Introduction to Organic Solar Cells

Part of the Green Energy and Technology book series (GREEN)


Organic solar cells (OSCs) have attracted strong attention in recent years, due to the advantages of flexibility, thinness, and simple manufacturing process. In this chapter, we overview the basics of OSCs. The basics of organic semiconductors are first described. We then provide details of the four steps in the operation principles of OSCs, including exciton generation, exciton diffusion, exciton dissociation, and charge collection. The basic architecture of OSC and the methods of characterization of OSCs are also explained. This chapter provides the fundamentals of OSCs to facilitate understanding of more advanced topics.


Solar Cell Active Layer High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Organic Semiconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Akamatu H, Inokuchi H, Matsunaga Y (1954) Electrical conductivity of the perylene bromine complex. Nature 173(4395):168–169Google Scholar
  2. 2.
    Tang C (1987) Organic electroluminescent diodes. Appl Phys Lett 51(12):913CrossRefGoogle Scholar
  3. 3.
    Bredas JL, Calbert JP, da Silva Filho DA, Cornil J (2002) Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc Nat Acad Sci 99(9):5804–5809Google Scholar
  4. 4.
    Kymissis I (2009) The physics of organic semiconductors. In: Organic Field Effect Transistors. Integrated Circuits and Systems, Springer, US, pp 1-12Google Scholar
  5. 5.
    Hu D, Yu J, Padmanaban G, Ramakrishnan S, Barbara PF (2002) Spatial confinement of exciton transfer and the role of conformational order in organic nanoparticles. Nano Lett 2(10):1121–1124CrossRefGoogle Scholar
  6. 6.
    Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL, Someya T, Gershenson ME, Rogers JA (2004) Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303(5664):1644–1646CrossRefGoogle Scholar
  7. 7.
    Kietzke T (2007) Recent Advances in Organic Solar Cells. Advances in OptoElectronics 2007. doi: 10.1155/2007/40285
  8. 8.
    McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline RJ, McGehee MD, Toney MF (2006) Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater 5(4):328–333CrossRefGoogle Scholar
  9. 9.
    Anthopoulos TD (2006) High performance n-channel organic field-effect transistors and ring oscillators based on C60 fullerene films. Appl Phys Lett 89(21):213504CrossRefGoogle Scholar
  10. 10.
    Gundlach DJ (2005) High mobility n-channel organic thin-film transistors and complementary inverters. J Appl Phys 98(6):064502CrossRefGoogle Scholar
  11. 11.
    Koster LJ (2006) Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett 88(9):093511CrossRefGoogle Scholar
  12. 12.
    Gregg B (2003) Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation. J Appl Phys 93(6):3605CrossRefGoogle Scholar
  13. 13.
    Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD (2007) Polymer-based solar cells. Mater Today 10:28–33Google Scholar
  14. 14.
    Brütting W (2006) Introduction to the physics of organic semiconductors. In: Physics of organic semiconductors. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–14Google Scholar
  15. 15.
    Coakley KM, McGehee MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16(23):4533–4542CrossRefGoogle Scholar
  16. 16.
    Min C (2010) Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Appl Phys Lett 96(13):133302CrossRefGoogle Scholar
  17. 17.
    Lee JH, Kim DW, Jang H, Choi JK, Geng J, Jung JW, Yoon SC, Jung H-T (2009) Enhanced solar-cell efficiency in bulk-heterojunction polymer systems obtained by nanoimprinting with commercially available AAO membrane filters. Small 5(19):2139–2143CrossRefGoogle Scholar
  18. 18.
    Andersson V (2008) Optical modeling of a folded organic solar cell. J Appl Phys 103(9):094520CrossRefGoogle Scholar
  19. 19.
    Peumans P, Bulovic V, Forrest SR (2000) Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl Phys Lett 76(19):2650–2652CrossRefGoogle Scholar
  20. 20.
    Jean-Michel N (2002) Organic photovoltaic materials and devices. CR Phys 3(4):523–542CrossRefGoogle Scholar
  21. 21.
    Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(07):1924–1945CrossRefGoogle Scholar
  22. 22.
    Tang C (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183CrossRefGoogle Scholar
  23. 23.
    Brabec CJ, Zerza G, Cerullo G, De Silvestri S, Luzzati S, Hummelen JC, Sariciftci S (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340(3–4):232–236CrossRefGoogle Scholar
  24. 24.
    Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338CrossRefGoogle Scholar
  25. 25.
    Koster LJA, Smits ECP, Mihailetchi VD, Blom PWM (2005) Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys Rev B 72(8):085205CrossRefGoogle Scholar
  26. 26.
    Mihailetchi VD, Wildeman J, Blom PWM (2005) Space-charge limited photocurrent. Phys Rev Lett 94(12):126602CrossRefGoogle Scholar
  27. 27.
    Koster LJ (2005) Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl Phys Lett 87(20):203502CrossRefGoogle Scholar
  28. 28.
    Lenes M (2006) Thickness dependence of the efficiency of polymer: fullerene bulk heterojunction solar cells. Appl Phys Lett 88(24):243502CrossRefGoogle Scholar
  29. 29.
    Shrotriya V (2006) Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Appl Phys Lett 89(6):063505CrossRefGoogle Scholar
  30. 30.
    Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11(5):374–380CrossRefGoogle Scholar
  31. 31.
    Parker I (1994) Carrier tunneling and device characteristics in polymer light-emitting diodes. J Appl Phys 75(3):1656CrossRefGoogle Scholar
  32. 32.
    Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794CrossRefGoogle Scholar
  33. 33.
    Mihailetchi V (2003) Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells. J Appl Phys 94(10):6849CrossRefGoogle Scholar
  34. 34.
    Brabec C (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80(7):1288CrossRefGoogle Scholar
  35. 35.
    Hayakawa A (2007) High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer. Appl Phys Lett 90(16):163517CrossRefGoogle Scholar
  36. 36.
    Waldauf C (2006) Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl Phys Lett 89(23):233517CrossRefGoogle Scholar
  37. 37.
    Kuwabara T, Nakayama T, Uozumi K, Yamaguchi T, Takahashi K (2008) Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer. Sol Energy Mater Sol Cells 92(11):1476–1482CrossRefGoogle Scholar
  38. 38.
    Keis K, Magnusson E, Lindström H, Lindquist S-E, Hagfeldt A (2002) A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol Energy Mater Sol Cells 73(1):51–58CrossRefGoogle Scholar
  39. 39.
    Kyaw AK (2008) An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl Phys Lett 93(22):221107CrossRefGoogle Scholar
  40. 40.
    Schmidt H (2009) Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode. Appl Phys Lett 94(24):243302CrossRefGoogle Scholar
  41. 41.
    Han S, Shin WS, Seo M, Gupta D, Moon S-J, Yoo S (2009) Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes. Org Electron 10(5):791–797CrossRefGoogle Scholar
  42. 42.
    Jiang CY, Sun XW, Zhao DW, Kyaw AKK, Li YN (2010) Low work function metal modified ITO as cathode for inverted polymer solar cells. Sol Energy Mater Sol Cells 94(10):1618–1621CrossRefGoogle Scholar
  43. 43.
    Tao C (2008) Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer. Appl Phys Lett 93(19):193307CrossRefGoogle Scholar
  44. 44.
    Xie F (2011) Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers. Appl Phys Lett 99(15):153304CrossRefGoogle Scholar
  45. 45.
    Peng B (2011) Performance improvement of polymer solar cells by using a solvent-treated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) buffer layer. Appl Phys Lett 98(24):243308CrossRefGoogle Scholar
  46. 46.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791CrossRefGoogle Scholar
  47. 47.
    Chen L, Tang Y, Fan X, Zhang C, Chu Z, Wang D, Zou D (2009) Improvement of the efficiency of CuPc/C60-based photovoltaic cells using a multistepped structure. Org Electron 10(4):724–728CrossRefGoogle Scholar
  48. 48.
    Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photon 3(5):297–302CrossRefGoogle Scholar
  49. 49.
    Savenije TJ, Kroeze JE, Yang X, Loos J (2005) The Effect of thermal treatment on the morphology and charge carrier dynamics in a polythiophene–fullerene bulk heterojunction. Adv Funct Mater 15(8):1260–1266CrossRefGoogle Scholar
  50. 50.
    Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater 17(10):1636–1644CrossRefGoogle Scholar
  51. 51.
    Chen H-Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon 3(11):649–653CrossRefGoogle Scholar
  52. 52.
    Schilinsky P (2002) Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl Phys Lett 81(20):3885CrossRefGoogle Scholar
  53. 53.
    Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13(1):85–88CrossRefGoogle Scholar
  54. 54.
    Vanlaeke P, Swinnen A, Haeldermans I, Vanhoyland G, Aernouts T, Cheyns D, Deibel C, D’Haen J, Heremans P, Poortmans J, Manca JV (2006) P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics. Sol Energy Mater Sol Cells 90(14):2150–2158CrossRefGoogle Scholar
  55. 55.
    Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha C-S, Ree M (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat Mater 5(3):197–203CrossRefGoogle Scholar
  56. 56.
    Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16(1):45–61CrossRefGoogle Scholar
  57. 57.
    Yao Y, Hou J, Xu Z, Li G, Yang Y (2008) Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv Funct Mater 18(12):1783–1789CrossRefGoogle Scholar
  58. 58.
    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868CrossRefGoogle Scholar
  59. 59.
    Dennler G (2006) Enhanced spectral coverage in tandem organic solar cells. Appl Phys Lett 89(7):073502CrossRefGoogle Scholar
  60. 60.
    Janssen AG (2007) Highly efficient organic tandem solar cells using an improved connecting architecture. Appl Phys Lett 91(7):073519CrossRefGoogle Scholar
  61. 61.
    Peumans P (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93(7):3693CrossRefGoogle Scholar
  62. 62.
    Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835):222–225CrossRefGoogle Scholar
  63. 63.
    Gilot J (2007) Double and triple junction polymer solar cells processed from solution. Appl Phys Lett 90(14):143512CrossRefGoogle Scholar
  64. 64.
    Sista S, Hong Z, Park M-H, Xu Z, Yang Y (2010) High-efficiency polymer tandem solar cells with three-terminal structure. Adv Mater 22(8):E77–E80CrossRefGoogle Scholar
  65. 65.
    Shrotriya V, Li G, Yao Y, Moriarty T, Emery K, Yang Y (2006) Accurate measurement and characterization of organic solar cells. Adv Funct Mater 16(15):2016–2023CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong

Personalised recommendations