Skip to main content

Interface Stability of Polymer and Small-Molecule Organic Photovoltaics

Degradation Mechanisms, Characterization Techniques, and Improvement Approaches

  • Chapter
  • First Online:
Organic Solar Cells

Part of the book series: Green Energy and Technology ((GREEN))

  • 4956 Accesses

Abstract

In this chapter, the interface degradation mechanisms in organic photovoltaics (OPVs) will be discussed. The interface instability is mainly ascribed to the diffusion of oxygen and water into the electrode materials as well as the interface modification layer between electrode and organic layer. Furthermore, the commonly used characterization techniques are presented, which are quite helpful to understand the origin of the interface instability and their level of impact. In particular, these techniques reveal optical and electrical changes at the interface. Therefore, the analysis on the interface degradation and development of characterization techniques would contribute to the understanding of interface stability and further enhance the entire device lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Konarka Technologies I http://www.konarka.com/

  2. Heliatek G http://www.heliatek.com/

  3. Solarmer Energy I http://www.solarmer.com/

  4. Cai WZ, Gong X, Cao Y (2010) Polymer solar cells: recent development and possible routes for improvement in the performance. Sol Energy Mater Sol Cells 94:114–127

    Article  Google Scholar 

  5. Helgesen M, Sondergaard R, Krebs FC (2010) Advanced materials and processes for polymer solar cell devices. J Mater Chem 20:36–60

    Article  Google Scholar 

  6. Liang YY, Xu Z, Xia JB et al (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4 %. Adv Mater 22:E135–E138

    Article  Google Scholar 

  7. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21:1323–1338

    Article  Google Scholar 

  8. Jorgensen M, Norrman K, Krebs FC (2008) Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells 92:686–714

    Article  Google Scholar 

  9. Shrotriya V http://www.slideshare.net/vshrotriya/organic-solar-cells

  10. Padinger F, Fromherz T, Denk P et al (2001) Degradation of bulk heterojunction solar cells operated in an inert gas atmosphere: a systematic study. Synth Met 121:1605–1606

    Article  Google Scholar 

  11. Neugebauer H, Brabec C, Hummelen JC et al (2000) Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells. Sol Energy Mater Sol Cells 61:35–42

    Article  Google Scholar 

  12. Jeranko T, Tributsch H, Sariciftci NS et al (2004) Patterns of efficiency and degradation of composite polymer solar cells. Sol Energy Matter Sol Cells 83:247–262

    Article  Google Scholar 

  13. Kroon JM, Wienk MM, Verhees WJH et al (2002) Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells. Thin Solid Films 403:223–228

    Article  Google Scholar 

  14. Krebs FC, Alstrup J, Spanggaard H et al (2004) Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate. Sol Energy Matter Sol Cells 83:293–300

    Article  Google Scholar 

  15. Krebs FC, Carle JE, Cruys-Bagger N et al (2005) Lifetimes of organic photovoltaics: photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV: PCBM-aluminium devices. Sol Energy Matter Sol Cells 86:499–516

    Article  Google Scholar 

  16. Brabec CJ, Hauch JA, Schilinsky P et al (2005) Production aspects of organic photovoltaics and their impact on the commercialization of devices. MRS Bull 30:50–52

    Article  Google Scholar 

  17. Holdcroft S (1991) Photochain scission of the soluble electronically conducting polymer—Poly(3-Hexylthiophene). Macromolecules 24:2119–2121

    Article  Google Scholar 

  18. Lewis JS, Weaver MS (2004) Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J Sel Top Quantum Electron 10:45–57

    Article  Google Scholar 

  19. Dennler G, Lungenschmied C, Neugebauer H et al (2006) A new encapsulation solution for flexible organic solar cells. Thin Solid Films 511:349–353

    Article  Google Scholar 

  20. Aziz H, Popovic ZD (2004) Degradation phenomena in small-molecule organic light-emitting devices. Chem Mater 16:4522–4532

    Article  Google Scholar 

  21. Krebs FC, Gevorgyan SA, Alstrup J (2009) A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J Mater Chem 19:5442–5451

    Article  Google Scholar 

  22. Norrman K, Gevorgyan SA, Krebs FC (2009) Water-induced degradation of polymer solar cells studied by (H2O)-O-18 labeling. Acs Appl Mater Interfaces 1:102–112

    Article  Google Scholar 

  23. Norrman K, Madsen MV, Gevorgyan SA et al (2010) Degradation patterns in water and oxygen of an inverted polymer solar cell. J Am Chem Soc 132:16883–16892

    Article  Google Scholar 

  24. Scott JC, Kaufman JH, Brock PJ et al (1996) Degradation and failure of MEH-PPV light-emitting diodes. J Appl Phys 79:2745–2751

    Article  Google Scholar 

  25. Carter SA, Angelopoulos M, Karg S et al (1997) Polymeric anodes for improved polymer light-emitting diode performance. Appl Phys Lett 70:2067–2069

    Article  Google Scholar 

  26. Krebs FC, Norrman K (2007) Analysis of the failure mechanism for a stable organic photovoltaic during 10000 h of testing. Prog Photovolt Res Appl 15:697–712

    Article  Google Scholar 

  27. Brabec C, Dyakonov V, Parisi J, et al (2003) Organic photovoltaics: concepts and realization, p 60

    Google Scholar 

  28. de Jong MP, van Ijzendoorn LJ, de Voigt MJA (2000) Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl Phys Lett 77:2255–2257

    Article  Google Scholar 

  29. Girtan M, Rusu M (2010) Role of ITO and PEDOT:PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells. Sol Energy Matter Sol Cells 94:446–450

    Article  Google Scholar 

  30. Kawano K, Pacios R, Poplavskyy D et al (2006) Degradation of organic solar cells due to air exposure. Sol Energy Matter Sol Cells 90:3520–3530

    Article  Google Scholar 

  31. Aziz H, Xu G (1996) A degradation mechanism of organic light-emitting devices. Synth Met 80:7–10

    Article  Google Scholar 

  32. Aziz H, Popovic ZD, Hu NX et al (1999) Degradation mechanism of small molecule-based organic light-emitting devices. Science 283:1900–1902

    Article  Google Scholar 

  33. Reese MO, Morfa AJ, White MS et al (2008) Pathways for the degradation of organic photovoltaic P3HT : PCBM based devices. Sol Energy Matter Sol Cells 92:746–752

    Article  Google Scholar 

  34. Reese MO, Morfa AJ, White MS et al (2008) Short-term metal/organic interface stability investigations of organic photovoltaic devices. Pvsc: 2008 33rd IEEE photovoltaic specialists conference. vols 1–4:1491–1493

    Google Scholar 

  35. Li JG, Kim S, Edington S et al (2011) A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer. Sol Energy Matter Sol Cells 95:1123–1130

    Article  Google Scholar 

  36. Fery C, Racine B, Vaufrey D et al (2005) Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes. Appl Phys Lett 87:213502

    Article  Google Scholar 

  37. Schuller S, Schilinsky P, Hauch J et al (2004) Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements. Appl Phys A Mater Sci Process 79:37–40

    Article  Google Scholar 

  38. Logdlund M, Bredas JL (1994) Theoretical-studies of the interaction between aluminum and poly(P-phenylenevinylene) and derivatives. J Chem Phys 101:4357–4364

    Article  Google Scholar 

  39. Karst N, Bernede JC (2006) On the improvement of the open circuit voltage of plastic solar cells by the presence of a thin aluminium oxide layer at the interface organic/aluminium. Phys Status Solidi A-Appl Mat 203:R70–R72

    Article  Google Scholar 

  40. Melzer C, Krasnikov VV, Hadziioannou G (2003) Organic donor/acceptor photovoltaics: the role of C-60/metal interfaces. Appl Phys Lett 82:3101–3103

    Article  Google Scholar 

  41. Vogel M, Doka S, Breyer C et al (2006) On the function of a bathocuproine buffer layer in organic photovoltaic cells. Appl Phys Lett 89:163501

    Article  Google Scholar 

  42. Zhang ST, Zhou YC, Zhao JM et al (2006) Role of hole playing in improving performance of organic light-emitting devices with an Al2O3 layer inserted at the cathode-organic interface. Appl Phys Lett 89:043502

    Article  Google Scholar 

  43. Hung LS, Tang CW, Mason MG (1997) Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl Phys Lett 70:152–154

    Article  Google Scholar 

  44. Brabec CJ, Shaheen SE, Winder C et al (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80:1288–1290

    Article  Google Scholar 

  45. van Gennip WJH, van Duren JKJ, Thune PC et al (2002) The interfaces of poly(p-phenylene vinylene) and fullerene derivatives with Al, LiF, and Al/LiF studied by secondary ion mass spectroscopy and x-ray photoelectron spectroscopy: formation of AlF3 disproved. J Chem Phys 117:5031–5035

    Article  Google Scholar 

  46. McNeill CR, Fell CJR, Holdsworth JL et al (2005) Screening for artifacts in near-field scanning photocurrent microscopy images of polymer solar cells. Synth Met 153:85–88

    Article  Google Scholar 

  47. Renaud G, Lazzari R, Leroy F (2009) Probing surface and interface morphology with grazing incidence small angle X-ray scattering. Surf Sci Rep 64:255–380

    Article  Google Scholar 

  48. Caminiti R, Albertini VR (1999) The kinetics of phase transitions observed by energy-dispersive X-ray diffraction. Int Rev Phys Chem 18:263–299

    Article  Google Scholar 

  49. Orita K, Morimura T, Horiuchi T et al (1997) In situ energy-dispersive X-ray reflectivity measurements of structural changes in thin films for organic electroluminescent devices. Synth Met 91:155–158

    Article  Google Scholar 

  50. Paci B, Generosi A, Albertini VR et al (2005) In situ energy dispersive x-ray reflectometry measurements on organic solar cells upon working. Appl Phys Lett 87:194110

    Article  Google Scholar 

  51. Paci B, Generosi A, Albertini VR et al (2006) Controlling photoinduced degradation in plastic photovoltaic cells: a time-resolved energy dispersive x-ray reflectometry study. Appl Phys Lett 89:043507

    Article  Google Scholar 

  52. Andreasen JW, Gevorgyan SA, Schleputz CM et al (2008) Applicability of X-ray reflectometry to studies of polymer solar cell degradation. Sol Energy Matter Sol Cells 92:793–798

    Article  Google Scholar 

  53. Garcia-Belmonte G, Munar A, Barea EM et al (2008) Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy. Org Electron 9:847–851

    Article  Google Scholar 

  54. Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333

    Article  Google Scholar 

  55. Fabregat-Santiago F, Garcia-Belmonte G, Mora-Sero I et al (2011) Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys Chem Chem Phys 13:9083–9118

    Article  Google Scholar 

  56. Garcia-Belmonte G, Boix PP, Bisquert J et al (2010) Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy. Sol Energy Matter Sol Cells 94:366–375

    Article  Google Scholar 

  57. Bisquert J, Fabregat-Santiago F, Mora-Sero I et al (2009) Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J Phys Chem C 113:17278–17290

    Article  Google Scholar 

  58. Glatthaar M, Mingirulli N, Zimmermann B et al (2005) Impedance spectroscopy on organic bulk-heterojunction solar cells. Phys Status Solidi A-Appl Mat 202:R125–R127

    Article  Google Scholar 

  59. Glatthaar M, Riede M, Keegan N et al (2007) Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy. Sol Energy Mater Sol Cells 91:390–393

    Article  Google Scholar 

  60. Wang MD, Xie FY, Xie WG et al (2011) Device lifetime improvement of polymer-based bulk heterojunction solar cells by incorporating copper oxide layer at Al cathode. Appl Phys Lett 98:183304

    Article  Google Scholar 

  61. Wang MD, Tang Q, An J et al (2010) Performance and stability improvement of P3HT:PCBM-based solar cells by thermally evaporated chromium oxide (CrOx) interfacial layer. ACS Appl Mater Interfaces 2:2699–2702

    Article  Google Scholar 

  62. Kim JY, Kim SH, Lee HH et al (2006) New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater 18:572–576

    Article  Google Scholar 

  63. Kim JY, Lee K, Coates NE et al (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225

    Article  Google Scholar 

  64. Lee K, Kim JY, Park SH et al (2007) Air-stable polymer electronic devices. Adv Mater 19:2445–2449

    Article  Google Scholar 

  65. Cho S, Lee K, Heeger AJ (2009) Extended lifetime of organic field-effect transistors encapsulated with titanium sub-oxide as an ‘Active’ passivation/barrier layer. Adv Mater 21:1941–1944

    Article  Google Scholar 

  66. Lee JK, Coates NE, Cho S et al (2008) Efficacy of TiOx optical spacer in bulk-heterojunction solar cells processed with 1,8-octanedithiol. Appl Phys Lett 92:243308

    Article  Google Scholar 

  67. Shrotriya V, Li G, Yao Y et al (2006) Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl Phys Lett 88:073508

    Article  Google Scholar 

  68. Zhao DW, Sun XW, Jiang CY et al (2008) Efficient tandem organic solar cells with an Al/MoO3 intermediate layer. Appl Phys Lett 93:083305

    Article  Google Scholar 

  69. Zhang F, Zhao D, Zhuo Z et al (2010) Inverted small molecule organic solar cells with Ca modified ITO as cathode and MoO3 modified. Sol Energy Matter Sol Cells 94:2416–2421

    Article  Google Scholar 

  70. Zhang FJ, Sun FY, Shi YZ et al (2010) Effect of an ultra-thin molybdenum trioxide layer and illumination intensity on the performance of organic photovoltaic devices. Energy Fuels 24:3739–3742

    Article  Google Scholar 

  71. Wang FX, Qiao XF, Xiong T et al (2008) The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes. Org Electron 9:985–993

    Article  Google Scholar 

  72. Sun Y, Takacs CJ, Cowan SR et al (2011) Efficient, air-stable bulk heterojunction polymer solar cells using moox as the anode interfacial layer. Adv Mater 23:2226–2230

    Article  Google Scholar 

  73. Chen LM, Hong ZR, Li G et al (2009) Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells. Adv Mater 21:1434–1449

    Article  Google Scholar 

  74. Tao C, Ruan SP, Zhang XD et al (2008) Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer. Appl Phys Lett 93:193307

    Article  Google Scholar 

  75. Hau SK, Yip HL, Ma H et al (2008) High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer. Appl Phys Lett 93:233304

    Article  Google Scholar 

  76. Kyaw AKK, Sun XW, Jiang CY et al (2008) An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl Phys Lett 93:221107

    Article  Google Scholar 

  77. Li G, Chu CW, Shrotriya V et al (2006) Efficient inverted polymer solar cells. Appl Phys Lett 88:253503

    Article  Google Scholar 

  78. Liao HH, Chen LM, Xu Z et al (2008) Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer. Appl Phys Lett 92:173303

    Article  Google Scholar 

  79. Krebs FC (2009) All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org Electron 10:761–768

    Article  Google Scholar 

  80. Krebs FC (2009) Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing. Sol Energy Mater Sol Cells 93:465–475

    Article  Google Scholar 

  81. Krebs FC, Jorgensen M, Norrman K et al (2009) A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration. Sol Energy Mater Sol Cells 93:422–441

    Article  Google Scholar 

  82. Sahin Y, Alem S, de Bettignies R et al (2005) Development of air stable polymer solar cells using an inverted gold on top anode structure. Thin Solid Films 476:340–343

    Article  Google Scholar 

  83. Hau SK, Yip HL, Baek NS et al (2008) Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl Phys Lett 92:253301

    Article  Google Scholar 

  84. Liu JP, Wang SS, Bian ZQ et al (2009) Inverted photovoltaic device based on ZnO and organic small molecule heterojunction. Chem Phys Lett 470:103–106

    Article  Google Scholar 

  85. Kuwabara T, Nakayama T, Uozumi K et al (2008) Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer. Sol Energy Mater Sol Cells 92:1476–1482

    Article  Google Scholar 

  86. Steim R, Choulis SA, Schilinsky P et al (2008) Interface modification for highly efficient organic photovoltaics. Appl Phys Lett 92:093303

    Article  Google Scholar 

  87. Tao C, Ruan SP, Xie GH et al (2009) Role of tungsten oxide in inverted polymer solar cells. Appl Phys Lett 94:043311

    Article  Google Scholar 

  88. Ameri T, Dennler G, Waldauf C et al (2008) Realization, characterization, and optical modeling of inverted bulk-heterojunction organic solar cells. J Appl Phys 103:084506

    Article  Google Scholar 

  89. Zimmermann B, Wurfel U, Niggemann M (2009) Longterm stability of efficient inverted P3HT:PCBM solar cells. Sol Energy Matter Sol Cells 93:491–496

    Article  Google Scholar 

  90. Lee JK, Cho JM, Shin WS et al (2008) The stability of PEDOT: PSS films monitored by electron spin resonance. J Korean Phys Soc 52:621–626

    Article  Google Scholar 

  91. Chang YM, Su WF, Wang L (2008) Influence of photo-induced degradation on the optoelectronic properties of regioegular poly(3-hexylthiophene). Sol Energy Matter Sol Cells 92:761–765

    Article  Google Scholar 

  92. Zhao DW, Tan ST, Ke L et al (2010) Optimization of an inverted organic solar cell. Sol Energy Mater Sol Cells 94:985–991

    Article  Google Scholar 

  93. Jiang CY, Sun XW, Zhao DW et al (2010) Low work function metal modified ITO as cathode for inverted polymer solar cells. Sol Energy Mater Sol Cells 94:1618–1621

    Article  Google Scholar 

  94. Zhao DW, Liu P, Sun XW et al (2009) An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer. Appl Phys Lett 95:153304

    Article  Google Scholar 

  95. Campoy-Quiles M, Ferenczi T, Agostinelli T et al (2008) Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nat Mater 7:158–164

    Article  Google Scholar 

  96. Gunes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338

    Article  Google Scholar 

  97. Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723

    Article  Google Scholar 

  98. Wang EG, Wang L, Lan LF et al (2008) High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl Phys Lett 92:033307

    Article  Google Scholar 

  99. Li G, Shrotriya V, Huang JS et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Article  Google Scholar 

  100. Kim K, Liu J, Namboothiry MAG et al (2007) Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl Phys Lett 90:163511

    Article  Google Scholar 

  101. Reyes-Reyes M, Kim K, Carroll DL (2005) High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C-61 blends. Appl Phys Lett 87:083506

    Article  Google Scholar 

  102. Yang XN, Loos J, Veenstra SC et al (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5:579–583

    Article  Google Scholar 

  103. Krebs FC, Spanggaard H (2005) Significant improvement of polymer solar cell stability. Chem Mat 17:5235–5237

    Article  Google Scholar 

  104. Krebs FC (2006) Encapsulation of polymer photovoltaic prototypes. Sol Energy Mater Sol Cells 90:3633–3643

    Article  Google Scholar 

  105. Sarkar S, Culp JH, Whyland JT et al (2010) Encapsulation of organic solar cells with ultrathin barrier layers deposited by ozone-based atomic layer deposition. Org Electron 11:1896–1900

    Article  Google Scholar 

  106. Puurunen RL (2005) Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys 97:121301

    Article  Google Scholar 

  107. Potscavage WJ, Yoo S, Domercq B et al (2007) Encapsulation of pentacene/C-60 organic solar cells with Al2O3 deposited by atomic layer deposition. Appl Phys Lett 90:253511

    Article  Google Scholar 

  108. Chang CY, Chou CT, Lee YJ et al (2009) Thin-film encapsulation of polymer-based bulk-heterojunction photovoltaic cells by atomic layer deposition. Org Electron 10:1300–1306

    Article  Google Scholar 

  109. Luo JX, Xiao LX, Chen ZJ et al (2010) Insulator MnO: highly efficient and air-stable n-type doping layer for organic photovoltaic cells. Org Electron 11:664–669

    Article  Google Scholar 

  110. Affinito JD, Gross ME, Coronado CA et al (1996) A new method for fabricating transparent barrier layers. Thin Solid Films 290:63–67

    Article  Google Scholar 

  111. Madakasira P, Inoue K, Ulbricht R et al (2005) Multilayer encapsulation of plastic photovoltaic devices. Synth Met 155:332–335

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Zhao, D.W., Ke, L., Huang, W., Sun, X.W. (2013). Interface Stability of Polymer and Small-Molecule Organic Photovoltaics. In: Choy, W. (eds) Organic Solar Cells. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4823-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4823-4_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4822-7

  • Online ISBN: 978-1-4471-4823-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics