Skip to main content

Isolation and Handling of Sensor Faults

  • Chapter
Book cover Fault-Tolerant Process Control

Abstract

This chapter considers the problem of sensor FDI and FTC for nonlinear systems subject to input constraints. The key idea of the presented method is to exploit model-based sensor redundancy through state observer design. An output feedback control design using high-gain observers is first presented; and then an FDI scheme is presented, which comprises a bank of high-gain observers. Residuals are defined as the discrepancies between these state estimates and their predicted values based on previous estimates. A fault is identified when all the residuals breach their thresholds except for the one generated without using the measurements provided by the faulty sensor. Upon FDI, the state estimate generated using measurements from the remaining healthy sensors is used to preserve practical stability of the closed-loop system. The implementation of the sensor FDI and fault-handling framework subject to uncertainty and measurement noise is illustrated using a chemical reactor example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahrens, J.H., Khalil, H.K.: High-gain observers in the presence of measurement noise: A switched-gain approach. Automatica 45, 936–943 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahrens, J.H., Tan, X., Khalil, H.K.: Multirate sampled-data output feedback control with application to smart material actuated systems. IEEE Trans. Autom. Control 54, 2518–2529 (2009)

    Article  MathSciNet  Google Scholar 

  3. Atassi, A.N., Khalil, H.K.: A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Autom. Control 44, 1672–1687 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dabroom, A.M., Khalil, H.K.: Output feedback sampled-data control of nonlinear systems using high-gain observers. IEEE Trans. Autom. Control 46, 1712–1725 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. El-Farra, N.H., Christofides, P.D.: Bounded robust control of constrained multivariable nonlinear processes. Chem. Eng. Sci. 58, 3025–3047 (2003)

    Article  Google Scholar 

  6. El-Farra, N.H., Mhaskar, P., Christofides, P.D.: Output feedback control of switched nonlinear systems using multiple Lyapunov functions. Syst. Control Lett. 54, 1163–1182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Findeisen, R., Imsland, L., Allgöwer, F., Foss, B.A.: Output feedback stabilization of constrained systems with nonlinear predictive control. Int. J. Robust Nonlinear Control 13, 211–227 (2003)

    Article  MATH  Google Scholar 

  8. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  9. Mahmood, M., Mhaskar, P.: Enhanced stability regions for model predictive control of nonlinear process systems. AIChE J. 54, 1487–1498 (2008)

    Article  Google Scholar 

  10. Mahmood, M., Gandhi, R., Mhaskar, P.: Safe-parking of nonlinear process systems: Handling uncertainty and unavailability of measurements. Chem. Eng. Sci. 63, 5434–5446 (2008)

    Article  Google Scholar 

  11. Mattei, M., Paviglianiti, G., Scordamaglia, V.: Nonlinear observers with H ∞ performance for sensor fault detection and isolation: a linear matrix inequality design procedure. Control Eng. Pract. 13, 1271–1281 (2005)

    Article  Google Scholar 

  12. Mhaskar, P., El-Farra, N.H., Christofides, P.D.: Predictive control of switched nonlinear systems with scheduled mode transitions. IEEE Trans. Autom. Control 50, 1670–1680 (2005)

    Article  MathSciNet  Google Scholar 

  13. Mhaskar, P., El-Farra, N.H., Christofides, P.D.: Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control. Syst. Control Lett. 55, 650–659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Muñoz de la Peña, D., Christofides, P.D.: Output feedback control of nonlinear systems subject to sensor data losses. Syst. Control Lett. 57, 631–642 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Mhaskar, P., Liu, J., Christofides, P.D. (2013). Isolation and Handling of Sensor Faults. In: Fault-Tolerant Process Control. Springer, London. https://doi.org/10.1007/978-1-4471-4808-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4808-1_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4807-4

  • Online ISBN: 978-1-4471-4808-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics