Skip to main content

Immune Responses in Atherosclerosis and Microvascular Angina

  • Chapter
  • First Online:
Chest Pain with Normal Coronary Arteries

Abstract

Intense research into the mechanisms that trigger and drive atherosclerosis has dramatically challenged the view that this disease is merely caused by the accumulation of lipids (mainly low density lipoproteins, LDL) in the vessel wall and clearly demonstrated that chronic inflammation orchestrated by the immune system is crucial for atherogenesis. The innate as well as the adaptive arms of the immune system are actively involved in atherosclerosis. In support of this is the observation that immune cells like macrophages and T cells constitute a great part of the inflammatory infiltrate in atherosclerotic lesions. In addition, some patients with atherosclerosis develop T-cell-dependent and T-cell-independent antibodies that recognise modified lipids such as oxidised LDL (oxLDL). In this chapter, we provide a brief overview of the contribution of the immune system and in particular of T lymphocytes to atherosclerosis and discuss the importance of research in this area in patients with microvascular angina. A better understanding of the immune mechanisms that underlie atherogenesis both in patients with coronary artery disease and microvascular angina has important clinical implications as it may unravel novel targets for immunotherapy that may allow efficient control of these clinical entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACS:

Acute coronary syndrome

APC:

Antigen presenting cell

CAD:

Coronary artery disease

DC:

Dendritic cell

HSP:

Heat shock protein

IFN-γ:

Interferon-γ

IL-12:

Interleukin-12

LDL:

Low density lipoprotein

MMP:

Matrix metallo-proteinases

oxLDL:

Oxidised low density lipoprotein

Th:

T helper

TGF-β:

Transforming growth factor-β

TNF-α:

Tumour necrosis factor-α

VSMC:

Vascular smooth muscle cell

References

  1. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12:204–12.

    Article  PubMed  CAS  Google Scholar 

  2. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111:3481–8.

    Article  PubMed  Google Scholar 

  3. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006;6:508–19. Epub 2006 Jun 2016.

    Article  PubMed  CAS  Google Scholar 

  4. Newby AC. Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med. 2007;17:253–8.

    Article  PubMed  CAS  Google Scholar 

  5. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis. 1986;6:131–8.

    Article  PubMed  CAS  Google Scholar 

  6. Lee YK, Mukasa R, Hatton RD, Weaver CT. Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol. 2009;21:274–80.

    Article  PubMed  CAS  Google Scholar 

  7. Wan YY. Multi-tasking of helper T cells. Immunology. 2010;130:166–71.

    Article  PubMed  CAS  Google Scholar 

  8. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol. 2010;28:445–89.

    Article  PubMed  CAS  Google Scholar 

  9. Zhou X, Paulsson G, Stemme S, Hansson GK. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest. 1998;101:1717–25.

    Article  PubMed  CAS  Google Scholar 

  10. Whitman SC, Ravisankar P, Elam H, Daugherty A. Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E−/− mice. Am J Pathol. 2000;157:1819–24.

    Article  PubMed  CAS  Google Scholar 

  11. Tellides G, Tereb DA, Kirkiles-Smith NC, Kim RW, Wilson JH, Schechner JS, Lorber MI, Pober JS. Interferon-gamma elicits arteriosclerosis in the absence of leukocytes. Nature. 2000;403:207–11.

    Article  PubMed  CAS  Google Scholar 

  12. Buono C, Come CE, Stavrakis G, Maguire GF, Connelly PW, Lichtman AH. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler Thromb Vasc Biol. 2003;23:454–60.

    Article  PubMed  CAS  Google Scholar 

  13. Gupta S, Pablo AM, Jiang X, Wang N, Tall AR, Schindler C. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest. 1997;99:2752–61.

    Article  PubMed  CAS  Google Scholar 

  14. Whitman SC, Ravisankar P, Daugherty A. IFN-gamma deficiency exerts gender-specific effects on atherogenesis in apolipoprotein E−/− mice. J Interferon Cytokine Res. 2002;22:661–70.

    Article  PubMed  CAS  Google Scholar 

  15. Niwa T, Wada H, Ohashi H, Iwamoto N, Ohta H, Kirii H, Fujii H, Saito K, Seishima M. Interferon-gamma produced by bone marrow-derived cells attenuates atherosclerotic lesion formation in LDLR-deficient mice. J Atheroscler Thromb. 2004;11:79–87.

    Article  PubMed  CAS  Google Scholar 

  16. Buono C, Binder CJ, Stavrakis G, Witztum JL, Glimcher LH, Lichtman AH. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci USA. 2005;102:1596–601.

    Article  PubMed  CAS  Google Scholar 

  17. Jonasson L, Holm J, Hansson GK. Smooth muscle cells express Ia antigens during arterial response to injury. Lab Invest. 1988;58:310–5.

    PubMed  CAS  Google Scholar 

  18. Pober JS, Collins T, Gimbrone Jr MA, Cotran RS, Gitlin JD, Fiers W, Clayberger C, Krensky AM, Burakoff SJ, Reiss CS. Lymphocytes recognize human vascular endothelial and dermal fibroblast Ia antigens induced by recombinant immune interferon. Nature. 1983;305:726–9.

    Article  PubMed  CAS  Google Scholar 

  19. McLaren JE, Ramji DP. Interferon gamma: a master regulator of atherosclerosis. Cytokine Growth Factor Rev. 2009;20:125–35.

    Article  PubMed  CAS  Google Scholar 

  20. Liuzzo G, Kopecky SL, Frye RL, O’Fallon WM, Maseri A, Goronzy JJ, Weyand CM. Perturbation of the T-cell repertoire in patients with unstable angina. Circulation. 1999;100:2135–9.

    Article  PubMed  CAS  Google Scholar 

  21. Acuto O, Michel F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol. 2003;3:939–51.

    Article  PubMed  CAS  Google Scholar 

  22. Schmidt D, Goronzy JJ, Weyand CM. CD4+ CD7− CD28− T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Invest. 1996;97:2027–37.

    Article  PubMed  CAS  Google Scholar 

  23. Liuzzo G, Goronzy JJ, Yang H, Kopecky SL, Holmes DR, Frye RL, Weyand CM. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation. 2000;101:2883–8.

    Article  PubMed  CAS  Google Scholar 

  24. Frostegard J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, Hansson GK. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 1999;145:33–43.

    Article  PubMed  CAS  Google Scholar 

  25. Liuzzo G, Biasucci LM, Trotta G, Brugaletta S, Pinnelli M, Digianuario G, Rizzello V, Rebuzzi AG, Rumi C, Maseri A, Crea F. Unusual CD4  +  CD28null T lymphocytes and recurrence of acute coronary events. J Am Coll Cardiol. 2007;50:1450–8. Epub 2007 Sep 1424.

    Article  PubMed  CAS  Google Scholar 

  26. Giubilato S, Liuzzo G, Brugaletta S, Pitocco D, Graziani F, Smaldone C, Montone RA, Pazzano V, Pedicino D, Biasucci LM, Ghirlanda G, Crea F. Expansion of CD4+CD28null T-lymphocytes in diabetic patients: exploring new pathogenetic mechanisms of increased cardiovascular risk in diabetes mellitus. Eur Heart J. 2011;32(10):1214–26.

    Article  PubMed  CAS  Google Scholar 

  27. Namekawa T, Wagner UG, Goronzy JJ, Weyand CM. Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis Rheum. 1998;41:2108–16.

    Article  PubMed  CAS  Google Scholar 

  28. Nakajima T, Schulte S, Warrington KJ, Kopecky SL, Frye RL, Goronzy JJ, Weyand CM. T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation. 2002;105:570–5.

    Article  PubMed  CAS  Google Scholar 

  29. Dumitriu IE, Baruah P, Finlayson CJ, et al. High levels of co-stimulatory receptors OX40 and 4-1BB characterize CD4  +  CD28null T cells in patients with acute coronary syndrome. Circ Res. 2012;110(6):857–69.

    Article  PubMed  CAS  Google Scholar 

  30. Lloyd CM, Hessel EM. Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol. 2010;10:838–48.

    Article  PubMed  CAS  Google Scholar 

  31. Schulte S, Sukhova GK, Libby P. Genetically programmed biases in Th1 and Th2 immune responses modulate atherogenesis. Am J Pathol. 2008;172:1500–8.

    Article  PubMed  CAS  Google Scholar 

  32. Davenport P, Tipping PG. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol. 2003;163:1117–25.

    Article  PubMed  CAS  Google Scholar 

  33. King VL, Szilvassy SJ, Daugherty A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler Thromb Vasc Biol. 2002;22:456–61.

    Article  PubMed  CAS  Google Scholar 

  34. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.

    Article  PubMed  CAS  Google Scholar 

  35. Costantino CM, Baecher-Allan C, Hafler DA. Multiple sclerosis and regulatory T cells. J Clin Immunol. 2008;28:697–706.

    Article  PubMed  Google Scholar 

  36. Venigalla RK, Tretter T, Krienke S, Max R, Eckstein V, Blank N, Fiehn C, Ho AD, Lorenz HM. Reduced CD4+, CD25- T cell sensitivity to the suppressive function of CD4+, CD25high, CD127 -/low regulatory T cells in patients with active systemic lupus erythematosus. Arthritis Rheum. 2008;58:2120–30.

    Article  PubMed  Google Scholar 

  37. Mallat Z, Ait-Oufella H, Tedgui A. Regulatory T-cell immunity in atherosclerosis. Trends Cardiovasc Med. 2007;17:113–8.

    Article  PubMed  CAS  Google Scholar 

  38. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, Merval R, Esposito B, Cohen JL, Fisson S, Flavell RA, Hansson GK, Klatzmann D, Tedgui A, Mallat Z. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med. 2006;12:178–80. Epub 2006 Feb 2005.

    Article  PubMed  CAS  Google Scholar 

  39. Sardella G, De Luca L, Francavilla V, Accapezzato D, Mancone M, Sirinian MI, Fedele F, Paroli M. Frequency of naturally-occurring regulatory T cells is reduced in patients with ST-segment elevation myocardial infarction. Thromb Res. 2007;120:631–4.

    Article  PubMed  CAS  Google Scholar 

  40. Mor A, Luboshits G, Planer D, Keren G, George J. Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. Eur Heart J. 2006;27:2530–7. Epub 2006 Sep 2535.

    Article  PubMed  CAS  Google Scholar 

  41. Ammirati E, Cianflone D, Banfi M, Vecchio V, Palini A, De Metrio M, Marenzi G, Panciroli C, Tumminello G, Anzuini A, Palloshi A, Grigore L, Garlaschelli K, Tramontana S, Tavano D, Airoldi F, Manfredi AA, Catapano AL, Norata GD. Circulating CD4  +  CD25hiCD127lo regulatory T-Cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30:1832–41.

    Article  PubMed  CAS  Google Scholar 

  42. Bonelli M, Savitskaya A, von Dalwigk K, Steiner CW, Aletaha D, Smolen JS, Scheinecker C. Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). Int Immunol. 2008;20:861–8.

    Article  PubMed  CAS  Google Scholar 

  43. van Puijvelde GH, Hauer AD, de Vos P, van den Heuvel R, van Herwijnen MJ, van der Zee R, van Eden W, van Berkel TJ, Kuiper J. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation. 2006;114:1968–76. Epub 2006 Oct 1923.

    Article  PubMed  Google Scholar 

  44. van Puijvelde GH, van Es T, van Wanrooij EJ, Habets KL, de Vos P, van der Zee R, van Eden W, van Berkel TJ, Kuiper J. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:2677–83. Epub 2007 Sep 2627.

    Article  PubMed  Google Scholar 

  45. Mallat Z, Gojova A, Brun V, Esposito B, Fournier N, Cottrez F, Tedgui A, Groux H. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation. 2003;108:1232–7.

    Article  PubMed  CAS  Google Scholar 

  46. Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr Opin Immunol. 2007;19:281–6.

    Article  PubMed  CAS  Google Scholar 

  47. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 2001;194:519–27.

    Article  PubMed  CAS  Google Scholar 

  48. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  PubMed  CAS  Google Scholar 

  49. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441:231–4.

    Article  PubMed  CAS  Google Scholar 

  50. Eid RE, Rao DA, Zhou J, Lo SF, Ranjbaran H, Gallo A, Sokol SI, Pfau S, Pober JS, Tellides G. Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation. 2009;119:1424–32.

    Article  PubMed  CAS  Google Scholar 

  51. Pejnovic N, Vratimos A, Lee SH, Popadic D, Takeda K, Akira S, Chan WL. Increased atherosclerotic lesions and Th17 in interleukin-18 deficient apolipoprotein E-knockout mice fed high-fat diet. Mol Immunol. 2009;47:37–45.

    Article  PubMed  CAS  Google Scholar 

  52. Taleb S, Romain M, Ramkhelawon B, Uyttenhove C, Pasterkamp G, Herbin O, Esposito B, Perez N, Yasukawa H, Van Snick J, Yoshimura A, Tedgui A, Mallat Z. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med. 2009;206:2067–77.

    Article  PubMed  CAS  Google Scholar 

  53. Ait-Oufella H, Herbin O, Bouaziz JD, Binder CJ, Uyttenhove C, Laurans L, Taleb S, Van Vre E, Esposito B, Vilar J, Sirvent J, Van Snick J, Tedgui A, Tedder TF, Mallat Z. B cell depletion reduces the development of atherosclerosis in mice. J Exp Med. 2010;207:1579–87.

    Article  PubMed  CAS  Google Scholar 

  54. Kaski JC. Pathophysiology and management of patients with chest pain and normal coronary arteriograms (cardiac syndrome X). Circulation. 2004;109:568–72.

    Article  PubMed  Google Scholar 

  55. Lanza GA. Cardiac syndrome X: a critical overview and future perspectives. Heart. 2007;93:159–66.

    Article  PubMed  CAS  Google Scholar 

  56. Sen N, Poyraz F, Tavil Y, Yazici HU, Turfan M, Hizal F, Topal S, Erdamar H, Cakir E, Yalcin R, Cengel A. Carotid intima-media thickness in patients with cardiac syndrome X and its association with high circulating levels of asymmetric dimethylarginine. Atherosclerosis. 2009;204:e82–5.

    Article  PubMed  CAS  Google Scholar 

  57. Kaski JC, Aldama G, Cosin-Sales J. Cardiac syndrome X. Diagnosis, pathogenesis and management. Am J Cardiovasc Drugs. 2004;4:179–94.

    Article  PubMed  Google Scholar 

  58. Sestito A, Lanza GA, Di Monaco A, Lamendola P, Careri G, Tarzia P, Pinnacchio G, Battipaglia I, Crea F. Relation between cardiovascular risk factors and coronary microvascular dysfunction in cardiac syndrome X. J Cardiovasc Med (Hagerstown). 2011;12:322–7.

    Article  Google Scholar 

  59. Cox ID, Botker HE, Bagger JP, Sonne HS, Kristensen BO, Kaski JC. Elevated endothelin concentrations are associated with reduced coronary vasomotor responses in patients with chest pain and normal coronary arteriograms. J Am Coll Cardiol. 1999;34:455–60.

    Article  PubMed  CAS  Google Scholar 

  60. Botker HE, Moller N, Ovesen P, Mengel A, Schmitz O, Orskov H, Bagger JP. Insulin resistance in microvascular angina (syndrome X). Lancet. 1993;342:136–40.

    Article  PubMed  CAS  Google Scholar 

  61. Cosin-Sales J, Pizzi C, Brown S, Kaski JC. C-reactive protein, clinical presentation, and ischemic activity in patients with chest pain and normal coronary angiograms. J Am Coll Cardiol. 2003;41:1468–74.

    Article  PubMed  CAS  Google Scholar 

  62. Rosano GM, Collins P, Kaski JC, Lindsay DC, Sarrel PM, Poole-Wilson PA. Syndrome X in women is associated with oestrogen deficiency. Eur Heart J. 1995;16:610–4.

    PubMed  CAS  Google Scholar 

  63. Dominguez-Rodriguez A, Abreu-Gonzalez P, Avanzas P, Gomez MA, Kaski JC. Elevated circulating soluble form of CD40 ligand in patients with cardiac syndrome X. Atherosclerosis. 2010;213:637–41.

    Article  PubMed  CAS  Google Scholar 

  64. Lanza GA, Sestito A, Cammarota G, Grillo RL, Vecile E, Cianci R, Speziale D, Dobrina A, Maseri A, Crea F. Assessment of systemic inflammation and infective pathogen burden in patients with cardiac syndrome X. Am J Cardiol. 2004;94:40–4.

    Article  PubMed  Google Scholar 

  65. Tousoulis D, Davies GJ, Asimakopoulos G, Homaei H, Zouridakis E, Ahmed N, Kaski JC. Vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 serum level in patients with chest pain and normal coronary arteries (syndrome X). Clin Cardiol. 2001;24:301–4.

    Article  PubMed  CAS  Google Scholar 

  66. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106:653–8.

    Article  PubMed  Google Scholar 

  67. Bugiardini R, Manfrini O, Pizzi C, Fontana F, Morgagni G. Endothelial function predicts future development of coronary artery disease: a study of women with chest pain and normal coronary angiograms. Circulation. 2004;109:2518–23.

    Article  PubMed  Google Scholar 

  68. Brugaletta S, Biasucci LM, Pinnelli M, Biondi-Zoccai G, Di Giannuario G, Trotta G, Liuzzo G, Crea F. Novel anti-inflammatory effect of statins: reduction of CD4  +  CD28null T lymphocyte frequency in patients with unstable angina. Heart. 2006;92:249–50.

    Article  PubMed  CAS  Google Scholar 

  69. Mausner-Fainberg K, Luboshits G, Mor A, Maysel-Auslender S, Rubinstein A, Keren G, George J. The effect of HMG-CoA reductase inhibitors on naturally occurring CD4  +  CD25+ T cells. Atherosclerosis. 2008;197:829–39.

    Article  PubMed  CAS  Google Scholar 

  70. Hurlimann D, Forster A, Noll G, Enseleit F, Chenevard R, Distler O, Bechir M, Spieker LE, Neidhart M, Michel BA, Gay RE, Luscher TF, Gay S, Ruschitzka F. Anti-tumor necrosis factor-alpha treatment improves endothelial function in patients with rheumatoid arthritis. Circulation. 2002;106:2184–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the British Heart Foundation (grant no. PG/10/50/28434, to IED and JCK) and St. George’s Hospital Charity, London, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid E. Dumitriu MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Dumitriu, I.E., Kaski, J.C. (2013). Immune Responses in Atherosclerosis and Microvascular Angina. In: Kaski, J., Eslick, G., Bairey Merz, C. (eds) Chest Pain with Normal Coronary Arteries. Springer, London. https://doi.org/10.1007/978-1-4471-4838-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4838-8_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4837-1

  • Online ISBN: 978-1-4471-4838-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics