Skip to main content

Abstract

This chapter presents the motivation, background, key contributions and organization of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aradhye, H.B., Bakshi, B.R., Strauss, R.A., Davis, J.F.: Multiscale SPC using wavelets: Theoretical analysis and properties. AIChE J. 49, 939–958 (2003)

    Article  Google Scholar 

  2. Aradhye, H.B., Bakshi, B.R., Davis, J.F., Ahalt, S.C.: Clustering in wavelet domain: A multiresolution art network for anomaly detection. AIChE J. 50, 2455–2466 (2004)

    Article  Google Scholar 

  3. Armaou, A., Demetriou, M.A.: Robust detection and accommodation of incipient component and actuator faults in nonlinear distributed processes. AIChE J. 54, 2651–2662 (2008)

    Article  Google Scholar 

  4. Bakshi, B.R.: Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 44, 1596–1610 (1998)

    Article  Google Scholar 

  5. Bao, J., Zhang, W.Z., Lee, P.L.: Passivity-based decentralized failure-tolerant control. Ind. Eng. Chem. Res. 41, 5702–5715 (2002)

    Article  Google Scholar 

  6. Bequette, W.B.: Nonlinear control of chemical processes: A review. Ind. Eng. Chem. Res. 30, 1391–1413 (1991)

    Article  Google Scholar 

  7. Blanke, M., Izadi-Zamanabadi, R., Bogh, S.A., Lunau, C.P.: Fault-tolerant control systems—a holistic view. Control Eng. Pract. 5, 693–702 (1997)

    Article  Google Scholar 

  8. Bokor, J., Szabó, Z.: Fault detection and isolation in nonlinear systems. Annu. Rev. Control 33, 113–123 (2009)

    Article  Google Scholar 

  9. Chen, W., Saif, M.: Adaptive actuator fault detection, isolation and accommodation in uncertain systems. Int. J. Control 80, 45–63 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, J., Patton, R.J., Zhang, H.-Y.: Design of unknown input observers and robust fault detection filters. Int. J. Control 63, 85–105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christofides, P.D., El-Farra, N.H.: Control of Nonlinear and Hybrid Process Systems: Designs for Uncertainty, Constraints and Time-Delays. Springer, Berlin (2005)

    Google Scholar 

  12. Davis, J.F., Piovoso, M.L., Kosanovich, K., Bakshi, B.: Process data analysis and interpretation. Adv. Chem. Eng. 25, 1–103 (1999)

    Article  MATH  Google Scholar 

  13. DeCarlo, R.A., Branicky, M.S., Pettersson, S., Lennartson, B.: Perspectives and results on the stability and stabilizability of hybrid systems. Proc. IEEE 88, 1069–1082 (2000)

    Article  Google Scholar 

  14. DePersis, C., Isidori, A.: A geometric approach to nonlinear fault detection and isolation. IEEE Trans. Autom. Control 46, 853–865 (2001)

    Article  MathSciNet  Google Scholar 

  15. Ding, S.X., Zhang, P., Naik, A., Ding, E.L., Huang, B.: Subspace method aided data-driven design of fault detection and isolation systems. J. Process Control 19, 1496–1510 (2009)

    Article  Google Scholar 

  16. Dunia, R., Qin, S.J.: Subspace approach to multidimensional fault identification and reconstruction. AIChE J. 44, 1813–1831 (1998)

    Article  Google Scholar 

  17. Dunia, R., Qin, S.J., Edgar, T.F., McAvoy, T.J.: Identification of faulty sensors using principal component analysis. AIChE J. 42, 2797–2812 (1996)

    Article  Google Scholar 

  18. El-Farra, N.H.: Integrated fault detection and fault-tolerant control architectures for distributed processes. Ind. Eng. Chem. Res. 45, 8338–8351 (2006)

    Article  Google Scholar 

  19. El-Farra, N.H., Christofides, P.D.: Integrating robustness, optimality and constraints in control of nonlinear processes. Chem. Eng. Sci. 56, 1841–1868 (2001)

    Article  Google Scholar 

  20. El-Farra, N.H., Christofides, P.D.: Bounded robust control of constrained multivariable nonlinear processes. Chem. Eng. Sci. 58, 3025–3047 (2003)

    Article  Google Scholar 

  21. El-Farra, N.H., Christofides, P.D.: Coordinated feedback and switching for control of hybrid nonlinear processes. AIChE J. 49, 2079–2098 (2003)

    Article  Google Scholar 

  22. El-Farra, N.H., Ghantasala, S.: Actuator fault isolation and reconfiguration in transport-reaction processes. AIChE J. 53, 1518–1537 (2007)

    Article  Google Scholar 

  23. El-Farra, N.H., Mhaskar, P., Christofides, P.D.: Hybrid predictive control of nonlinear systems: Method and applications to chemical processes. Int. J. Robust Nonlinear Control 14, 199–225 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. El-Farra, N.H., Mhaskar, P., Christofides, P.D.: Output feedback control of switched nonlinear systems using multiple Lyapunov functions. Syst. Control Lett. 54, 1163–1182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy—a survey and some new results. Automatica 26, 459–474 (1990)

    Article  MATH  Google Scholar 

  26. Frank, P.M., Ding, X.: Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J. Process Control 7, 403–424 (1997)

    Article  Google Scholar 

  27. García, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and practice—A survey. Automatica 25, 335–348 (1989)

    Article  MATH  Google Scholar 

  28. Garcia-Onorio, V., Ydstie, B.E.: Distributed, asynchronous and hybrid simulation of process networks using recording controllers. Int. J. Robust Nonlinear Control 14, 227–248 (2004)

    Article  Google Scholar 

  29. Grossmann, I.E., van den Heever, S.A., Harjukoski, I.: Discrete optimization methods and their role in the integration of planning and scheduling. In: Proceedings of 6th International Conference on Chemical Process Control, Tucson, AZ, pp. 124–152 (2001)

    Google Scholar 

  30. Hamelin, F., Sauter, D.: Robust fault detection in uncertain dynamic systems. Automatica 36, 1747–1754 (2000)

    Article  MATH  Google Scholar 

  31. Henson, M.A., Seborg, D.E.: Nonlinear Process Control. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

  32. Hespanha, J.P., Morse, A.S.: Stability of switched systems with average dwell time. In: Proceedings of 38th IEEE Conference on Decision and Control, Phoenix, AZ, pp. 2655–2660 (1999)

    Google Scholar 

  33. Kokotovic, P., Arcak, M.: Constructive nonlinear control: a historical perspective. Automatica 37, 637–662 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Kourti, T., MacGregor, J.F.: Multivariate SPC methods for process and product monitoring. J. Qual. Technol. 28, 409–428 (1996)

    Google Scholar 

  35. Kresta, J.V., Macgregor, J.F., Marlin, T.E.: Multivariate statistical monitoring of process operating performance. Can. J. Chem. Eng. 69, 35–47 (1991)

    Article  Google Scholar 

  36. Lin, Y., Sontag, E.D.: A universal formula for stabilization with bounded controls. Syst. Control Lett. 16, 393–397 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. MacGregor, J.F., Kourti, T.: Statistical process control of multivariate processes. J. Qual. Technol. 28, 409–428 (1996)

    Google Scholar 

  38. Massoumnia, M., Verghese, G.C., Wilsky, A.S.: Failure detection and identification. IEEE Trans. Autom. Control 34, 316–321 (1989)

    Article  MATH  Google Scholar 

  39. Mattei, M., Paviglianiti, G., Scordamaglia, V.: Nonlinear observers with H performance for sensor fault detection and isolation: a linear matrix inequality design procedure. Control Eng. Pract. 13, 1271–1281 (2005)

    Article  Google Scholar 

  40. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36, 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mehranbod, N., Soroush, M., Panjapornpon, C.: A method of sensor fault detection and identification. J. Process Control 15, 321–339 (2005)

    Article  Google Scholar 

  42. Mhaskar, P., El-Farra, N.H., Christofides, P.D.: Robust hybrid predictive control of nonlinear systems. Automatica 41, 209–217 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mhaskar, P., Gani, A., Christofides, P.D.: Fault-tolerant control of nonlinear processes: Performance-based reconfiguration and robustness. Int. J. Robust Nonlinear Control 16, 91–111 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mhaskar, P., Gani, A., McFall, C., Christofides, P.D., Davis, J.F.: Fault-tolerant control of nonlinear process systems subject to sensor faults. AIChE J. 53, 654–668 (2007)

    Article  Google Scholar 

  45. Mhaskar, P., El-Farra, N.H., Christofides, P.D.: Robust predictive control of switched systems: Satisfying uncertain schedules subject to state and control constraints. Int. J. Adapt. Control Signal Process. 22, 161–179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mhaskar, P., McFall, C., Gani, A., Christofides, P.D., Davis, J.F.: Isolation and handling of actuator faults in nonlinear systems. Automatica 44, 53–62 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Muñoz de la Peña, D., Christofides, P.D.: Output feedback control of nonlinear systems subject to sensor data losses. Syst. Control Lett. 57, 631–642 (2008)

    Article  MATH  Google Scholar 

  48. Negiz, A., Cinar, A.: Statistical monitoring of multivariable dynamic processes with state-space models. AIChE J. 43, 2002–2020 (1997)

    Article  Google Scholar 

  49. Nomikos, P., Macgregor, J.F.: Monitoring batch processes using multiway principal component analysis. AIChE J. 40, 1361–1375 (1994)

    Article  Google Scholar 

  50. Ohran, B., Muñoz de la Peña, D., Christofides, P.D., Davis, J.F.: Enhancing data-based fault isolation through nonlinear control. AIChE J. 54, 223–241 (2008)

    Article  Google Scholar 

  51. Ohran, B., Liu, J., Munoz de la Pena, D., Christofides, P.D., Davis, J.F.: Data-based fault detection and isolation using feedback control: Output feedback and optimality. Chem. Eng. Sci. 64, 2370–2383 (2009)

    Article  Google Scholar 

  52. Patton, R.J.: Fault-tolerant control systems: The 1997 situation. In: Proceedings of the IFAC Symposium SAFEPROCESS 1997, Hull, United Kingdom, pp. 1033–1054 (1997)

    Google Scholar 

  53. Patton, R.J., Chen, J.: Optimal unknown input distribution matrix selection in robust fault diagnosis. Automatica 29, 837–841 (1993)

    Article  MATH  Google Scholar 

  54. Pertew, A.M., Marquez, H.J., Zhao, Q.: LMI-based sensor fault diagnosis for nonlinear Lipschitz systems. Automatica 43, 1464–1469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Pisu, P., Serrani, A., You, S., Jalics, L.: Adaptive threshold based diagnostics for steer-by-wire systems. J. Dyn. Syst. Meas. Control 128, 428–435 (2006)

    Article  Google Scholar 

  56. Raich, A., Çinar, A.: Statistical process monitoring and disturbance diagnosis in multivariable continuous processes. AIChE J. 42, 995–1009 (1996)

    Article  Google Scholar 

  57. Rajamani, R., Ganguli, A.: Sensor fault diagnostics for a class of non-linear systems using linear matrix inequalities. Int. J. Control 77, 920–930 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. Rollins, D.R., Davis, J.F.: An unbiased estimation technique when gross errors exist in process measurements. AIChE J. 38, 563–572 (1992)

    Article  Google Scholar 

  59. Romagnoli, J.A., Palazoglu, A.: Introduction to Process Control. CRC Press, Boca Raton (2006)

    Google Scholar 

  60. Saberi, A., Stoorvogel, A.A., Sannuti, P., Niemann, H.: Fundamental problems in fault detection and identification. Int. J. Robust Nonlinear Control 10, 1209–1236 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  61. Staroswiecki, M., Comtet-Varga, G.: Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems. Automatica 37, 687–699 (2001)

    MathSciNet  MATH  Google Scholar 

  62. Tatara, E., Birol, I., Teymor, F., Cinar, A.: Agent-based control of autocatalytic replicators in network of reactors. Comput. Chem. Eng. 29, 807–815 (2005)

    Article  Google Scholar 

  63. Teel, A.: Global stabilization and restricted tracking for multiple integrators with bounded controls. Syst. Control Lett. 18, 165–171 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  64. Vemuri, A.T.: Sensor bias fault diagnosis in a class of nonlinear systems. IEEE Trans. Autom. Control 46, 949–954 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  65. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N., Yin, K.: A review of process fault detection and diagnosis. Part III: Process history based methods. Comput. Chem. Eng. 27, 327–346 (2003)

    Article  Google Scholar 

  66. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis. Part I: Quantitative model-based methods. Comput. Chem. Eng. 27, 293–311 (2003)

    Article  Google Scholar 

  67. Wise, B.M., Gallagher, N.B.: The process chemometrics approach to monitoring and fault detection. J. Process Control 6, 329–348 (1996)

    Article  Google Scholar 

  68. Yan, X.-G., Edwards, C.: Sensor fault detection and isolation for nonlinear systems based on a sliding mode observer. Int. J. Adapt. Control Signal Process. 21, 657–673 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. Yoon, S., MacGregor, J.F.: Fault diagnosis with multivariate statistical models part I: using steady state fault signatures. J. Process Control 11, 387–400 (2001)

    Article  Google Scholar 

  70. Zhang, X.: Sensor bias fault detection and isolation in a class of nonlinear uncertain systems using adaptive estimation. IEEE Trans. Autom. Control 56, 1220–1226 (2011)

    Article  Google Scholar 

  71. Zhang, X., Polycarpou, M.M., Parisini, T.: A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems. IEEE Trans. Autom. Control 47, 576–593 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zhang, X.D., Parisini, T., Polycarpou, M.M.: Adaptive fault-tolerant control of nonlinear uncertain systems: An information-based diagnostic approach. IEEE Trans. Autom. Control 49, 1259–1274 (2004)

    Article  MathSciNet  Google Scholar 

  73. Zhang, X., Parisini, T., Polycarpou, M.M.: Sensor bias fault isolation in a class of nonlinear systems. IEEE Trans. Autom. Control 50, 370–376 (2005)

    Article  MathSciNet  Google Scholar 

  74. Zhang, X., Polycarpou, M.M., Parisini, T.: Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation. Automatica 46, 290–299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  75. Zhou, D.H., Frank, P.M.: Fault diagnostics and fault tolerant control. IEEE Trans. Aerosp. Electron. Syst. 34, 420–427 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Mhaskar, P., Liu, J., Christofides, P.D. (2013). Introduction. In: Fault-Tolerant Process Control. Springer, London. https://doi.org/10.1007/978-1-4471-4808-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4808-1_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4807-4

  • Online ISBN: 978-1-4471-4808-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics