This chapter gives an overview of main traditional fault diagnosis techniques, including hardware redundancy based technique, signal processing based fault diagnosis and plausibility test, and their classification. The model-based fault diagnosis is then introduced in relationship with these traditional fault diagnosis techniques. It is followed by a review of the historical development of the model-based fault diagnosis technique and the major tasks in designing a model-based fault diagnosis system.


  1. 1.
    Alcorta-Garcia, E., Frank, P.M.: On the relationship between observer and parameter identification based approaches to fault detection. In: Proc. of the 14th IFAC World Congress, vol. N, pp. 25–29 (1996) Google Scholar
  2. 12.
    Basseville, M., Nikiforov, I.: Detection of Abrupt Changes – Theory and Application. Prentice-Hall, Englewood Cliffs (1993) Google Scholar
  3. 15.
    Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, Berlin (2003) MATHGoogle Scholar
  4. 25.
    Chen, J., Patton, R.J.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic, Boston (1999) MATHCrossRefGoogle Scholar
  5. 32.
    Delmaire, G., Cassar, J.P., Starroswiekci, M.: Identification and parity space approaches for fault detection in SISO systems including modelling errors. In: Proc. of the 33rd IEEE CDC, pp. 1767–1772 (1994) Google Scholar
  6. 35.
    Ding, S.X., Ding, E.L., Jeinsch, T.: An approach to analysis and design of observer and parity relation based FDI systems. In: Proc. 14th IFAC World Congress, pp. 37–42 (1999) Google Scholar
  7. 60.
    Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy – A survey. Automatica 26, 459–474 (1990) MATHCrossRefGoogle Scholar
  8. 61.
    Frank, P.M.: Enhancement of robustness in observer-based fault detection. Internat. J. Control 59, 955–981 (1994) MathSciNetMATHCrossRefGoogle Scholar
  9. 62.
    Frank, P.M.: Analytical and qualitative model-based fault diagnosis – A survey and some new results. Eur. J. Control 2, 6–28 (1996) MATHGoogle Scholar
  10. 63.
    Frank, P.M., Ding, S.X., Marcu, T.: Model-based fault diagnosis in technical processes. Trans. Inst. Meas. Control 22, 57–101 (2000) Google Scholar
  11. 65.
    Frank, P.M., Ding, X.: Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J. Process Control 7(6), 403–424 (1997) CrossRefGoogle Scholar
  12. 74.
    Gertler, J.J.: Analytical redundancy methods in fault detection and isolation. In: Proc. the 1st IFAC/IMACS Symp. SAFEPROCESS ’91 (1991) Google Scholar
  13. 75.
    Gertler, J.J.: Diagnosing parametric faults: From parameter estimation to parity relation. In: Proc. of ACC 95, pp. 1615–1620 (1995) CrossRefGoogle Scholar
  14. 76.
    Gertler, J.J.: Fault Detection and Diagnosis in Engineering Systems. Dekker, New York (1998) Google Scholar
  15. 79.
    Gertler, J.: Survey of model-based failure detection and isolation in complex plants. IEEE Control Syst. Mag. 3, 3–11 (1988) CrossRefGoogle Scholar
  16. 84.
    Gustafsson, F.: Adaptive Filtering and Change Detection. Wiley, New York (2000) Google Scholar
  17. 90.
    Hou, M., Mueller, P.: Fault detection and isolation observers. Internat. J. Control 60, 827–846 (1994) MathSciNetMATHCrossRefGoogle Scholar
  18. 96.
    Isermann, R.: Process fault detection based on modeling and estimation methods – A survey. Automatica 20, 387–404 (1984) MATHCrossRefGoogle Scholar
  19. 98.
    Isermann, R.: Fault Diagnosis Systems. Springer, Berlin (2006) Google Scholar
  20. 108.
    Kinnaert, M.: Fault diagnosis based on analytical models for linear and nonlinear systems – A tutorial. In: Proc. of IFAC SAFEPROCESS, pp. 37–50 (2003) Google Scholar
  21. 120.
    Mangoubi, R.: Robust Estimation and Failure Detection. Springer, New York (1998) CrossRefGoogle Scholar
  22. 139.
    Patton, R.J.: Robust model-based fault diagnosis: The state of the art. In: Proc. of IFAC Symp. SAFEPROCESS, pp. 1–27 (1994) Google Scholar
  23. 141.
    Patton, R.J., Frank R, P.M. (eds.): Fault Diagnosis in Dynamic Systems, Theory and Applications. Prentice-Hall, Englewood Cliffs (1989) Google Scholar
  24. 142.
    Patton, R.J., Frank R, P.M. (eds.): Issues of Fault Diagnosis for Dynamic Systems. Springer, London (2000) Google Scholar
  25. 157.
    Simani, S., Fantuzzi, S., Patton, R.J.: Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques. Springer, London (2003) Google Scholar
  26. 167.
    Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.: Review of process fault detection and diagnosis part I: Quantitative model-based methods. Comput. Chem. Eng. 27, 293–311 (2003) CrossRefGoogle Scholar
  27. 181.
    Willsky, A.S.: A survey of design methods for failure detection in dynamic systems. Automatica 12, 601–611 (1976) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Steven X. Ding
    • 1
  1. 1.Inst. Automatisierungstechnik und Komplexe Systeme (AKS)Universität Duisburg-EssenDuisburgGermany

Personalised recommendations