiol. 1998;31(3):541–6.

    PubMed  CAS  Google Scholar 

  26. Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91(10):3527–61.

    PubMed  CAS  Google Scholar 

  27. Topper JN, Cai J, Falb D, Gimbrone Jr MA. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci U S A. 1996;93(19):10417–22.

    PubMed  CAS  Google Scholar 

  28. Awolesi MA, Widmann MD, Sessa WC, Sumpio BE. Cyclic strain increases endothelial nitric oxide synthase activity. Surgery. 1994;116(2):439–44; discussion 444–35.

    PubMed  CAS  Google Scholar 

  29. Yamamoto K, Sokabe T, Ohura N, Nakatsuka H, Kamiya A, Ando J. Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am J Physiol Heart Circ Physiol. 2003;285(2):H793–803.

    PubMed  CAS  Google Scholar 

  30. Radomski MW, Palmer RM, Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol. 1987;92(1):181–7.

    PubMed  CAS  Google Scholar 

  31. Stamler JS, Vaughan DE, Loscalzo J. Synergistic disaggregation of platelets by tissue-type plasminogen activator, prostaglandin E1, and nitroglycerin. Circ Res. 1989;65(3):796–804.

    PubMed  CAS  Google Scholar 

  32. Hibi K, Ishigami T, Tamura K, et al. Endothelial nitric oxide synthase gene polymorphism and acute myocardial infarction. Hypertension. 1998;32(3):521–6.

    PubMed  CAS  Google Scholar 

  33. Hingorani AD, Liang CF, Fatibene J, et al. A common variant of the endothelial nitric oxide synthase (Glu298-->Asp) is a major risk factor for coronary artery disease in the UK. Circulation. 1999;100(14):1515–20.

    PubMed  CAS  Google Scholar 

  34. Nagib El-Kilany GE, Nayel E, Hazzaa S. Nitric oxide synthase gene G298 allele. Is it a marker for microvascular angina in hypertensive patients? Cardiovasc Radiat Med. 2004;5(3):113–18.

    PubMed  Google Scholar 

  35. Kolasinska-Kloch W, Jabrocka A, Kiec-Wilk B, et al. Relations between endothelial nitric oxide synthase and angiotensin-converting gene polymorphisms and certain biochemical parameters in patients with cardiac syndrome X. Przegl Lek. 2004;61(6):743–6.

    PubMed  Google Scholar 

  36. Zhou H, Liu X, Liu L, et al. Oxidative stress and apoptosis of human brain microvascular endothelial cells induced by free fatty acids. J Int Med Res. 2009;37(6):1897–903.

    PubMed  CAS  Google Scholar 

  37. Sinici I, Atalar E, Kepez A, et al. Intron 4 VNTR polymorphism of eNOS gene is protective for cardiac syndrome X. J Investig Med. 2010;58(1):23–7.

    PubMed  CAS  Google Scholar 

  38. Jabrocka-Hybel A, Kolasinska-Kloch W, Malczewska-Malec M, et al. Gene polymorphisms predisposing to cardiac hypertrophy in patients with cardiac syndrome X. Folia Med Cracov. 2007;48(1–4):57–69.

    PubMed  CAS  Google Scholar 

  39. Levin ER. Endothelins. N Engl J Med. 1995;333(6):356–63.

    PubMed  CAS  Google Scholar 

  40. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990;348(6303):730–2.

    PubMed  CAS  Google Scholar 

  41. Sakurai T, Yanagisawa M, Takuwa Y, et al. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature. 1990;348(303):732–5.

    PubMed  CAS  Google Scholar 

  42. Takayanagi R, Kitazumi K, Takasaki C, et al. Presence of non-selective type of endothelin receptor on vascular endothelium and its linkage to vasodilation. FEBS Lett. 1991;282(1):103–6.

    PubMed  CAS  Google Scholar 

  43. Schunkert H, Hense HW, Holmer SR, et al. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med. 1994;330(23):1634–8.

    PubMed  CAS  Google Scholar 

  44. Castellano M, Muiesan ML, Rizzoni D, et al. Angiotensin-converting enzyme I/D polymorphism and arterial wall thickness in a general population. The vobarno study. Circulation. 1995;91(11):2721–4.

    PubMed  CAS  Google Scholar 

  45. Hosoi M, Nishizawa Y, Kogawa K, et al. Angiotensin-converting enzyme gene polymorphism is associated with carotid arterial wall thickness in non-insulin-dependent diabetic patients. Circulation. 1996;94(4):704–7.

    PubMed  CAS  Google Scholar 

  46. Harden PN, Geddes C, Rowe PA, et al. Polymorphisms in angiotensin-converting-enzyme gene and progression of IgA nephropathy. Lancet. 1995;345(8964):1540–2.

    PubMed  CAS  Google Scholar 

  47. Hunley TE, Julian BA, Phillips 3rd JA, et al. Angiotensin converting enzyme gene polymorphism: potential silencer motif and impact on progression in IgA nephropathy. Kidney Int. 1996;49(2):571–7.

    PubMed  CAS  Google Scholar 

  48. Yoshida H, Mitarai T, Kawamura T, et al. Role of the deletion of polymorphism of the angiotensin converting enzyme gene in the progression and therapeutic responsiveness of IgA nephropathy. J Clin Invest. 1995;96(5):2162–9.

    PubMed  CAS  Google Scholar 

  49. Teranishi M, Ono H, Ishimitsu T, Matsuoka H. Insertion/deletion angiotensin converting enzyme gene polymorphism affects the microvascular structure of the kidney in patients with nondiabetic renal disease. J Hypertens. 1999;17(3):351–6.

    PubMed  CAS  Google Scholar 

  50. Gayagay G, Yu B, Hambly B, et al. Elite endurance athletes and the ACE I allele – the role of genes in athletic performance. Hum Genet. 1998;103(1):48–50.

    PubMed  CAS  Google Scholar 

  51. Montgomery HE, Marshall R, Hemingway H, et al. Human gene for physical performance. Nature. 1998;393(6682):221–2.

    PubMed  CAS  Google Scholar 

  52. Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H. Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol. 1999;87(4):1313–16.

    PubMed  CAS  Google Scholar 

  53. Pauly DF, Johnson BD, Anderson RD, et al. In women with symptoms of cardiac ischemia, nonobstructive coronary arteries, and microvascular dysfunction, angiotensin-converting enzyme inhibition is associated with improved microvascular function: A double-blind randomized study from the National Heart, Lung and Blood Institute Women’s Ischemia Syndrome Evaluation (WISE). Am Heart J. 2011;162(4):678–84.

    PubMed  CAS  Google Scholar 

  54. Kaski JC, Rosano G, Gavrielides S, Chen L. Effects of angiotensin-converting enzyme inhibition on exercise-induced angina and ST segment depression in patients with microvascular angina. J Am Coll Cardiol. 1994;23(3):652–7.

    PubMed  CAS  Google Scholar 

  55. Chen JW, Hsu NW, Wu TC, Lin SJ, Chang MS. Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am J Cardiol. 2002;90(9):974–82.

    PubMed  CAS  Google Scholar 

  56. Vazquez-Rey E, Montgomery HE, Arroyo-Espliguero R, Brown S, Kaski JC. Angiotension-converting enzyme gene I/D polymorphism in patients with angina and normal coronary arteriograms. Int J Cardiol. 2005;98(2):339–40.

    PubMed  Google Scholar 

  57. Balcells M, Martorell J, Olive C, et al. Smooth muscle cells orchestrate the endothelial cell response to flow and injury. Circulation. 2010;121(20):2192–9.

    PubMed  Google Scholar 

  58. Chiu JJ, Chen LJ, Chen CN, Lee PL, Lee CI. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J Biomech. 2004;37(4):531–9.

    PubMed  Google Scholar 

  59. Fillinger MF, Sampson LN, Cronenwett JL, Powell RJ, Wagner RJ. Coculture of endothelial cells and smooth muscle cells in bilayer and conditioned media models. J Surg Res. 1997;67(2):169–78.

    PubMed  CAS  Google Scholar 

  60. Robenek H, Severs NJ, editors. Cell interactions in atherosclerosis. Boca Raton: CRC Press; 1992.

    Google Scholar 

  61. Rose SL, Babensee JE. Smooth muscle cell phenotype alters cocultured endothelial cell response to biomaterial-pretreated leukocytes. J Biomed Mater Res A. 2008;84(3):661–71.

    PubMed  Google Scholar 

  62. Spagnoli LG, Villaschi S, Neri L, Palmieri G. Gap junctions in myo-endothelial bridges of rabbit carotid arteries. Experientia. 1982;38(1):124–5.

    PubMed  CAS  Google Scholar 

  63. Little TL, Xia J, Duling BR. Dye tracers define differential endothelial and smooth muscle coupling patterns within the arteriolar wall. Circ Res. 1995;76(3):498–504.

    PubMed  CAS  Google Scholar 

  64. Sax FL, Cannon 3rd RO, Hanson C, Epstein SE. Impaired forearm vasodilator reserve in patients with microvascular angina. Evidence of a generalized disorder of vascular function? N Engl J Med. 1987;317(22):1366–70.

    PubMed  CAS  Google Scholar 

  65. Cannon 3rd RO, Peden DB, Berkebile C, Schenke WH, Kaliner MA, Epstein SE. Airway hyperresponsiveness in patients with microvascular angina. Evidence for a diffuse disorder of smooth muscle responsiveness. Circulation. 1990;82(6):2011–17.

    PubMed  Google Scholar 

  66. Arroyo-Espliguero R, Mollichelli N, Avanzas P, et al. Chronic inflammation and increased arterial stiffness in patients with cardiac syndrome X. Eur Heart J. 2003;24(22):2006–11.

    PubMed  Google Scholar 

  67. Bortone AS, Hess OM, Eberli FR, et al. Abnormal coronary vasomotion during exercise in patients with normal coronary arteries and reduced coronary flow reserve. Circulation. 1989;79(3):516–27.

    PubMed  CAS  Google Scholar 

  68. Montorsi P, Manfredi M, Loaldi A, et al. Comparison of coronary vasomotor responses to nifedipine in syndrome X and in Prinzmetal’s angina pectoris. Am J Cardiol. 1989;63(17):1198–202.

    PubMed  CAS  Google Scholar 

  69. Targonski PV, Bonetti PO, Pumper GM, Higano ST, Holmes Jr DR, Lerman A. Coronary endothelial dysfunction is associated with an increased risk of cerebrovascular events. Circulation. 2003;107(22): 2805–9.

    PubMed  Google Scholar 

  70. Pepine CJ, Anderson RD, Sharaf BL, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol. 2010;55(25):2825–32.

    PubMed  CAS  Google Scholar 

  71. Pepine CJ, Kerensky RA, Lambert CR, et al. Some thoughts on the vasculopathy of women with ischemic heart disease. J Am Coll Cardiol. 2006;47(3 Suppl):S30–5.

    PubMed  Google Scholar 

  72. Gaspardone A, Ferri C, Crea F, et al. Enhanced activity of sodium-lithium countertransport in patients with cardiac syndrome X: a potential link between cardiac and metabolic syndrome X. J Am Coll Cardiol. 1998;32(7):2031–4.

    PubMed  CAS  Google Scholar 

  73. Lerman A, Edwards BS, Hallett JW, Heublein DM, Sandberg SM, Burnett Jr JC. Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med. 1991;325(14):997–1001.

    PubMed  CAS  Google Scholar 

  74. Egashira K, Hirooka Y, Kuga T, Mohri M, Takeshita A. Effects of L-arginine supplementation on endothelium-dependent coronary vasodilation in patients with angina pectoris and normal coronary arteriograms. Circulation. 1996;94(2):130–4.

    PubMed  CAS  Google Scholar 

  75. Piatti P, Fragasso G, Monti LD, et al. Acute intravenous L-arginine infusion decreases endothelin-1 levels and improves endothelial function in patients with angina pectoris and normal coronary arteriograms: correlation with asymmetric dimethylarginine levels. Circulation. 2003;107(3):429–36.

    PubMed  CAS  Google Scholar 

  76. Kolasinska-Kloch W, Lesniak W, Kiec-Wilk B, Malczewska-Malec M. Biochemical parameters of endothelial dysfunction in cardiological syndrome X. Scand J Clin Lab Invest. 2002;62(1):7–13.

    PubMed  CAS  Google Scholar 

  77. Shmilovich H, Deutsch V, Roth A, Miller H, Keren G, George J. Circulating endothelial progenitor cells in patients with cardiac syndrome X. Heart. 2007;93(9):1071–6.

    PubMed  Google Scholar 

  78. Kaski JC, Cox ID, Crook JR, et al. Differential plasma endothelin levels in subgroups of patients with angina and angiographically normal coronary arteries. Coronary Artery Disease Research Group. Am Heart J. 1998;136(3):412–17.

    PubMed  CAS  Google Scholar 

  79. Kaski JC, Elliott PM, Salomone O, et al. Concentration of circulating plasma endothelin in patients with angina and normal coronary angiograms. Br Heart J. 1995;74(6):620–4.

    PubMed  CAS  Google Scholar 

  80. Komuro I, Kurihara H, Sugiyama T, Yoshizumi M, Takaku F, Yazaki Y. Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett. 1988;238(2):249–52.

    PubMed  CAS  Google Scholar 

  81. Raffa RB, Schupsky JJ, Martinez RP, Jacoby HI. Endothelin-1-induced nociception. Life Sci. 1991;49(11):PL61–5.

    PubMed  CAS  Google Scholar 

  82. Huelmos A, Garcia Velloso MJ, Maceira A, et al. Myocardial perfusion reserve and endothelin plasmatic levels in asymptomatic patients with cardiovascular risk factors [abstract]. Eur Heart J. 1997;18(Abstract Suppl):435.

    Google Scholar 

  83. Tousoulis D, Davies GJ, Asimakopoulos G, et al. Vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 serum level in patients with chest pain and normal coronary arteries (syndrome X). Clin Cardiol. 2001;24(4):301–4.

    PubMed  CAS  Google Scholar 

  84. Fichtlscherer S, Rosenberger G, Walter DH, Breuer S, Dimmeler S, Zeiher AM. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation. 2000;102(9):1000–6.

    PubMed  CAS  Google Scholar 

  85. Cosin-Sales J, Pizzi C, Brown S, Kaski JC. C-reactive protein, clinical presentation, and ischemic activity in patients with chest pain and normal coronary angiograms. J Am Coll Cardiol. 2003;41(9):1468–74.

    PubMed  CAS  Google Scholar 

  86. Teragawa H, Fukuda Y, Matsuda K, et al. Relation between C reactive protein concentrations and coronary microvascular endothelial function. Heart. 2004;90(7):750–4.

    PubMed  CAS  Google Scholar 

  87. Losse B, Kuhn H, Rafflenbeul D, et al. Thallium-201 myocardial scintigraphy in patients with normal coronary arteries and normal left ventriculogram – comparison with hemodynamics, metabolic and morphologic findings (author’s transl). Z Kardiol. 1980;69(8):523–30.

    PubMed  CAS  Google Scholar 

  88. Opherk D, Zebe H, Weihe E, et al. Reduced coronary dilatory capacity and ultrastructural changes of the myocardium in patients with angina pectoris but normal coronary arteriograms. Circulation. 1981;63(4):817–25.

    PubMed  CAS  Google Scholar 

  89. Richardson PJ, Livesley B, Oram S, Olsen EG, Armstrong P. Angina pectoris with normal coronary arteries. Transvenous myocardial biopsy in diagnosis. Lancet. 1974;2(7882):677–80.

    PubMed  CAS  Google Scholar 

  90. Shirey EK, Proudfit WL, Hawk WA. Primary myocardial disease. Correlation with clinical findings, angiographic and biopsy diagnosis. Follow-up of 139 patients. Am Heart J. 1980;99(2):198–207.

    PubMed  CAS  Google Scholar 

  91. Mosseri M, Yarom R, Gotsman MS, Hasin Y. Histologic evidence for small-vessel coronary artery disease in patients with angina pectoris and patent large coronary arteries. Circulation. 1986;74(5):964–72.

    PubMed  CAS  Google Scholar 

  92. Pasqui AL, Puccetti L, Di Renzo M, et al. Structural and functional abnormality of systemic microvessels in cardiac syndrome X. Nutr Metab Cardiovasc Dis. 2005;15(1):56–64.

    PubMed  CAS  Google Scholar 

  93. Yasue H, Horio Y, Nakamura N, et al. Induction of coronary artery spasm by acetylcholine in patients with variant angina: possible role of the parasympathetic nervous system in the pathogenesis of coronary artery spasm. Circulation. 1986;74(5):955–63.

    PubMed  CAS  Google Scholar 

  94. Werns SW, Walton JA, Hsia HH, Nabel EG, Sanz ML, Pitt B. Evidence of endothelial dysfunction in angiographically normal coronary arteries of patients with coronary artery disease. Circulation. 1989;79(2):287–91.

    PubMed  CAS  Google Scholar 

  95. Hodgson JM, Marshall JJ. Direct vasoconstriction and endothelium-dependent vasodilation. Mechanisms of acetylcholine effects on coronary flow and arterial diameter in patients with nonstenotic coronary arteries. Circulation. 1989;79(5):1043–51.

    PubMed  CAS  Google Scholar 

  96. Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315(17):1046–51.

    PubMed  CAS  Google Scholar 

  97. Nabel EG, Selwyn AP, Ganz P. Paradoxical narrowing of atherosclerotic coronary arteries induced by increases in heart rate. Circulation. 1990;81(3):850–9.

    PubMed  CAS  Google Scholar 

  98. Newman CM, Maseri A, Hackett DR, el-Tamimi HM, Davies GJ. Response of angiographically normal and atherosclerotic left anterior descending coronary arteries to acetylcholine. Am J Cardiol. 1990;66(15):1070–6.

    PubMed  CAS  Google Scholar 

  99. Yasue H, Matsuyama K, Okumura K, Morikami Y, Ogawa H. Responses of angiographically normal human coronary arteries to intracoronary injection of acetylcholine by age and segment. Possible role of early coronary atherosclerosis. Circulation. 1990;81(2):482–90.

    PubMed  CAS  Google Scholar 

  100. Legrand V, Hodgson JM, Bates ER, et al. Abnormal coronary flow reserve and abnormal radionuclide exercise test results in patients with normal coronary angiograms. J Am Coll Cardiol. 1985;6(6):1245–53.

    PubMed  CAS  Google Scholar 

  101. Greenberg MA, Grose RM, Neuburger N, Silverman R, Strain JE, Cohen MV. Impaired coronary vasodilator responsiveness as a cause of lactate production during pacing-induced ischemia in patients with angina pectoris and normal coronary arteries. J Am Coll Cardiol. 1987;9(4):743–51.

    PubMed  CAS  Google Scholar 

  102. Motz W, Vogt M, Rabenau O, Scheler S, Luckhoff A, Strauer BE. Evidence of endothelial dysfunction in coronary resistance vessels in patients with angina pectoris and normal coronary angiograms. Am J Cardiol. 1991;68(10):996–1003.

    PubMed  CAS  Google Scholar 

  103. Vrints CJ, Bult H, Hitter E, Herman AG, Snoeck JP. Impaired endothelium-dependent cholinergic coronary vasodilation in patients with angina and normal coronary arteriograms. J Am Coll Cardiol. 1992;19(1):21–31.

    PubMed  CAS  Google Scholar 

  104. Hasdai D, Gibbons RJ, Holmes Jr DR, Higano ST, Lerman A. Coronary endothelial dysfunction in humans is associated with myocardial perfusion defects. Circulation. 1997;96(10):3390–5.

    PubMed  CAS  Google Scholar 

  105. Geltman EM, Henes CG, Senneff MJ, Sobel BE, Bergmann SR. Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol. 1990;16(3):586–95.

    PubMed  CAS  Google Scholar 

  106. Galassi AR, Araujo LI, Crea F, et al. Myocardial blood flow is altered at rest and after dipyridamole in patients with syndrome X [abstract]. J Am Coll Cardiol. 1991;17(2):A227.

    Google Scholar 

  107. Bottcher M, Botker HE, Sonne H, Nielsen TT, Czernin J. Endothelium-dependent and -independent perfusion reserve and the effect of L-arginine on myocardial perfusion in patients with syndrome X. Circulation. 1999;99(14):1795–801.

    PubMed  CAS  Google Scholar 

  108. Panting JR, Gatehouse PD, Yang GZ, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med. 2002;346(25):1948–53.

    PubMed  Google Scholar 

  109. Vermeltfoort IA, Bondarenko O, Raijmakers PG, et al. Is subendocardial ischaemia present in patients with chest pain and normal coronary angiograms? A cardiovascular MR study. Eur Heart J. 2007;28(13):1554–8.

    PubMed  Google Scholar 

  110. Maseri A, Crea F, Kaski JC, Crake T. Mechanisms of angina pectoris in syndrome X. J Am Coll Cardiol. 1991;17(2):499–506.

    PubMed  CAS  Google Scholar 

  111. Griffith TM, Edwards DH, Davies RL, Harrison TJ, Evans KT. EDRF coordinates the behaviour of vascular resistance vessels. Nature. 1987;329(6138):442–5.

    PubMed  CAS  Google Scholar 

  112. Griffith TM, Edwards DH, Davies RL, Harrison TJ, Evans KT. Endothelium-derived relaxing factor (EDRF) and resistance vessels in an intact vascular bed: a microangiographic study of the rabbit isolated ear. Br J Pharmacol. 1988;93(3):654–62.

    PubMed  CAS  Google Scholar 

  113. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.

    PubMed  CAS  Google Scholar 

  114. Lanza GA, Buffon A, Sestito A, Natale L, Sgueglia GA, Galiuto L, Infusino F, Mariani L, Centola A, Crea F. Relation between stress-induced myocardial perfusion defects on cardiovascular magnetic resonance and coronary microvascular dysfunction in patients with cardiac syndrome X. J Am Coll Cardiol. 2008;51(4):466–72.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl J. Pepine MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Rocca, D.G.D., Pepine, C.J. (2013). Endothelial Dysfunction in Microvascular Angina. In: Kaski, J., Eslick, G., Bairey Merz, C. (eds) Chest Pain with Normal Coronary Arteries. Springer, London. https://doi.org/10.1007/978-1-4471-4838-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4838-8_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4837-1

  • Online ISBN: 978-1-4471-4838-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics