Skip to main content

Experimental Studies of Plasmonic Nanoparticle Effects on Organic Solar Cells

  • Chapter
  • First Online:
Organic Solar Cells

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The incorporation of plasmonic nanoparticles (NPs) into different layers of organic solar cells (OSCs) is studied in this chapter. First, we incorporate NPs into the hole collection layer of OSCs. The resulting improvements in Power Conversion Efficiency (PCE) are found to originate mainly from improvement in hole collection efficiency, while Localized Surface Plasmon Resonance (LSPR) effects are found to have negligible effect on active layer absorption. Next, we incorporate NPs into the active layer of OSCs. In this case, the absorption of the active layer improves, but we also showed that consideration of electrical properties including carrier mobility, exciton dissociation efficiency, and active layer morphology is required to account for the PCE trend. In both studies, we theoretically show that the very strong near field of NPs is found to distribute laterally along the layer in which the NPs are incorporated in, and hence leading to active layer absorption improvements only when NPs are incorporated into the active layer. Lastly, we incorporated NPs into both active layer and hole collection layer in which the accumulated effects of NPs in the different layers achieved ~22 % improvement in PCE as compared to the optimized control OSCs using poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as the active layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  Google Scholar 

  2. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93(13):137404

    Article  Google Scholar 

  3. Shalaev VM (2007) Optical negative-index metamaterials. Nat Photon 1(1):41–48

    Article  MathSciNet  Google Scholar 

  4. Chang DE, Sorensen AS, Demler EA, Lukin MD (2007) A single-photon transistor using nanoscale surface plasmons. Nat Phys 3(11):807–812

    Article  Google Scholar 

  5. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Google Scholar 

  6. Chen F-C, Wu J-L, Lee C-L, Hong Y, Kuo C-H, Huang MH (2009) Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Appl Phys Lett 95(1):013305

    Article  Google Scholar 

  7. Wu J-L, Chen F-C, Hsiao Y-S, Chien F-C, Chen P, Kuo C-H, Huang MH, Hsu C-S (2011) Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 5(2):959–967. doi:10.1021/nn102295p

    Article  Google Scholar 

  8. Morfa AJ (2008) Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl Phys Lett 92(1):013504

    Article  Google Scholar 

  9. Kim S (2008) Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett 93(7):073307

    Article  Google Scholar 

  10. Wang DH, Kim DY, Choi KW, Seo JH, Im SH, Park JH, Park OO, Heeger AJ (2011) Enhancement of donor–acceptor polymer bulk Heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem Int Ed 50(24):5519–5523. doi:10.1002/anie.201101021

    Article  Google Scholar 

  11. Kim C-H, Cha S-H, Kim SC, Song M, Lee J, Shin WS, Moon S-J, Bahng JH, Kotov NA, Jin S-H (2011) Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications. ACS Nano 5(4):3319–3325. doi:10.1021/nn200469d

    Article  Google Scholar 

  12. Naidu BVK, Park JS, Kim SC, Park S-M, Lee E-J, Yoon K-J, Joon Lee S, Wook Lee J, Gal Y-S, Jin S-H (2008) Novel hybrid polymer photovoltaics made by generating silver nanoparticles in polymer: fullerene bulk-heterojunction structures. Sol Energy Mater Sol Cells 92(4):397–401. doi:10.1016/j.solmat.2007.09.017

    Article  Google Scholar 

  13. Min C (2010) Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Appl Phys Lett 96(13):133302

    Article  Google Scholar 

  14. Kang M-G, Xu T, Park HJ, Luo X, Guo LJ (2010) Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv Mater 22(39):4378–4383. doi:10.1002/adma.201001395

    Article  Google Scholar 

  15. Kim K, Carroll DL (2005) Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C[sub 60] bulk heterojunction photovoltaic devices. Appl Phys Lett 87(20):203113

    Article  Google Scholar 

  16. Sha WEI, Choy WCH, Liu YG, Cho Chew W (2011) Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells. Appl Phys Lett 99(11):113304

    Article  Google Scholar 

  17. Enüstün BV, Turkevich J (1963) Coagulation of colloidal gold. J Am Chem Soc 85(21):3317–3328. doi:10.1021/ja00904a001

    Article  Google Scholar 

  18. Fung DDS, Qiao L, Choy WCH, Wang C, Sha WEI, Xie F, He S (2011) Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer. J Mater Chem 21(41):16349–16356

    Article  Google Scholar 

  19. Bouyer F, Robben A, Yu WL, Borkovec M (2001) Aggregation of colloidal particles in the presence of oppositely charged polyelectrolytes: effect of surface charge heterogeneities. Langmuir 17(17):5225–5231. doi:10.1021/la010548z

    Article  Google Scholar 

  20. Qian J, Jiang L, Cai F, Wang D, He S (2011) Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging. Biomaterials 32(6):1601–1610. doi:10.1016/j.biomaterials.2010.10.058

    Article  Google Scholar 

  21. Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93(19):191113

    Article  Google Scholar 

  22. Lee J-Y, Peumans P (2010) The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. Opt Express 18(10):10078–10087

    Article  Google Scholar 

  23. Hsu M-H, Yu P, Huang J-H, Chang C-H, Wu C-W, Cheng Y-C, Chu C-W (2011) Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes. Appl Phys Lett 98(7):073308

    Article  Google Scholar 

  24. Li G, Shrotriya V, Yao Y, Yang Y (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J Appl Phys 98(4):043704

    Google Scholar 

  25. Chen L-M, Xu Z, Hong Z, Yang Y (2010) Interface investigation and engineering—achieving high performance polymer photovoltaic devices. J Mater Chem 20(13):2575–2598

    Article  Google Scholar 

  26. Becker H, Burns SE, Friend RH (1997) Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers. Phys Rev B 56(4):1893

    Article  Google Scholar 

  27. Markov DE, Blom PWM (2005) Migration-assisted energy transfer at conjugated polymer/metal interfaces. Phys Rev B 72(16):161401

    Article  Google Scholar 

  28. Zhokhavets U, Erb T, Hoppe H, Gobsch G, Serdar Sariciftci N (2006) Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties. Thin Solid Films 496(2):679–682. doi:10.1016/j.tsf.2005.09.093

    Article  Google Scholar 

  29. Li G, Shrotriya V, Yao Y, Huang J, Yang Y (2007) Manipulating regioregular poly(3-hexylthiophene): [6]-phenyl-C61-butyric acid methyl ester blends-route towards high efficiency polymer solar cells. J Mater Chem 17(30):3126–3140

    Article  Google Scholar 

  30. Shen H, Bienstman P, Maes B (2009) Plasmonic absorption enhancement in organic solar cells with thin active layers. J Appl Phys 106(7):073109

    Google Scholar 

  31. Drees M, Hoppe H, Winder C, Neugebauer H, Sariciftci NS, Schwinger W, Schaffler F, Topf C, Scharber MC, Zhu Z, Gaudiana R (2005) Stabilization of the nanomorphology of polymer-fullerene “bulk heterojunction” blends using a novel polymerizable fullerene derivative. J Mater Chem 15(48):5158–5163

    Article  Google Scholar 

  32. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha C-S, Ree M (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat Mater 5(3):197–203

    Article  Google Scholar 

  33. Kim H, So W-W, Moon S-J (2007) The importance of post-annealing process in the device performance of poly(3-hexylthiophene): Methanofullerene polymer solar cell. Sol Energy Mater Sol Cells 91(7):581–587. doi:10.1016/j.solmat.2006.11.010

    Article  Google Scholar 

  34. Topp K, Borchert H, Johnen F, Tunc AV, Knipper M, von Hauff E, Parisi J, Al-Shamery K (2009) Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells†. J Phys Chem A 114(11):3981–3989. doi:10.1021/jp910227x

    Article  Google Scholar 

  35. Wang CCD, Choy WCH, Duan C, Fung DDS, Sha WEI, Xie F-X, Huang F, Cao Y (2012) Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells. J Mater Chem 22(3):1206–1211

    Google Scholar 

  36. Duan CH, Wang CD, Liu SJ, Huang F, Choy CHW, Cao Y (2011) Two-dimensional like conjugated copolymers for high efficiency bulk-heterojunction solar cell application: band gap and energy level engineering. Sci China Chem 54(4):685–694

    Article  Google Scholar 

  37. Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD (2007) Polymer-based solar cells. Mater Today 10:28–33

    Google Scholar 

  38. Mandoc MM (2007) Optimum charge carrier mobility in organic solar cells. Appl Phys Lett 90(13):133504

    Article  Google Scholar 

  39. Mihailetchi VD, van Duren JKJ, Blom PWM, Hummelen JC, Janssen RAJ, Kroon JM, Rispens MT, Verhees WJH, Wienk MM (2003) Electron transport in a methanofullerene. Adv Funct Mater 13(1):43–46. doi:10.1002/adfm.200390004

    Article  Google Scholar 

  40. Zhao DW (2009) An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer. Appl Phys Lett 95(15):153304

    Article  Google Scholar 

  41. Jiang CY, Sun XW, Zhao DW, Kyaw AKK, Li YN (2010) Low work function metal modified ITO as cathode for inverted polymer solar cells. Sol Energy Mater Sol Cells 94(10):1618–1621. doi:10.1016/j.solmat.2010.04.082

    Article  Google Scholar 

  42. Koster LJA, Smits ECP, Mihailetchi VD, Blom PWM (2005) Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys Rev B 72(8):085205

    Article  Google Scholar 

  43. Zheng T, Choy WCH, Sun Y (2009) Hybrid nanoparticle/organic devices with strong resonant tunneling behaviors. Adv Funct Mater 19(16):2648–2653. doi:10.1002/adfm.200900308

    Article  Google Scholar 

  44. Chen H-Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon 3(11):649–653

    Article  Google Scholar 

  45. Xu Z, Chen L-M, Yang G, Huang C-H, Hou J, Wu Y, Li G, Hsu C-S, Yang Y (2009) Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells. Adv Funct Mater 19(8):1227–1234. doi:10.1002/adfm.200801286

    Article  Google Scholar 

  46. Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM (2004) Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys Rev Lett 93(21):216601

    Article  Google Scholar 

  47. Chen F-C, Wu J-L, Lee C-L, Hong Y, Kuo C-H, Huang MH (2009) Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Appl Phys Lett 95(1):013305

    Article  Google Scholar 

  48. Blom PWM, Mihailetchi VD, Koster LJA, Markov DE (2007) Device physics of polymer: fullerene bulk heterojunction solar cells. Adv Mater 19(12):1551–1566. doi:10.1002/adma.200601093

    Article  Google Scholar 

  49. Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11(5):374–380. doi:10.1002/1616-3028(200110)11:5<374:aid-adfm374>3.0.co;2-w

    Article  Google Scholar 

  50. Vandewal K, Tvingstedt K, Gadisa A, Inganas O, Manca JV (2009) On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat Mater 8(11):904–909

    Article  Google Scholar 

  51. Tress W, Leo K, Riede M (2011) Influence of hole-transport layers and donor materials on open-circuit voltage and shape of I-V curves of organic solar cells. Adv Funct Mater 21(11):2140–2149. doi:10.1002/adfm.201002669

    Article  Google Scholar 

  52. Akaike K, Kanai K, Ouchi Y, Seki K (2010) Impact of ground-state charge transfer and polarization energy change on energy band offsets at donor/acceptor interface in organic photovoltaics. Adv Funct Mater 20(5):715–721. doi:10.1002/adfm.200901585

    Article  Google Scholar 

  53. Sun B (2005) Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J Appl Phys 97(1):014914

    Article  Google Scholar 

  54. Snaith HJ, Greenham NC, Friend RH (2004) The origin of collected charge and open-circuit voltage in blended polyfluorene photovoltaic devices. Adv Mater 16(18):1640–1645. doi:10.1002/adma.200305766

    Article  Google Scholar 

  55. Kim K, Carroll DL (2005) Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices. Appl Phys Lett 87(20):203113. doi:10.1063/1.2128062

    Article  Google Scholar 

  56. Xie FX, Choy WCH, Wang CCD, Wei E, Fung DDS (2011) Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers. Appl Phys Lett 99:153304

    Article  Google Scholar 

  57. Peng B, Guo X, Cui C, Zou Y, Pan C, Li Y (2011) Performance improvement of polymer solar cells by using a solvent-treated poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) buffer layer. Appl Phys Lett 98(24):243308

    Article  Google Scholar 

  58. Xie F, Choy WCH, Zhu X, Li X, Li Z, Liang C (2011) Improving polymer solar cell performances by manipulating the self-organization of polymer. Appl Phys Lett 98:243302

    Article  Google Scholar 

  59. Sievers DW, Shrotriya V, Yang Y (2006) Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. J Appl Phys 100:114509

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallace C. H. Choy .

Editor information

Editors and Affiliations

Appendix A

Appendix A

The electrical properties of OSCs with Au NPs in the active layer of PFSDCN: PCBM [35] have been theoretically studied by solving the organic semiconductor equations involving Poisson, drift–diffusion, and continuity equations [42, 46, 59]. The field-dependent mobility uses the Frenkel-Poole form μ = μ 0 ·exp(F/F 0 ). The Braun-Onsager model is employed for the exciton dissociation. The boundary conditions for ohmic or schottky contacts are also taken into account.

Due to the very thin active layer (~65 nm), it can be assumed the generation rate of bound electron–hole pairs (G max ) is uniform. G max can be obtained from the measured absorption spectra. The electron and hole mobilities can be obtained by fitting the JV curves of the measured electron- and hole-only devices following the SCLC model. The HOMO is −5.32 eV as measured by cyclic voltammetry (CV) method and the LUMO is −3.27 eV calculated from HOMO level and optical bandgap. The exciton decay rate (k F ) of exciton and charge separation distance (a) can be fitted to make our theoretical J-V curves best fit to the experimental J-V curves

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Fung, D.D., Choy, W.C. (2013). Experimental Studies of Plasmonic Nanoparticle Effects on Organic Solar Cells. In: Choy, W. (eds) Organic Solar Cells. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4823-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4823-4_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4822-7

  • Online ISBN: 978-1-4471-4823-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics