Advertisement

Photophysical Properties of SWNT Interfaced with DNA

  • Victor Karachevtsev
Chapter

Abstract

This chapter is dedicated to photophysical properties of SWNTs on the surface of which such very important biological molecule as a DNA was adsorbed. This unique polymer can solubilize carbon nanotubes, occur separation of certain nanotube species, provide carbon nanotube biocompatibility and facilitates different applications of this nanomaterial. The photophysical characterization of these DNA-functionalized carbon nanotubes contributes to understanding of the fundamental mechanisms of carbon nanotube photophysics as well as gives some insight into the influence of biorganic environment on their photophysical properties. The important feature of this polymer is its different structural flexibility/stiffness, depending on nucleotides and/or their sequence, its ability to form double, triple and more complicated structures. All of these features influence substantially the polymer conformation at its adsorption on the nanotube surface: for example, some polymers can wrap round a nanotube, others adsorb along a tube in a stretching conformation, third ones form globules near the nanotube. It was demonstrated that photophysical properties of nanotubes with the polymer adsorbed, being in a water environment, strongly depend on the polymer conformation, which it acquires at adsorption. Therefore, in the first part of this chapter attention is focused on the analysis of different structures of the polymer, formed upon its adsorption on the nanotube, on the determination of the interaction energy between them, as all these have direct influence on spectral properties of nanotubes. In subsequent two parts of the chapter, devoted to absorption spectroscopy and photoluminescence of nanotubes with the polymer adsorbed (mainly with DNA), the current insight into these physical phenomena observed in carbon nanotubes is made. Thus, the influence of the ππ stacking interaction between nitrogen bases and the nanotube surface on absorption spectra of nanotubes and DNA was demonstrated as well the change of the electron structure of the nanotube in the exciting state, due to the helical negative sugar-phosphatic backbone of the polymer wrapped around nanotubes, was analyzed. The analysis of novel studying, directed to clarify the influence of interfaced organic and biological molecules as well as pH of water suspension on the quantum yield of photoluminescence of semiconducting nanotubes was executed too.

Keywords

Sodium Dodecyl Sulfate Sodium Dodecyl Benzene Sulfonate Resonance Raman Scattering Metallic Nanotubes Optical Transition Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kumar, C. (ed.): Nanomaterials for Biosensors. Wiley-VCH Verlag GmbH&Co./KgaA, Weinheim (2007)Google Scholar
  2. 2.
    Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.): Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Springer, Berlin (2008)Google Scholar
  3. 3.
    Javey, A., Kong, J. (eds.): Carbon Nanotube Electronics. Springer, New York (2008)Google Scholar
  4. 4.
    Léonard, F.: The Physics of Carbon Nanotube Devices. William Andrew, Norwich (2009)Google Scholar
  5. 5.
    Guldi, D.M., Martın, N. (eds.): Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2010)Google Scholar
  6. 6.
    Nakashima, N., Okuzono, S., Murakami, H., Nakai, T., Yoshikawa, K.: DNA dissolves single-walled carbon nanotubes in water. Chem. Lett. 32, 456–457 (2003)CrossRefGoogle Scholar
  7. 7.
    Zheng, M., Jagota, A., Semke, E., Diner, B., Mclean, R., Lustig, S., Richardson, R., Tassi, N.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003)CrossRefGoogle Scholar
  8. 8.
    O’Connell, M.J., Boul, P., Ericson, L.M., Huffman, Ch., Wang, Y., Haros, E., Kuper, C., Tour, J., Ausman, K.D., Smalley, R.E.: Reversible water solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342, 265–271 (2001)CrossRefGoogle Scholar
  9. 9.
    Zheng, M., Jagota, A., Strano, M., Santos, A., Barone, P., Chou, S., Diner, B., Dresselhaus, M., Mclean, R., Onoa, G., Samsonidze, G., Semke, E., Usrey, M., Walls, D.: Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003)CrossRefGoogle Scholar
  10. 10.
    Tu, X., Manohar, S., Jagota, A., Zheng, M.: DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009)CrossRefGoogle Scholar
  11. 11.
    Yarotski, D.A., Kilina, S.V., Talin, A.A., Tretiak, S., Prezhdo, O.V., Balatsky, A.V., Taylor, A.J.: Scanning tunneling microscopy of DNA-wrapped carbon nanotubes. Nano Lett. 9, 12–17 (2009)CrossRefGoogle Scholar
  12. 12.
    Star, A., Tu, E., Niemann, J., Gabriel, J.P., Joiner, C.S., Valcke, C.: Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. U.S.A. 103, 921–926 (2006)CrossRefGoogle Scholar
  13. 13.
    Jeng, E.S., Moll, A.E., Roy, A.C., Gastala, J.B., Strano, M.S.: Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Lett. 6, 371–375 (2006)CrossRefGoogle Scholar
  14. 14.
    Hazani, M., Hennrich, F., Kappes, M., Naaman, R., Peled, D., Sidorov, V., Shvarts, D.: DNA-mediated self-assembly of carbon nanotube-based electronic devices. Chem. Phys. Lett. 391, 389–392 (2004)CrossRefGoogle Scholar
  15. 15.
    Li, S., He, P., Dong, J., Guo, Z., Dai, L.: DNA-directed self-assembling of carbon nanotubes. J. Am. Chem. Soc. 127, 14–15 (2005)CrossRefGoogle Scholar
  16. 16.
    Liu, H., He, J., Tang, J., Liu, H., Pang, P., Cao, D., Krstic, P., Joseph, S., Lindsay, S., Nuckolls, C.: Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327, 64–67 (2010)CrossRefGoogle Scholar
  17. 17.
    Lulevich, V., Kim, S., Grigoropoulos, C.P., Noy, A.: Frictionless sliding of single-stranded DNA in a carbon nanotube pore observed by single molecule force spectroscopy. Nano Lett. 11, 1171–1176 (2011)CrossRefGoogle Scholar
  18. 18.
    Gao, H., Kong, Y., Cui, D.: Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3, 471–473 (2003)CrossRefGoogle Scholar
  19. 19.
    Okada, T., Kaneko, T., Hatakeyama, R., Tohji, K.: Electrically triggered insertion of single-stranded DNA into single-walled carbon nanotubes. Chem. Phys. Lett. 417, 288–292 (2006)CrossRefGoogle Scholar
  20. 20.
    Yeh, I.C., Hummer, G.: Nucleic acid transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. U.S.A. 101, 12177–12182 (2004)CrossRefGoogle Scholar
  21. 21.
    Xie, Y., Kong, Y., Soh, A.K., Gao, H.: Electric field-induced translocation of single-stranded DNA through a polarized carbon nanotube membrane. J. Chem. Phys. 127, 225101–225108 (2007)CrossRefGoogle Scholar
  22. 22.
    O’Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kitrell, C., Ma, J., Hauge, R.H., Weisman, R.B., Smalley, R.E.: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002)CrossRefGoogle Scholar
  23. 23.
    Dresselhaus, M.S., Dresselhaus, G., Saito, R., Jorio, A.: Exciton photophysics of carbon nanotubes. Annu. Rev. Phys. Chem. 58, 719–747 (2007)CrossRefGoogle Scholar
  24. 24.
    Carlson, L.J., Krauss, T.D.: Photophysics of individual single-walled carbon nanotubes. Acc. Chem. Res. 41, 235–243 (2008)CrossRefGoogle Scholar
  25. 25.
    Ma, Y.-Z., Hertel, T., Vardeny, Z.V., Fleming, G.R., Valkunas, L.: Ultrafast spectroscopy of carbon nanotubes. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 321–352. Springer, Heidelberg (2008)Google Scholar
  26. 26.
    Lefebvre, J., Maruyama, S., Finnie, P.: Photoluminescence: science and applications. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 287–319. Springer, Heidelberg (2008)Google Scholar
  27. 27.
    Spataru, C.D., Ismail-Beigi, S., Capaz, R.B., Louie, S.G.: Quasiparticle and excitonic effects in the optical response of nanotubes and nanoribbons. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 195–227. Springer, Heidelberg (2008)Google Scholar
  28. 28.
    Hertel, T.: Photophysics in carbon nanotubes and related structures. In: Guldi, D., Martin, N. (eds.) Carbon Nanotubes and Related Structures, pp. 77–102. Wiley-VCH Verlag GmbH, Weinheim (2010)CrossRefGoogle Scholar
  29. 29.
    Avouris, P., Freitag, M., Perebeinos, V.: Carbon-nanotube optoelectronics. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 423–454. Springer, Heidelberg (2008)Google Scholar
  30. 30.
    Matsuda, K.: Exciton dephasing in a single carbon nanotube studied by photoluminescence spectroscopy. In: Marulanda, J.M. (ed.) Carbon Nanotubes Electronic Properties of Carbon Nanotubes, pp. 353–368. InTech, Vukovar (2011)Google Scholar
  31. 31.
    Ohno, Y., Maruyama, S., Mizutani, T.: Environmental effects on photoluminescence of single-walled carbon nanotubes. In: Marulanda, J.M. (ed.) Carbon Nanotubes, pp. 109–121. InTech, Vukovar (2010)Google Scholar
  32. 32.
    Bergin, S.D., Sun, Z., Streich, P., Hamilton, J., Coleman, J.N.: New solvents for nanotubes: approaching the dispersibility of surfactants. J. Phys. Chem. C 114, 231–237 (2010)CrossRefGoogle Scholar
  33. 33.
    Cheng, Q., Debnath, S., O’Neill, L., Hedderman, T.G., Gregan, E., Byrne, H.J.: Systematic study of the dispersion of SWNTs in organic solvents. J. Phys. Chem. C 114, 4857–4863 (2010)CrossRefGoogle Scholar
  34. 34.
    Forney, M.W., Poler, J.C.: Significantly enhanced single-walled carbon nanotube dispersion stability in mixed solvent systems. J. Phys. Chem. C 115, 10531–10536 (2011)CrossRefGoogle Scholar
  35. 35.
    Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., Schmidt, J., Talmon, Y.: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003)CrossRefGoogle Scholar
  36. 36.
    Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., Yodh, A.G.: High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269–273 (2003)CrossRefGoogle Scholar
  37. 37.
    Nish, A., Nicholas, R.J.: Temperature induced restoration of fluorescence from oxidised single walled carbon nanotubes in aqueous sodium dodecylsulfate solution. Phys. Chem. Chem. Phys. 8, 3547–3551 (2006)CrossRefGoogle Scholar
  38. 38.
    Blanch, A.J., Lenehan, C.E., Quinton, J.S.: Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. B 114, 9805–9811 (2010)CrossRefGoogle Scholar
  39. 39.
    Nair, N., Kim, W.-J., Braatz, R.D., Strano, M.S.: Dynamics of surfactant-suspended single-walled carbon nanotubes in a centrifugal field. Langmuir 24, 1790–1795 (2008)CrossRefGoogle Scholar
  40. 40.
    Nish, A., Hwang, J.-Y., Doig, J., Nicholas, R.J.: Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2, 640–646 (2007)CrossRefGoogle Scholar
  41. 41.
    Sánchez-Pomales, G., Pagán-Miranda, C., Santiago-Rodríguez, L., Cabrera, C.R.: DNA-wrapped carbon nanotubes: from synthesis to applications. In: Marulanda, J.M. (ed.) Carbon Nanotubes, pp. 721–748. InTeh, Vukovar (2010)Google Scholar
  42. 42.
    Koh, B., Park, J.B., Hou, X., Cheng, W.: Comparative dispersion studies of single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. B 115, 2627–2633 (2011)CrossRefGoogle Scholar
  43. 43.
    Kam, N.W.S., Liu, Z., Dai, H.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45, 577–581 (2006)CrossRefGoogle Scholar
  44. 44.
    Singh, R., Pantarotto, D., McCarthy, D.: Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube based gene delivery vectors. J. Am. Chem. Soc. 127, 4388–4396 (2005)CrossRefGoogle Scholar
  45. 45.
    Taghdisi, S.M., Lavaee, P., Ramezani, M., Abnous, K.: Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur. J. Pharm. Biopharm. 77, 200–206 (2011)CrossRefGoogle Scholar
  46. 46.
    Heller, D.A., Jin, H., Martinez, B.M., Patel, D., Miller, B.M., Yeung, T.-K., Jena, P.V., Hobartner, C., Ha, T., Silverman, S.K., Strano, M.S.: Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat. Nanotechnol. 4, 114–120 (2009)CrossRefGoogle Scholar
  47. 47.
    Tu, X., Zheng, M.: DNA-based approach to the carbon nanotube sorting problem. Nano Res. 1, 185–194 (2008)CrossRefGoogle Scholar
  48. 48.
    Strano, M.S., Zheng, M., Jagota, A., Onoa, G.B., Heller, D.A., Barone, P.W., Usrey, M.L.: Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy. Nano Lett. 4, 543–550 (2004)CrossRefGoogle Scholar
  49. 49.
    Arnold, M.S., Stupp, S.I., Hersam, M.C.: Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5, 713–718 (2005)CrossRefGoogle Scholar
  50. 50.
    Zhang, L., Zaric, S., Tu, X., Wang, X., Zhao, W., Dai, H.: Assessment of chemically separated carbon nanotubes for nanoelectronics. J. Am. Chem. Soc. 130, 2686–2691 (2008)CrossRefGoogle Scholar
  51. 51.
    Lustig, S.R., Jagota, A., Khripin, C., Zheng, M.: Structure-based carbon nanotube separations by ion-surface interactions. Mater. Res. Symp. Proc. 923, 1–6 (2006)CrossRefGoogle Scholar
  52. 52.
    Huang, X., McLean, R.S., Zheng, M.: Huang high-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal. Chem. 77, 6225–6228 (2005)CrossRefGoogle Scholar
  53. 53.
    Bauer, B.J., Becker, M.L., Bajpai, V., Fagan, J.A., Hobbie, E.K., Migler, K., Guttman, C.M., Blair, W.R.: Measurements of single-wall nanotube dispersion by size exclusion chromatography. J. Phys. Chem. C 111, 17914–17918 (2007)CrossRefGoogle Scholar
  54. 54.
    Asada, Y., Sugai, T., Kitaura, R., Shinohara, H.: Chromatographic length separation and photoluminescence study on DNA-wrapped single-wall and double-wall carbon nanotubes. J. Nanomaterials 2009, 1–9 (2009)CrossRefGoogle Scholar
  55. 55.
    Chun, J., Fagan, J.A., Hobbie, E.K., Bauer, B.J.: Size separation of single-wall carbon nanotubes by flow-field flow fractionation. Anal. Chem. 80, 2514–2523 (2008)CrossRefGoogle Scholar
  56. 56.
    Sickert, D., Taeger, S., Neumann, A., Jost, O., Eckstein, G., Mertig, M., Pompe, W.: Separation and assembly of DNA-dispersed carbon nanotubes by dielectrophoresis. AIP Conf. Proc. 786, 271–274 (2005)CrossRefGoogle Scholar
  57. 57.
    Vetcher, A.A., Srinivasan, S., Vetcher, I.A., Abramov, S.M., Kozlov, M., Baughman, R.H., Levene, S.D.: Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis. Nanotechnology 17, 4263–4269 (2006)CrossRefGoogle Scholar
  58. 58.
    Müller, K., Richert, C.: The unlikely surfactant: DNA as a ligand for single-walled carbon nanotubes. In: Marulanda, J.M. (ed.) Carbon Nanotubes, pp. 749–766. InTeh, Vukovar (2010)Google Scholar
  59. 59.
    Haggenmueller, R., Rahatekar, S.S., Fagan, J.A., Chun, J.H., Becker, M.L., Naik, R.R., Krauss, T., Carlson, L., Kadla, J.F., Trulove, P.C., Fox, D.F., DeLong, H.C., Fang, Z.C., Kelley, S.O., Gilman, J.W.: Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and Biomolecules. Langmuir 24, 507050–507078 (2008)CrossRefGoogle Scholar
  60. 60.
    Simpson, J.R., Fagan, J.A., Becker, M.L., Hobbie, E.K., Hight Walker, A.R.: The effect of dispersant on defects in length-separated single-wall carbon nanotubes measured by Raman spectroscopy. Carbon 47, 3238–3241 (2009)CrossRefGoogle Scholar
  61. 61.
    Campbell, J.F., Tessmer, I., Thorp, H.H., Erie, D.A.: Atomic force microscopy studies of DNA-wrapped carbon nanotube structure and binding to quantum dots. J. Am. Chem. Soc. 130, 10648–10655 (2008)CrossRefGoogle Scholar
  62. 62.
    Karachevtsev, M.V., Lytvyn, O.S., Stepanian, S.G., Leontiev, V.S., Adamowicz, L., Karachevtsev, V.A.: SWNT-DNA and SWNT-polyC hybrids: AFM study and computer modeling. J. Nanosci. Nanotechnol. 8, 1473–1480 (2008)Google Scholar
  63. 63.
    Toita, S., Kang, D., Kobayashi, K., Kawamoto, H., Kojima, K., Tachibana, M.: Atomic force microscopic study on DNA-wrapping for different diameter single-wall carbon nanotubes. Diam. Relat. Mat. 17, 1389–1393 (2008)CrossRefGoogle Scholar
  64. 64.
    Cathcart, H., Nicolosi, V., Hughes, J.M., Blau, W.J., Kelly, J.M., Quinn, S.J., Coleman, J.N.: Ordered DNA wrapping switches on luminescence in single-walled nanotube dispersions. J. Am. Chem. Soc. 130, 12734–12744 (2008)CrossRefGoogle Scholar
  65. 65.
    Malik, S., Vogel, S., Rosner, H., Arnold, K., Hennrich, F., Kohler, A.-K., Richert, C., Kappes, M.M.: Physical chemical characterization of DNA–SWNT suspensions and associated composites. Compos. Sci. Technol. 67, 916–921 (2007)CrossRefGoogle Scholar
  66. 66.
    Karachevtsev, V.A., Glamazda, A. Yu., Leontiev, V.S., Mateichenko, P.V., Dettlaff-Weglikowska, U.: SWNTs with DNA in aqueous solution and films. AIP Conf. Proceed. 786, 257–262 (2005)CrossRefGoogle Scholar
  67. 67.
    Heller, D.A., Jeng, E.S., Yeung, T.-K., Martinez, B.M., Moll, A.E., Gastala, J.B., Strano, M.S.: Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311, 508–511 (2006)CrossRefGoogle Scholar
  68. 68.
    Cha, M., Jung, S., Cha, M.-H., Kim, G., Ihm, J., Lee, J.: Reversible metal-semiconductor transition of ssDNA-decorated single-walled carbon nanotubes. Nano Lett. 9, 1345–1349 (2009)CrossRefGoogle Scholar
  69. 69.
    Bobadilla, A.D., Seminario, J.M.: DNA-CNT Interactions and Gating Mechanism Using MD and DFT. J. Phys. Chem. C 115, 3466–3474 (2011)CrossRefGoogle Scholar
  70. 70.
    Gao, H., Kong, Y.: Simulation of DNA-nanotube interactions. Annu. Rev. Mater. Res. 34, 123–150 (2004)CrossRefGoogle Scholar
  71. 71.
    Lu, G.P., Maragakis, P., Kaxiras, E.: Carbon nanotube interaction with DNA. Nano Lett. 5, 897–900 (2005)CrossRefGoogle Scholar
  72. 72.
    Gladchenko, G.O., Karachevtsev, M.V., Leontiev, V.S., Valeev, V.A., Glamazda, A. Yu., Plokhotnichenko, A.M., Stepanian, S.G.: Hybrids of fragmented double-stranded DNA and carbon nanotubes in aqueous solution. Mol. Phys. 104, 3193–3201 (2006)CrossRefGoogle Scholar
  73. 73.
    Manohar, S., Tang, T., Jagota, A.: Structure of homopolymer DNA-CNT hybrids. J. Phys. Chem. C 111, 17835–17845 (2007)CrossRefGoogle Scholar
  74. 74.
    Zhao, X., Johnson, J.K.: Simulation of adsorption of DNA on carbon nanotubes. J. Am. Chem. Soc. 129, 10438–10445 (2007)CrossRefGoogle Scholar
  75. 75.
    Frischknecht, A.L., Martin, M.G.: Simulation of the adsorption of nucleotide monophosphates on carbon nanotubes in aqueous solution. J. Phys. Chem. C 112, 6271–6278 (2008)CrossRefGoogle Scholar
  76. 76.
    Karachevtsev, V.A., Gladchenko, G.O., Karachevtsev, M.V., Valeev, V.A., Leontiev, V.S., Lytvyn, O.S.: Adsorption of poly(rA) on the carbon nanotube surface and its hybridization with poly(rU). Chem. Phys. Phys. Chem. 9, 2872–2881 (2008)Google Scholar
  77. 77.
    Martin, W., Zhu, W., Krilov, G.: Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water. J. Phys. Chem. B 112, 16076–16089 (2008)CrossRefGoogle Scholar
  78. 78.
    Johnson, R.R., Johnson, A.T.C., Klein, M.L.: Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett. 8, 69–75 (2008)CrossRefGoogle Scholar
  79. 79.
    Johnson, R.R., Kohlmeyer, A., Johnson, A.T.C., Klein, M.L.: Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics. Nano Lett. 9, 537–541 (2009)CrossRefGoogle Scholar
  80. 80.
    Johnson, R.R., Johnson, A.T.C., Klein, M.L.: The nature of DNA-base–carbon-nanotube interactions. Small 6, 31–34 (2010)CrossRefGoogle Scholar
  81. 81.
    Roxbury, D., Manohar, S., Jagota, A.: Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube. J. Phys. Chem. C 114, 13267–13276 (2010)CrossRefGoogle Scholar
  82. 82.
    Karachevtsev, M.V., Karachevtsev, V.A.: Peculiarities of homooligonucleotides wrapping around carbon nanotubes: molecular dynamics modeling. J. Phys. Chem. B 115, 9271–9279 (2011)CrossRefGoogle Scholar
  83. 83.
    Roxbury, D., Jagota, A., Mittal, J.: Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube. J. Am. Chem. Soc. 133, 13545–13550 (2011)CrossRefGoogle Scholar
  84. 84.
    Das, A., Sood, A.K., Maiti, P.K., Das, M., Varadarajan, R., Rao, C.N.R.: Binding of nucleobases with single-walled carbon nanotubes: theory and experiment. Chem. Phys. Lett. 453, 266–273 (2008)CrossRefGoogle Scholar
  85. 85.
    Gowtham, S., Scheicher, R.H., Pandey, R., Karna, S.P., Ahuja, R.: First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes. Nanotechnology 19, 125701–125718 (2008)CrossRefGoogle Scholar
  86. 86.
    Shtogun, Y.V., Woods, L.M., Dovbeshko, G.I.: Adsorption of adenine and thymine and their radicals on single-wall carbon nanotubes. J. Phys. Chem. C 111, 18174–18181 (2007)CrossRefGoogle Scholar
  87. 87.
    Wang, Y., Bu, Y.: Noncovalent Interactions between cytosine and SWNT: curvature dependence of complexes via.ππ. Stacking and cooperative CH…. π/NH… π. J. Phys. Chem. B 111, 6520–6526 (2007)CrossRefGoogle Scholar
  88. 88.
    Wang, Y.: Theoretical evidence for the stronger ability of thymine to disperse SWNT than cytosine and adenine: self-stacking of DNA bases vs their cross-stacking with SWNT. J. Phys. Chem. C 112, 14297–14303 (2008)CrossRefGoogle Scholar
  89. 89.
    Stepanian, S.G., Karachevtsev, M.V., Glamazda, A. Yu., Karachevtsev, V.A., Adamowicz, L.: Stacking interaction of cytosine with carbon nanotubes: MP2, DFT and Raman spectroscopy study. Chem. Phys. Lett. 459, 153–158 (2008)CrossRefGoogle Scholar
  90. 90.
    Stepanian, S.G., Karachevtsev, M.V., Glamazda, A. Yu., Karachevtsev, V.A., Adamowicz, L.: Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes. J. Phys. Chem. A 113, 3621–3629 (2009)CrossRefGoogle Scholar
  91. 91.
    Shukla, M.K., Dubey, M., Zakar, E., Namburu, R., Czyznikowska, Z., Leszczynski, J.: Interaction of nucleic acid bases with single-walled carbon nanotube. Chem. Phys. Lett. 480, 269–272 (2009)CrossRefGoogle Scholar
  92. 92.
    Umadevi, D., Sastry, G.N.: Quantum mechanical study of physisorption of nucleobases on carbon materials: graphene versus carbon nanotubes. J. Phys. Chem. Lett. 2, 1572–1576 (2011)CrossRefGoogle Scholar
  93. 93.
    Meng, S., Maragakis, P., Papaloukas, C., Kaxiras, E.: DNA nucleoside interaction and identification with carbon nanotubes. Nano Lett. 7, 45–50 (2007)CrossRefGoogle Scholar
  94. 94.
    Wang, H., Ceulemans, A.: Physisorption of adenine DNA nucleosides on zigzag and armchair single-walled carbon nanotubes: a first-principles study. Phys. Rev. B 79, 195419–195426 (2009)CrossRefGoogle Scholar
  95. 95.
    Xiao, Z., Wang, X., Xu, X., Zhang, H., Li, Y., Wang, Y.: Base- and structure-dependent DNA dinucleotide–carbon nanotube interactions: molecular dynamics simulations and thermodynamic analysis. J. Phys. Chem. C 115, 21546–21558 (2011)CrossRefGoogle Scholar
  96. 96.
    Sponer, J., Rileya, K.E., Hobza, P.: Nature and magnitude of aromatic stacking of nucleic acid bases. Phys. Chem. Chem. Phys. 10, 2595–2610 (2008)CrossRefGoogle Scholar
  97. 97.
    Hughes, J.M., Cathcart, H., Coleman, J.N.: From dispersion and exfoliation of nanotubes with synthetic oligonucleotides: variation of dispersion efficiency and oligo-nanotube interaction with base type. J. Phys. Chem. C 114, 11741–11747 (2010)CrossRefGoogle Scholar
  98. 98.
    Enyashin, A.N., Gemming, S., Seifert, G.: DNA-wrapped carbon nanotubes. Nanotechnology 18, 245702-1-10 (2007)Google Scholar
  99. 99.
    Gladchenko, G.O., Lytvyn, O.S., Karachevtsev, M.V., Valeev, V.A., Leontiev, V.S., Karachevtsev, V.A.: Binding of polynucleotides with single-walled carbon nanotubes: effect of temperature. Materialwissenschaft und Werkstofftechnik 42, 92–97 (2011)CrossRefGoogle Scholar
  100. 100.
    Roxbury, D., Tu, X., Zheng, M., Jagota, A.: Recognition Ability of DNA for carbon nanotubes correlates with their binding affinity. Langmuir 27, 8282–8293 (2011)CrossRefGoogle Scholar
  101. 101.
    Kim, S.N., Kuang, Z., Grote, J.G., Farmer, B.L., Naik, R.R.: Enrichment of (6,5) single wall carbon nanotubes using genomic DNA. Nano Lett. 8, 4415–4420 (2008)CrossRefGoogle Scholar
  102. 102.
    Karachevtsev, V.A., Glamazda, A. Yu., Dettlaff-Weglikowska, U., Leontiev, V.S., Mateichenko, P.V., Roth, S., Rao, A.M.: Spectroscopic and SEM studies of SWNTs: polymer solutions and films. Carbon 44, 1292–1297 (2006)CrossRefGoogle Scholar
  103. 103.
    Gigliotti, B., Sakizzie, B., Bethune, D.S., Shelby, R.M., Cha, J.N.: Sequence- independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. Nano Lett. 6, 159–164 (2006)CrossRefGoogle Scholar
  104. 104.
    Zhao, W., Gao, Y., Brook, M.A., Li, Y.: Wrapping single-walled carbon nanotubes with long single-stranded DNA molecules produced by rolling circle amplification. Chem. Commun. 1, 3582–3584 (2006)CrossRefGoogle Scholar
  105. 105.
    Keren, K., Berman, R.S., Buchstab, E., Sivan, U., Braun, E.: DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003)CrossRefGoogle Scholar
  106. 106.
    Fu, D., Okimoto, H., Lee, C.W., Takenobu, T., Iwasa, Y., Kataura, H., Li, L.-J.: Ultrasensitive detection of DNA molecules with high on/off single-walled carbon nanotube network. Adv. Mater. 22, 4867–4871 (2010)CrossRefGoogle Scholar
  107. 107.
    Liang, Z., Lao, R., Wang, J., Liu, Y., Wang, L., Huang, Q., Song, S., Li, G., Fan, C.: Solubilization of single-walled carbon nanotubes with single-stranded DNA generated from asymmetric PCR. Int. J. Mol. Sci. 8, 705–713 (2007)CrossRefGoogle Scholar
  108. 108.
    Jeng, E.S., Barone, P.W., Nelson, J.D., Strano, M.S.: Hybridization kinetics and thermodynamics of DNA adsorbed to individually dispersed single-walled carbon nanotubes. Small 3, 1602–1609 (2007)CrossRefGoogle Scholar
  109. 109.
    Cathcart, H., Quinn, S., Nicolosi, V., Kelly, J.M., Blau, W.J., Coleman, J.N.: Spontaneous debundling of single-walled carbon nanotubes in DNA-based dispersions. J. Phys. Chem. C 111, 66–74 (2007)CrossRefGoogle Scholar
  110. 110.
    Vogel, S.R., Kappes, M.M., Hennrich, F., Richert, C.: An unexpected new optimum in the structure space of DNA solubilizing single-walled Carbon nanotubes. Chem. Eur. J. 13, 1815–1820 (2007)CrossRefGoogle Scholar
  111. 111.
    Noguchi, Y., Fujigaya, T., Niidome, Y., Nakashima, N.: Regulation of the near-IR spectral properties of individually dissolved single-walled carbon nanotubes in aqueous solutions of dsDNA. Chem. Eur. J. 14, 5966–5973 (2008)CrossRefGoogle Scholar
  112. 112.
    Noguchi, Y., Fujigaya, T., Niidome, Y., Nakashima, N.: Single-walled carbon nanotubes/DNA hybrids in water are highly stable. Chem. Phys. Lett. 455, 249–251 (2008)CrossRefGoogle Scholar
  113. 113.
    Yamamoto, Y., Fujigaya, T., Niidome, Y., Nakashima, N.: Fundamental properties of oligo double-stranded DNA/single-walled carbon nanotube nanobiohybrids. Nanoscale 2, 1767–1772 (2010)CrossRefGoogle Scholar
  114. 114.
    Elsner, H.I., Lindblad, E.B.: Ultrasonic degradation of DNA. J. Mol. Cell. Biol. 8, 697–701 (1989)Google Scholar
  115. 115.
    Mann, T.L., Krull, U.J.: The application of ultrasound as a rapid method to provide DNA fragments suitable for detection by DNA biosensors. Biosens. Bioelectron. 20, 945–955 (2004)CrossRefGoogle Scholar
  116. 116.
    Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry. Part II. W.H. Freeman & Company, San Francisco (1980)Google Scholar
  117. 117.
    Tinoco, I.: Hypochromism in polynucleotides. J. Am. Chem. Soc. 82, 4785–4790 (1960)CrossRefGoogle Scholar
  118. 118.
    Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1996)Google Scholar
  119. 119.
    Hamon, M.A., Itkis, M.E., Niyogi, S., Alvaraes, T., Kuper, C., Menon, M., Haddon, R.C.: Effect of rehybridization on the electronic structure of single-walled carbon nanotubes. J. Am. Chem. Soc. 123, 11292–11293 (2001)CrossRefGoogle Scholar
  120. 120.
    Weisman, R.B., Bachilo, S.M.: Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett. 3, 1235–1239 (2003)CrossRefGoogle Scholar
  121. 121.
    Tu, X., Walker, A.R.H., Khripin, C.Y., Zheng, M.: Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. J. Am. Chem. Soc. 133, 12998–13001 (2011)CrossRefGoogle Scholar
  122. 122.
    Ajiki, H., Ando, T.: Ahronov-Bohm effect in carbon nanotubes. Phys. B 201, 349–352 (1994)CrossRefGoogle Scholar
  123. 123.
    Bozovic, I., Bozovic, N., Damnjanovic, M.: Optical dichroism in nanotubes. Phys. Rev. B 62, 6971–6974 (2000)CrossRefGoogle Scholar
  124. 124.
    Lefebvre, J., Fraser, J.M., Finnie, P., Homma, Y.: Photoluminescence from an individual single-walled carbon nanotube. Phys. Rev. B 69, 075403-1-075403-5 (2004)Google Scholar
  125. 125.
    Miyauchi, Y., Oba, M., Maruyama, S.: Cross-polarized optical absorption of single-walled nanotubes by polarized photoluminescence excitation spectroscopy. Phys. Rev. B 74, 205440-1-205440-6 (2006)Google Scholar
  126. 126.
    Nikolaev, P., Bronikowski, M.J., Bradley, R.K., Rohmund, F., Colbert, D.T., Smith, K.A., Smalley, R.E.: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999)CrossRefGoogle Scholar
  127. 127.
    Alvarez, W.E., Pompeo, F., Herrera, J.E., Balzano, L., Resasco, D.E.: Characterization of single-walled carbon nanotubes (SWNTs) produced by CO disproportionation on Co–Mo catalysts. Chem. Mater. 14, 1853–1858 (2002)CrossRefGoogle Scholar
  128. 128.
    Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E., Weisman, R.B.: Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002)CrossRefGoogle Scholar
  129. 129.
    Bachilo, S.M., Balzano, L., Herrera, J.E., Pompeo, F., Resasco, D.E., Weisman, R.B.: Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003)CrossRefGoogle Scholar
  130. 130.
    Fantini, C., Jorio, A., Santos, A.P., Peressinotto, V.S.T., Pimenta, M.A.: Characterization of DNA-wrapped carbon nanotubes by resonance Raman and optical absorption spectroscopies. Chem. Phys. Lett. 439, 138–142 (2007)CrossRefGoogle Scholar
  131. 131.
    Hagen, A., Hertel, T.: Quantitative analysis of optical spectra from individual single-wall carbon nanotubes. Nano Lett. 3, 383–388 (2003)CrossRefGoogle Scholar
  132. 132.
    Hartschuh, A., Pedrosa, H.N., Peterson, J., Huang, L., Anger, P., Qian, H., Meixner, A.J., Steiner, M., Novotny, L., Krauss, T.D.: Single carbon nanotube optical spectroscopy. Chem. Phys. Chem. 6, 577–582 (2005)CrossRefGoogle Scholar
  133. 133.
    Pichler, T., Knupfer, M., Golden, M.S., Fink, J., Rinzler, A., Smalley, R.E.: Localized and delocalized electronic states in single-wall carbon nanotubes. Phys. Rev. Lett. 80, 4729–4732 (1998)CrossRefGoogle Scholar
  134. 134.
    Reed, B.W., Sarikaya, M.: Electronic properties of carbon nanotubes by transmission electron energy-loss spectroscopy. Phys. Rev. B 64, 195404–1–195404–13 (2001)Google Scholar
  135. 135.
    Murakami, Y., Einarsson, E., Edamura, T., Maruyama, S.: Polarization dependence of the optical absorption of single-walled carbon nanotubes. Phys. Rev. Lett. 94, 087402–1–087402–4 (2005)Google Scholar
  136. 136.
    Murakami, Y., Maruyama, S.: Coupling between localized resonance and excitation of surface waves in metal hole arrays. Phys. Rev. B 79, 155445–1–155445–4 (2009)Google Scholar
  137. 137.
    Rance, G.A., Marsh, D.H., Nicholas, R.J., Khlobystov, A.N.: UV–vis absorption spectroscopy of carbon nanotubes: relationship between the p-electron plasmon and nanotube diameter. Chem. Phys. Lett. 493, 19–23 (2010)CrossRefGoogle Scholar
  138. 138.
    Reich, S., Thomsen, C., Ordejon, P.: Electronic band structure of isolated and bundled carbon nanotubes. Phys. Rev. B 65, 155411–1–155411–11 (2002)Google Scholar
  139. 139.
    Karachevtsev, V.A., Glamazda, A. Yu., Dettlaff-Weglikowska, U., Leontiev, V.S., Plokhotnichenko, A.M., Roth, S.: Spectroscopy study of SWNT in aqueous solution with different surfactants. AIP Conf. Proc. 685, 202–207 (2003)CrossRefGoogle Scholar
  140. 140.
    Doorn, S.K.: Raman studies of new carbon nanotube sample types. J. Nanosci. Nanotechnol. 5, 1023–1034 (2005)CrossRefGoogle Scholar
  141. 141.
    Park, J.S., Oyama, Y., Saito, R., Izumida, W., Jiang, J., Sato, K., Fantini, C., Jorio, A., Dresselhaus, G., Dresselhaus, M.S.: Raman resonance window of single-wall carbon nanotubes. Phys. Rev. B 74, 165414–1–165414–6 (2006)Google Scholar
  142. 142.
    Itkis, M.E., Perea, D.E., Niyogi, S., Rickard, S.M., Hamon, M.A., Hu, H., Zhao, B., Haddon, R.C.: Purity evaluation of As-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett. 3, 309–314 (2003)CrossRefGoogle Scholar
  143. 143.
    Nepal, D., Kim, D.S., Geckeler, K.E.: A facile and rapid purification method for single-walled carbon nanotubes. Carbon 43, 660–662 (2005)CrossRefGoogle Scholar
  144. 144.
    Naumov, A.V., Ghosh, S., Tsyboulski, D.A., Bachilo, S.M., Weisman, R.B.: Analyzing absorption backgrounds in single-walled carbon nanotube spectra. ACS Nano 5, 1639–1648 (2011)CrossRefGoogle Scholar
  145. 145.
    Ryabenko, A.G., Dorofeeva, T.V., Zvereva, G.I.: UV–VIS–NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Van-der-Waals SWNT/SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy. Carbon 42, 1523–1535 (2004)CrossRefGoogle Scholar
  146. 146.
    Nair, N., Usrey, M.L., Kim, W.J., Braatz, R.D., Strano, M.S.: Estimation of the (n, m) concentration distribution of single-walled carbon nanotubes from photoabsorption spectra. Anal. Chem. 78, 7689–7696 (2006)CrossRefGoogle Scholar
  147. 147.
    Dyke, C.A., Tour, J.M.: Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett. 3, 1215–1218 (2003)CrossRefGoogle Scholar
  148. 148.
    Ando, T.: Role of the Aharonov–Bohm phase in the optical properties of carbon nanotubes. In: Jorio, A., Dresselhaus, G., Dresselhaus M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 229–250. Springer, Heidelberg (2008)Google Scholar
  149. 149.
    Naumov, A.V., Kuznetsov, O.A., Harutyunyan, A.R., Green, A.A., Hersam, M.C., Resasco, D.E., Nikolaev, P.N., Weisman, R.B.: Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies. Nano Lett. 9, 3203–3208 (2009)CrossRefGoogle Scholar
  150. 150.
    Strano, M.S., Doorn, S.K., Haroz, E.H., Kittrell, C., Hauge, R.H., Smalley, R.E.: Assignment of (n, m) Raman and optical features of metallic single-walled carbon nanotubes. Nano Lett. 3, 1091–1096 (2003)CrossRefGoogle Scholar
  151. 151.
    Hartschuh, A., Pedrosa, H.N., Novotny, L., Krauss, T.D.: Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 301, 1354–1356 (2003)CrossRefGoogle Scholar
  152. 152.
    Luo, Z., Pfefferle, L.D., Haller, G.L., Papadimitrakopoulos, F.: (n, m) Abundance evaluation of single-walled carbon nanotubes by fluorescence and absorption spectroscopy. J. Am. Chem. Soc. 128, 15511–15516 (2006)CrossRefGoogle Scholar
  153. 153.
    Topinka, M.A., Rowell, M.W., Goldhaber-Gordon, D., McGehee, M.D., Hecht, D.S., Gruner, G.: Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett. 9, 1866–1871 (2009)CrossRefGoogle Scholar
  154. 154.
    Asada, Y., Miyata, Y., Shiozawa, K., Ohno, Y., Kitaura, R., Mizutani, T., Shinohara, H.: Thin-film transistors with length-sorted DNA-wrapped single-wall carbon nanotubes. J. Phys. Chem. C 115, 270–273 (2011)CrossRefGoogle Scholar
  155. 155.
    Yao, Z., Kane, C.L., Dekker, C.: High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000)CrossRefGoogle Scholar
  156. 156.
    Wang, R., Sun, J., Gao, L., Zhang, J.: Dispersion of single-walled carbon nanotubes by DNA for preparing transparent conductive films. J. Mater. Chem. 20, 6903–6909 (2010)CrossRefGoogle Scholar
  157. 157.
    Miyata, Y., Yanagi, K., Maniwa, Y., Kataura, H.: Optical evaluation of the metal-to-semiconductor ratio of single-wall carbon nanotubes. J. Phys. Chem. C 112, 13187–13191 (2008)CrossRefGoogle Scholar
  158. 158.
    Attal, S., Thiruvengadathan, R., Regev, O.: Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV–visible absorption spectroscopy. Anal. Chem. 78, 8098–8104 (2006)CrossRefGoogle Scholar
  159. 159.
    Jeong, S.H., Kim, K.K., Jeong, S.J., An, K.H., Lee, S.H., Lee, Y.H.: Optical absorption spectroscopy for determining carbon nanotube concentration in solution. Synth. Met. 157, 570–574 (2007)CrossRefGoogle Scholar
  160. 160.
    Huang, L., Zhang, H., Wu, B., Liu, Y., Wei, D., Chen, J., Xue, Y., Yu, G., Kajiura, H., Li, Y.: A generalized method for evaluating the metallic-to-semiconducting ratio of separated single-walled carbon nanotubes by UV-vis-NIR characterization. J. Phys. Chem. C 114, 12095–12098 (2010)CrossRefGoogle Scholar
  161. 161.
    Jacobsen, N.S., Pantano, P.: Determining the percentages of semi-conducting and metallic single-walled carbon nanotubes in bulk soot. Carbon 49, 1998–2006 (2011)CrossRefGoogle Scholar
  162. 162.
    Tan, Y., Resasco, D.E.: Dispersion of single-walled carbon nanotubes of narrow diameter distribution. J. Phys. Chem. B 109, 14454–14460 (2005)CrossRefGoogle Scholar
  163. 163.
    Berciaud, S., Cognet, L., Poulin, P., Weisman, R.B., Lounis, B.: Absorption spectroscopy of individual single-walled carbon nanotubes. Nano Lett. 7, 1203–1207 (2007)CrossRefGoogle Scholar
  164. 164.
    Islam, M.F., Milkie, D.E., Kane, C.L., Yodh, A.G., Kikkawa, J.M.: Direct measurement of the polarized absorption cross section of single-wall carbon nanotubes. Phys. Rev. Lett. 93, 037404-1-037404-4 (2004)Google Scholar
  165. 165.
    Jiang, J., Saito, R., Gruneis, A., Dresselhaus, G., Dresselhaus, M.S.: Optical absorption matrix element in single-wall carbon nanotubes. Carbon 42, 3169–3176 (2004)CrossRefGoogle Scholar
  166. 166.
    Kam, N.W.S., O’Connell, M., Wisdom, J.A., Dai, H.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U.S.A. 102, 11600–11605 (2005)CrossRefGoogle Scholar
  167. 167.
    Schoppler, F., Mann, C., Hain, T.C., Neubauer, F.M., Privitera, G., Bonaccorso, F., Chu, D.P., Ferrari, A.C., Hertel, T.: Molar extinction coefficient of single-wall carbon nanotubes. J. Phys. Chem. C 115, 14682–14686 (2011)CrossRefGoogle Scholar
  168. 168.
    Zhao, B., Itkis, M.E., Niyogi, S., Hu, H., Zhang, J., Haddon, R.C.: Study of the extinction coefficients of single-walled carbon nanotubes and related carbon materials. J. Phys. Chem. B 108, 8136–8141 (2004)CrossRefGoogle Scholar
  169. 169.
    Landi, B.J., Ruf, H.J., Evans, C.M., Cress, C.D., Raffaelle, R.P.: Thermal oxidation profiling of single-walled carbon nanotubes. J. Phys. Chem. B 109, 9952–9965 (2005)CrossRefGoogle Scholar
  170. 170.
    Kim, W.-J., Lee, C.Y., O’brien, K.P., Plombon, J.J., Blackwell, J.M., Strano, M.S.: Connecting single molecule electrical measurements to ensemble spectroscopic properties for quantification of single-walled carbon nanotube separation. J. Am. Chem. Soc. 131, 3128–3129 (2009)CrossRefGoogle Scholar
  171. 171.
    Fantini, C., Cassimiro, J., Peressinotto, V.S.T., Plentz, F., Souza Filho, A.G., Furtado, C.A., Santos, A.P.: Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants. Chem. Phys. Lett. 473, 96–101 (2009)CrossRefGoogle Scholar
  172. 172.
    Miyauchi, Y., Saito, R., Sato, K., Ohno, Y., Iwasaki, S., Mizutani, T., Jiang, J., Maruyama, S.: Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials. Chem. Phys. Lett. 442, 394–399 (2007)CrossRefGoogle Scholar
  173. 173.
    Hughes, M.E., Brandin, E., Golovchenko, J.A.: Optical absorption of DNA–carbon nanotube structures. Nano Lett. 7, 1191–1194 (2007)CrossRefGoogle Scholar
  174. 174.
    Karachevtsev, V.A., Plokhotnichenko, A.M., Karachevtsev, M.V., Leontiev, V.S.: Decrease of carbon nanotube UV light absorption induced by π-stacking interaction with nucleotide bases. Carbon 48, 3682–3691 (2010)CrossRefGoogle Scholar
  175. 175.
    Snyder, S.E., Rotkin, S.V.: Optical identification of a DNA-wrapped carbon nanotube: signs of helically broken symmetry. Small 4, 1284–1286 (2008)CrossRefGoogle Scholar
  176. 176.
    Puller, V., Rotkin, S.V.: Helicity and broken symmetry of DNA-nanotube hybrids. Europhys. Lett. 77, 27006 (2007)CrossRefGoogle Scholar
  177. 177.
    Michalski, P.J., Mele, E.J.: Carbon nanotubes in helically modulated potentials. Phys. Rev. B 77, 085429-1-085429-11 (2008)Google Scholar
  178. 178.
    Rotkin, S.V.: Electronic properties of nonideal nanotube materials: helical symmetry breaking in DNA hybrids. Annu. Rev. Phys. Chem. 61, 241–261 (2010)CrossRefGoogle Scholar
  179. 179.
    Kasha, M.: Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 9, 14–19 (1950)CrossRefGoogle Scholar
  180. 180.
    Jones, M., Engtrakul, C., Metzger, W.K., Ellingson, R.J., Nozik, A.J., Heben, M.J., Rumbles, G.: Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys. Rev. B 71, 115426-1-115426-9 (2005)Google Scholar
  181. 181.
    Rocha, J.-D.R., Bachilo, S.M., Ghosh, S., Arepalli, S., Weisman, R.B.: Efficient spectrofluorimetric analysis of single-walled carbon nanotube samples. Anal. Chem. 83, 7431–7437 (2011)CrossRefGoogle Scholar
  182. 182.
    Ando, T.: Excitons in carbon nanotubes. J. Phys. Soc. Jpn. 66, 1066–1073 (1997)MathSciNetCrossRefGoogle Scholar
  183. 183.
    Kane, C.L., Mele, E.J.: Ratio problem in single nanotube fluorescence spectroscopy. Phys. Rev. Lett. 90, 207401-1-207401-4 (2003)Google Scholar
  184. 184.
    Wang, F., Dukovic, G., Brus, L.E., Heinz, T.F.: The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005)CrossRefGoogle Scholar
  185. 185.
    Maultzsch, J., Pomraenke, R., Reich, S., Chang, E., Prezzi, D., Ruini, A., Molinari, E., Strano, M.S., Thomsen, C., Lienau, C.: Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72, 241402–1–241402–4 (2005)Google Scholar
  186. 186.
    Dukovic, G., Wang, F., Song, D., Sfeir, M.Y., Heinz, T.F., Brus, L.E.: Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett. 5, 2314–2318 (2005)CrossRefGoogle Scholar
  187. 187.
    Spataru, C.D., Ismail-Beigi, S., Benedict, L.X., Louie, S.G.: Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 93, 077402-1- 077402-4 (2004)Google Scholar
  188. 188.
    Perebeinos, V., Tersoff, J., Avouris, P.: Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402–1–257402–4 (2004)Google Scholar
  189. 189.
    Chang, E., Bussi, G., Ruini, A., Molinari, E.: Excitons in carbon nanotubes: an ab initio symmetry-based approach. Phys. Rev. Lett. 92, 196401–1–196401–4 (2004)Google Scholar
  190. 190.
    Pedersen, T.G.: Variational approach to excitons in carbon nanotubes. Phys. Rev. B 67, 073401–1–073401–4 (2003)Google Scholar
  191. 191.
    Zhao, H., Mazumdar, S.: Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 93, 157402–1–157402–4 (2004)Google Scholar
  192. 192.
    Kane, C.L., Mele, E.J.: Electron interactions and scaling relations for optical excitations in carbon nanotubes. Phys. Rev. Lett. 93, 197402–1–197402–4 (2004)Google Scholar
  193. 193.
    Malic, E., Hirtschulz, M., Reich, S., Knorr, A.: Excitonic absorption spectra and ultrafast dephasing dynamics in arbitrary carbon nanotubes. Phys. Status Solidi Rapid. Res. Lett. 3, 196–198 (2009)CrossRefGoogle Scholar
  194. 194.
    Lüer, L., Hoseinkhani, S., Polli, D., Crochet, J., Hertel, T., Lanzani, G.: Size and mobility of excitons in (6,5) carbon nanotubes. Nat. Phys. 5, 54–58 (2009)CrossRefGoogle Scholar
  195. 195.
    Tretiak, S., Kilina, S., Piryatinski, A., Saxena, A., Martin, R.L., Bishop, A.R.: Excitons and peierls distortion in conjugated carbon nanotubes. Nano Lett. 7, 86–92 (2007)CrossRefGoogle Scholar
  196. 196.
    Perebeinos, V., Tersoff, J., Avouris, Ph: Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005)CrossRefGoogle Scholar
  197. 197.
    Jiang, J., Saito, R., Samsonidze, G.G., Jorio, A., Chou, S.G., Dresselhaus, G., Dresselhaus, M.S.: Chirality dependence of exciton effects in single-wall carbon nanotubes: tight-binding model. Phys. Rev. B 75, 035407–1–035407–13 (2007)Google Scholar
  198. 198.
    Kono, J., Nicholas, R.J., Roche, S.: High magnetic field phenomena. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes, Topics in Applied Physics, vol. 111, pp. 393–422. Springer, Heidelberg (2008)Google Scholar
  199. 199.
    Shaver, J., Kono, J.: Temperature-dependent magneto-photoluminescence spectroscopy of carbon nanotubes: evidence for dark excitons. Laser Photon. Rev. 1, 260–274 (2007)CrossRefGoogle Scholar
  200. 200.
    Matsunaga, R., Matsuda, K., Kanemitsu, Y.: Evidence for dark excitons in a single carbon nanotube due to the Aharonov-Bohm effect. Phys. Rev. Lett. 101, 147404–1–147404–4 (2008)Google Scholar
  201. 201.
    Srivastava, A., Htoon, H., Klimov, V.I., Kono, J.: Direct observation of dark excitons in individual carbon nanotubes: inhomogeneity in the exchange splitting. Phys. Rev. Lett. 101, 087402–1–087402–4 (2008)Google Scholar
  202. 202.
    Shaver, J., Crooker, S.A., Fagan, J.A., Hobbie, E.K., Ubrig, N., Portugall, O., Perebeinos, V., Avouris, Ph., Kono, J.: Magneto-optical spectroscopy of highly aligned carbon nanotubes: identifying the role of threading magnetic flux. Phys. Rev. B 78, 081402(R) (2008)Google Scholar
  203. 203.
    Matsunaga, R., Matsuda, K., Kanemitsu, Y.: Direct observation of dark exciton states in single carbon nanotubes. J. Lumin. 129, 1702–1705 (2009)CrossRefGoogle Scholar
  204. 204.
    Mortimer, I.B., Nicholas, R.J.: Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes. Phys. Rev. Lett. 98, 027404–1–027404–4 (2007)Google Scholar
  205. 205.
    Berger, S., Voisin, C., Cassabois, G., Delalande, C., Roussignol, P.: Temperature dependence of exciton recombination in semiconducting single-wall carbon nanotubes. Nano Lett. 7, 398–402 (2007)CrossRefGoogle Scholar
  206. 206.
    Scholes, G.D., Tretiak, S., McDonald, T.J., Metzger, W.K., Engtrakul, C., Rumbles, G., Heben, M.J.: Low-lying exciton states determine the photophysics of semiconducting single wall carbon nanotubes. J. Phys. Chem. C 111, 11139–11149 (2007)CrossRefGoogle Scholar
  207. 207.
    Metzger, W.K., McDonald, T.J., Engtrakul, C., Blackburn, J.L., Scholes, G.D., Rumbles, G., Heben, M.J.: Temperature-dependent excitonic decay and multiple states in single-wall carbon nanotubes. J. Phys. Chem. C 111, 3601–3606 (2007)CrossRefGoogle Scholar
  208. 208.
    Ma, Y.Z., Valkunas, L., Bachilo, S.M., Fleming, G.R.: Temperature effects on femtosecond transient absorption kinetics of semiconducting single-walled carbon nanotubes. Phys. Chem. Chem. Phys. 8, 5689–5693 (2006)CrossRefGoogle Scholar
  209. 209.
    Hagen, A., Steiner, M., Raschke, M.B., Lienau, C., Hertel, T., Qian, H., Meixner, A.J., Hartschuh, A.: Exciton dynamics in individual single–walled carbon nanotubes. Phys. Rev. Lett. 95, 197401–1–197401–4 (2005)Google Scholar
  210. 210.
    Takeyama, S., Suzuki, H., Yokoi, H., Murakami, Y., Maruyama, Sh.: Aharonov-Bohm exciton absorption splitting in chiral specific single-walled carbon nanotubes in magnetic fields of up to 78 T. Phys. Rev. B 83, 235405–1–235405–4 (2011)Google Scholar
  211. 211.
    Jones, M., Metzger, W.K., McDonald, T.J., Engtrakul, C., Ellingson, R.J., Rumbles, G., Heben, M.J.: Extrinsic and intrinsic effects on the excited-state kinetics of single-walled carbon nanotubes. Nano Lett. 7, 300–306 (2007)CrossRefGoogle Scholar
  212. 212.
    Zhu, Z., Crochet, J., Arnold, M.S., Hersam, M.C., Ulbricht, H., Resasco, D., Hertel, T.: Pump-probe spectroscopy of exciton dynamics in (6,5) carbon nanotubes. J. Phys. Chem. C 111, 3831–3835 (2007)CrossRefGoogle Scholar
  213. 213.
    Habenicht, B.F., Prezhdo, O.V.: Nonradiative quenching of fluorescence in a semiconducting carbon nanotube: a time-domain ab initio study. Phys. Rev. Lett. 100, 197402–1–197402–4 (2008)Google Scholar
  214. 214.
    Kiowski, O., Arnold, K., Lebedkin, S., Hennrich, F., Kappes, M.M.: Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 99, 237402–1–237402–4 (2007)Google Scholar
  215. 215.
    Blackburn, J.L., McDonald, T.J., Metzger, W.K., Engtrakul, C., Rumbles, G., Heben, M.J.: Protonation effects on the branching ratio in photoexcited single-walled carbon nanotube dispersions. Nano Lett. 8, 1047–1054 (2008)CrossRefGoogle Scholar
  216. 216.
    Kishida, H., Nagasawa, Y., Imamura, S., Nakamura, A.: Direct observation of dark excitons in micelle-wrapped single-wall carbon nanotubes. Phys. Rev. Lett. 100, 097401–1–097401–4 (2008)Google Scholar
  217. 217.
    Harutyunyan, H., Gokus, T., Green, A.A., Hersam, M.C., Allegrini, M., Hartschuh, A.: Defect-Induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes. Nano Lett. 9, 2010–2014 (2009)CrossRefGoogle Scholar
  218. 218.
    Perebeinos, V., Tersoff, J., Avouris, P.: Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. Phys. Rev. Lett. 94, 027402-1-4 (2005)Google Scholar
  219. 219.
    Torrens, O.N., Zheng, M., Kikkawa, J.M.: Energy of K-momentum dark excitons in carbon nanotubes by optical spectroscopy. Phys. Rev. Lett. 101, 157401-1-4 (2008)Google Scholar
  220. 220.
    Saito, R., Jorio, A., Souza Filho, A.G., Dresselhaus, G., Dresselhaus, M.S., Pimenta, M.A.: Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys. Rev. Lett. 88, 027401-1-4 (2002)Google Scholar
  221. 221.
    Miyauchi, Y., Maruyama, S.: Identification of an excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes. Phys. Rev. B 74, 035415-1-9 (2006)Google Scholar
  222. 222.
    Plentz, F., Ribeiro, H.B., Jorio, A., Strano, M.S., Pimenta, M.A.: Direct experimental evidence of exciton-phonon bound states in carbon nanotubes. Phys. Rev. Lett. 95, 247401-1-4 (2005)Google Scholar
  223. 223.
    Htoon, H., O’Connell, M.J., Doorn, S.K., Klimov, V.I.: Single carbon nanotubes probed by photoluminescence excitation spectroscopy: the role of phonon-assisted transitions. Phys. Rev. Lett. 94, 127403-1-4 (2005)Google Scholar
  224. 224.
    Vora, P.M., Tu, X., Mele, E.J., Zheng, M., Kikkawa, J.M.: Chirality dependence of the K-momentum dark excitons in carbon nanotubes. Phys. Rev. B 81, 155123-1-9 (2010)Google Scholar
  225. 225.
    Murakami, Y., Lu, B., Kazaoui, S., Minami, N., Okubo, T., Maruyama, S.: Photoluminescence sidebands of carbon nanotubes below the bright singlet excitonic levels. Phys. Rev. B 79, 195407-1-5 (2009)Google Scholar
  226. 226.
    Matsunaga, R., Matsuda, K., Kanemitsu, Y.: Origin of low-energy photoluminescence peaks in single carbon nanotubes: K -momentum dark excitons and triplet dark excitons. Phys. Rev. B 81, 033401-1-4 (2010)Google Scholar
  227. 227.
    Tsyboulski, D.A., Rocha, J.-D.R., Bachilo, S.M., Cognet, L., Weisman, R.B.: Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett. 7, 3080–3085 (2007)CrossRefGoogle Scholar
  228. 228.
    Carlson, L.J., Maccagnano, S.E., Zheng, M., Silcox, J., Krauss, T.D.: Fluorescence efficiency of individual carbon nanotubes. Nano Lett. 7, 3698–3703 (2007)CrossRefGoogle Scholar
  229. 229.
    Berge, J.J., Gallaway, C., Barron, A.R.: Fluorescence quenching of single-walled carbon nanotubes in SDBS surfactant suspension by metal ions: quenching efficiency as a function of metal and nanotube identity. J. Phys. Chem. C 111, 17812–17820 (2007)CrossRefGoogle Scholar
  230. 230.
    Dukovic, G., White, B.E., Zhou, Z., Wang, F., Jockusch, S., Steigerwald, M.L., Heinz, T.F., Friesner, R.A., Turro, N.J., Brus, L.E.: Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes. J. Am. Chem. Soc. 126, 15269–15276 (2004)CrossRefGoogle Scholar
  231. 231.
    Rajan, A., Strano, M.S., Heller, D.A., Hertel, T., Schulten, K.: Length-dependent optical effects in single-walled carbon nanotubes. Phys. Chem. B 112, 6211–6213 (2008)CrossRefGoogle Scholar
  232. 232.
    Howard, W.: Dispersing carbon nanotubes using surfactants. Curr. Opin. Colloid. 14, 364–371 (2009)CrossRefGoogle Scholar
  233. 233.
    Crochet, J., Clemens, M., Hertel, T.: Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J. Am. Chem. Soc. 129, 8058–8059 (2007)CrossRefGoogle Scholar
  234. 234.
    Lefebvre, J., Austing, D.G., Bond, J., Finnie, P.: Photoluminescence imaging of suspended singlewalled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006)CrossRefGoogle Scholar
  235. 235.
    Strano, M.S., Huffman, C.B., Moore, V.C., O’Connell, M.J., Haroz, E.H., Hubbard, J., Miller, M., Rialon, K., Kittrell, C., Ramesh, S., Hauge, R.H., Smalley, R.E.: Reversible, band-gap selective protonation of single-walled carbon nanotubes in solution. J. Phys. Chem. B 107, 6979–6985 (2003)CrossRefGoogle Scholar
  236. 236.
    Wang, F., Dukovic, G., Knoesel, E., Brus, L.E., Heinz, T.F.: Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes. Phys. Rev. B 70, 241403-1-4 (2004)Google Scholar
  237. 237.
    Ju, S.-Y., Kopcha, W.P., Papadimitrokopoulos, F.: Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 323, 1319–1323 (2009)CrossRefGoogle Scholar
  238. 238.
    Rickard, D., Giordani, S., Blau, W.J., Coleman, J.N.: Quantifying the contributions of inner-filter, re-absorption and aggregation effects in the photoluminescence of high-concentration conjugated polymer solutions. J. Lumin. 128, 31–40 (2007)CrossRefGoogle Scholar
  239. 239.
    Tsyboulski, D.A., Bakota, E.L., Witus, L.S., Rocha, J.-D.R., Hartgerink, J.D., Weisman, R.B.: Self-assembling peptide coatings designed for highly luminescent suspension of single-walled carbon nanotubes. J. Am. Chem. Soc. 130, 17134–17140 (2008)CrossRefGoogle Scholar
  240. 240.
    Cherukuri, P., Bachilo, S.M., Litovsky, S.H., Weisman, R.B.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126, 15638–15639 (2004)CrossRefGoogle Scholar
  241. 241.
    Matsuura, K., Saito, T., Okazaki, T., Ohshima, S., Yumura, M., Iijima, S.: Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem. Phys. Lett. 429, 497–502 (2006)CrossRefGoogle Scholar
  242. 242.
    Bakota, E.L., Aulisa, L., Tsyboulski, D.A., Weisman, R.B., Hartgerink, J.D.: Multidomain peptides as single-walled carbon nanotube surfactants in cell culture. Biomacromolecules 10, 2201–2206 (2009)CrossRefGoogle Scholar
  243. 243.
    Duque, J.G., Cognet, L., Parra-Vasquez, A.N.G., Nicholas, N., Schmidt, H.K., Pasquali, M.: Stable luminescence from individual carbon nanotubes in acidic, basic, and biological environments. J. Am. Chem. Soc. 130, 2626–2633 (2008)CrossRefGoogle Scholar
  244. 244.
    Wang, R.K., Chen, W.-C., Campos, D.K., Ziegler, K.J.: Swelling the micelle core surrounding single-walled carbon nanotubes with water-immiscible organic solvents. J. Am. Chem. Soc. 130, 16330–16337 (2008)CrossRefGoogle Scholar
  245. 245.
    Silvera-Batista, C.A., Weinberg, Ph, Butler, J.E., Ziegler, K.J.: Long-term improvements to photoluminescence and dispersion stability by flowing SDS-SWNT suspensions through microfluidic channels. J. Am. Chem. Soc. 131, 12721–12728 (2009)CrossRefGoogle Scholar
  246. 246.
    Lee, A.J., Wang, X., Carlson, L.J., Smyder, J.A., Loesch, B., Tu, X., Zheng, M., Krauss, T.D.: Bright fluorescence from individual single-walled carbon nanotubes. Nano Lett. 11, 1636–1640 (2011)CrossRefGoogle Scholar
  247. 247.
    Fantini, C., Jorio, A., Souza, M., Strano, M.S., Dresselhaus, M.S., Pimenta, M.A.: Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects. Phys. Rev. Lett. 93, 147406-1-4 (2004)Google Scholar
  248. 248.
    Okazaki, T., Saito, T., Matsuura, K., Ohshima, S., Yumura, M., Iijima, S.: Photoluminescence mapping of “as-grown” single-walled carbon nanotubes: a comparison with micelle-encapsulated nanotube solutions. Nano Lett. 5, 2618–2624 (2005)CrossRefGoogle Scholar
  249. 249.
    Ohno, Y., Iwasaki, S., Murakami, Y., Kishimoto, S., Maruyama, S., Mizutani, T.: Chirality-dependent environmental effects in photoluminescence of single-walled carbon nanotubes. Phys. Rev. B 73, 235427-1-5 (2006)Google Scholar
  250. 250.
    Ohno, Y., Iwasaki, S., Murakami, Y., Kishimoto, S., Maruyama, S., Mizutani, T.: Environmental dielectric screening effect on exciton transition energies in single-walled carbon nanotubes. Phys. Status Solidi B 244, 4002–4005 (2007)CrossRefGoogle Scholar
  251. 251.
    Kiowski, O., Lebedkin, S., Hennrich, F., Malik, S., Rosner, H., Arnold, K., Surgers, C., Kappes, M.M.: Photoluminescence microscopy of carbon nanotubes grown by chemical vapor deposition: influence of external dielectric screening on optical transition energies. Phys. Rev. B 75, 075421-1-7 (2007)Google Scholar
  252. 252.
    Choi, J.H., Strano, M.S.: Solvatochromism in single-walled carbon nanotubes. Appl Phys Lett 90, 223114-1-3 (2007)Google Scholar
  253. 253.
    Silvera-Batista, C.A., Wang, R.K., Weinberg, P., Ziegler, K.J.: Solvatochromic shifts of single-walled carbon nanotubes in nonpolar microenvironments. Phys. Chem. Chem. Phys. 12, 6990–6998 (2010)CrossRefGoogle Scholar
  254. 254.
    Chou, S.G., Ribeiro, H.B., Barros, E.B., Santos, A.P., Nezich, D., Samsonidze, Ge.G., Fantini, C., Pimenta, M.A., Jorio, A., Filho, F.P., Dresselhaus, M.S., Dresselhaus, G., Saito, R., Zheng, M., Onoa, G.B., Semke, E.D., Swan, A.K., Unlu, M.S., Goldberg, B.B.: Optical characterization of DNA-wrapped carbon nanotube hybrids. Chem. Phys. Lett. 397, 296–301 (2004)Google Scholar
  255. 255.
    Jin, H., Jeng, E.S., Heller, D.A., Jena, P.V., Kirmse, R., Langowski, J., Strano, M.S.: Divalent ion and thermally induced DNA conformational polymorphism on single-walled carbon nanotubes. Macromolecules 40, 6731–6739 (2007)CrossRefGoogle Scholar
  256. 256.
    Walsh, A.G., Vamivakas, A.N., Yin, Y., Cronin, S.B., Unlu, M.S., Goldberg, B.B., Swan, A.K.: Screening of excitons in single, suspended carbon nanotubes. Nano Lett. 7, 1485–1489 (2007)CrossRefGoogle Scholar
  257. 257.
    Walsh, A.G., Vamivakas, A.N., Yin, Y., Cronin, S.B., Unlu, M.S., Goldberg, B.B., Swan, A.K.: Scaling of exciton binding energy with external dielectric function in carbon nanotubes. Physica E 40, 2375–2379 (2007)CrossRefGoogle Scholar
  258. 258.
    Smyrnov, O.A.: Excitons in single-walled carbon nanotubes: environmental effect. Ukr. J. Phys. 55, 1217–1224 (2010)Google Scholar
  259. 259.
    Adamyan, V.M., Smyrnov, O.A., Tishchenko, S.V.: Effects of environmental and exciton screening in single-walled carbon nanotubes. J. Phys: Conf. Ser. 129, 012012 (2008)CrossRefGoogle Scholar
  260. 260.
    Araujo, P.T., Jorio, A., Dresselhaus, M.S., Sato, K., Saito, R.: Diameter dependence of the dielectric constant for the excitonic transition energy of single-wall carbon nanotubes. Phys. Rev. Lett. 103, 146802-1-3 (2009)Google Scholar
  261. 261.
    Nugraha, A.R.T., Saito, R., Sato, K., Araujo, P.T., Jorio, A., Dresselhaus, M.S.: Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes. Appl. Phys. Lett. 97, 091905-1-3 (2010)Google Scholar
  262. 262.
    Ando, T.: Environment effects on excitons in semiconducting carbon nanotubes. J. Phys. Soc. Jpn. 79, 024706-1-10 (2010)Google Scholar
  263. 263.
    Kiowski, O., Jester, S.-S., Lebedkin, S., Jin, Z., Li, Y., Kappes, M.M.: Photoluminescence spectral imaging of ultralong single-walled carbon nanotubes: micromanipulation-induced strain, rupture, and determination of handedness. Phys. Rev. B 80, 075426-1-7 (2009)Google Scholar
  264. 264.
    Steiner, M., Freitag, M., Tsang, J.C., Perebeinos, V., Bol, A.A., Failla, A.V., Avouris, Ph: How does the substrate affect the Raman and excited state spectra of a carbon nanotube? Appl. Phys. A 96, 271–282 (2009)CrossRefGoogle Scholar
  265. 265.
    Qian, H., Araujo, P.T., Georgi, C., Gokus, T., Hartmann, N., Green, A.A., Jorio, A., Hersam, M.C., Novotny, L., Hartschuh, A.: Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping. Nano Lett. 8, 2706–2711 (2008)CrossRefGoogle Scholar
  266. 266.
    Georgi, C., Green, A.A., Hersam, M.C., Hartschuh, A.: Probing exciton localization in single-walled carbon nanotubes using high-resolution near-field microscopy. ACS Nano 4, 5914–5920 (2010)CrossRefGoogle Scholar
  267. 267.
    Hasan, T., Scardaci, V., Tan, P.H., Bonaccorso, F., Rozhin, A.G., Sun, Z., Ferrari, A.C.: Nanotube and graphene polymer composites for photonics and optoelectronics. In: Hayden, O., Nielsch, K. (eds.) Molecular- and Nano-Tubes, pp. 279–354. Springer, New York (2011)CrossRefGoogle Scholar
  268. 268.
    Hasan, T., Sun, Z., Wang, F., Bonaccorso, F., Tan, P.H., Rozhin, A.G., Ferrari, A.C.: Nanotube–polymer composites for ultrafast photonics. Adv. Mater. 21, 3874–3899 (2009)CrossRefGoogle Scholar
  269. 269.
    Tan, P.H., Rozhin, A.G., Hasan, T., Hu, P., Scardaci, V., Milne, W.I., Ferrari, A.C.: Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. Phys. Rev. Lett. 99, 137402-1-4 (2007)Google Scholar
  270. 270.
    Tan, P.H., Hasan, T., Bonaccorso, F., Scardaci, V., Rozhin, A.G., Milne, W.I., Ferrari, A.C.: Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy. Physica E 40, 2352–2359 (2008)CrossRefGoogle Scholar
  271. 271.
    Hasan, T., Tan, P.H., Bonaccorso, F., Rozhin, A., Scardaci, V., Milne, W., Ferrari, A.C.: Polymer-assisted isolation of single wall carbon nanotubes in organic solvents for optical-quality nanotube–polymer composites. J. Phys. Chem. C 112, 20227–20232 (2008)CrossRefGoogle Scholar
  272. 272.
    Wang, F., Sfeir, M.Y., Huang, L., Huang, X.M.H., Wu, Y., Kim, J., Hone, J., O’Brien, S., Brus, L.E., Heinz, T.F.: Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. Phys. Rev. Lett. 96, 167401-1-4 (2006)Google Scholar
  273. 273.
    Qian, H., Georgi, C., Anderson, N., Green, A.A., Hersam, M.C., Novotny, L., Hartschuh, A.: Exciton energy transfer in pairs of single-walled carbon nanotubes. Nano Lett. 8, 1363–1367 (2008)CrossRefGoogle Scholar
  274. 274.
    Koyama, T., Miyata, Y., Asada, Y., Shinohara, H., Kataura, H., Nakamura, A.: Bright luminescence and exciton energy transfer in polymer-wrapped single-walled carbon nanotube bundles. J. Phys. Chem. Lett. 1, 3243–3248 (2010)CrossRefGoogle Scholar
  275. 275.
    Lefebvre, J., Finnie, P.: Photoluminescence and Forster resonance energy transfer in elemental bundles of single- walled carbon nanotubes. J. Phys. Chem. C 113, 7536–7540 (2009)CrossRefGoogle Scholar
  276. 276.
    Kim, Y., Minami, N., Kazaoui, S.: Highly polarized absorption and photoluminescence of stretch-aligned single-wall carbon nanotubes dispersed in gelatin films. Appl. Phys. Lett. 86, 73103–73106 (2005)CrossRefGoogle Scholar
  277. 277.
    Hirori, H., Matsuda, K., Miyauchi, Y., Maruyama, S., Kanemitsu, Y.: Exciton localization of single-walled carbon nanotubes revealed by femtosecond excitation correlation spectroscopy. Phys. Rev. Lett. 97, 257401-1-4 (2006)Google Scholar
  278. 278.
    Berger, S., Iglesias, F., Bonnet, P., Voisin, C., Cassabois, G., Lauret, J-S., Delalande, C., Roussignol, P.: Optical properties of carbon nanotubes in a composite material: the role of dielectric screening and thermal expansion. J. Appl. Phys. 105, 094323 (094323-5) (2009)Google Scholar
  279. 279.
    Cognet, L., Tsyboulski, D.A., Rocha, J.-D.R., Doyle, C.D., Tour, J.M., Weisman, R.B.: Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007)CrossRefGoogle Scholar
  280. 280.
    Barone, P.W., Yoon, H., Ortiz-García, R., Zhang, J., Ahn, J.-H., Kim, J.-H., Strano, M.S.: Modulation of single-walled carbon nanotube photoluminescence by hydrogel swelling. ACS Nano 3, 3869–3877 (2009)CrossRefGoogle Scholar
  281. 281.
    Tsyboulski, D.A., Bachilo, S.M., Weisman, R.B.: Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy. Nano Lett. 5, 975–979 (2005)CrossRefGoogle Scholar
  282. 282.
    Gaufres, E., Izard, N., Vivien, L., Kazaoui, S., Marris-Morini, D., Cassan, E.: Enhancement of semiconducting single-wall carbon nanotubes photoluminescence. Opt. Lett. 34, 3845–3847 (2009)CrossRefGoogle Scholar
  283. 283.
    Zamora-Ledezma, C., Anez, L., Primera, J., Silva, P., Etienne-Calas, S., Anglaret, E.: Photoluminescent single wall carbon nanotubesilica composite gels. Carbon 46, 1253–1255 (2008)CrossRefGoogle Scholar
  284. 284.
    Chernov, A.I., Obraztsova, E.D.: Photoluminescence of single-wall carbon nanotube films. Phys. Status Solidi B 247, 2805–2809 (2010)CrossRefGoogle Scholar
  285. 285.
    Levshov, D.I., Yuzyuk, YuI, Michel, T., Voisin, C., Alvarez, L., Berger, S., Roussignol, P., Sauvajol, J.-L.: Raman probing of uniaxial strain in individual single-wall carbon nanotubes in a composite material. J. Phys. Chem. C 114, 16210–16214 (2010)CrossRefGoogle Scholar
  286. 286.
    Stranks, S.D., Sprafke, J.K., Anderson, H.L., Nicholas, R.J.: Electronic and mechanical modification of single-walled carbon nanotubes by binding to porphyrin oligomers. ACS Nano 5, 2307–2315 (2011)CrossRefGoogle Scholar
  287. 287.
    Leeuw, T.K., Tsyboulski, D.A., Nikolaev, P.N., Bachilo, S.M., Arepalli, S., Weisman, R.B.: Strain measurements on individual single-walled carbon nanotubes in a polymer host: structure-dependent spectral shifts and load transfer. Nano Lett. 8, 826–831 (2008)CrossRefGoogle Scholar
  288. 288.
    Glamazda, A. Yu., Leontiev, V.S., Linnik, A.S., Karachevtsev, V.A.: Luminescence study on hybrids of carbon nanotubes with DNA in water suspension and film at 5–290 K. Low. Temp. Phys. 34, 1313–1318 (2008)CrossRefGoogle Scholar
  289. 289.
    Nepal, D., Geckeler, K.E.: pH-sensitive dispersion and debundling of single- walled carbon nanotubes: lysozyme as a tool. Small 2, 406–412 (2006)CrossRefGoogle Scholar
  290. 290.
    Wang, D., Chen, L.: Temperature and pH-responsive single-walled carbon nanotube dispersions. Nano Lett. 7, 1480–1484 (2007)CrossRefGoogle Scholar
  291. 291.
    Ikeda, A., Totsuka, Y., Nobusawa, K., Kikuchi, J.: Reversible solubilisation and precipitation of carbon nanotubes by temperature and pH control in water. J. Mater. Chem. 19, 5785–5789 (2009)CrossRefGoogle Scholar
  292. 292.
    Karachevtsev, V.A., Glamazda, A.Yu., Plokhotnichenko, A.M., Leontiev, V.S., Linnik, A.S.: Comparative study on protection properties of anionic surfactants (SDS, SDBS) and DNA covering of single-walled carbon nanotubes against pH influence: luminescence and absorption spectroscopy study. Materialwiss. Werkst. 42, 41–46 (2011)CrossRefGoogle Scholar
  293. 293.
    Kelley, K., Pehrsson, P.E., Ericson, L.M., Zhao, W.: Optical pH response of DNA wrapped HiPco carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1041–1044 (2005)CrossRefGoogle Scholar
  294. 294.
    Xu, Y., Pehrsson, P.E., Chen, L., Zhang, R., Zhao, W.: Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J. Phys. Chem. C 111, 8638–8643 (2007)CrossRefGoogle Scholar
  295. 295.
    Han, X., Li, Y., Wu, S., Deng, Z.: General strategy toward pH-controlled aggregation–dispersion of gold nanoparticles and single-walled carbon nanotubes. Small 4, 326–329 (2008)CrossRefGoogle Scholar
  296. 296.
    Yurekli, K., Mitchell, C.A., Krishnamoorti, R.: Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J. Am. Chem. Soc. 126, 9902–9903 (2004)CrossRefGoogle Scholar
  297. 297.
    Fagan, J.A., Landi, B.J., Mandelbaum, I., Simpson, J.R., Bajpai, V., Bauer, B.J., Migler, K., Hight Walker, A.R., Raffaelle, R., Hobbie, E.K.: Comparative measures of single-wall carbon nanotube dispersion. J. Phys. Chem. B 110, 23801–23805 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Victor Karachevtsev
    • 1
  1. 1.B.I. Verkin Institute for Low Temperature Physics and EngineeringNational Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations