Skip to main content

Generator Ownership of Financial Transmission Rights and Market Power

  • Chapter
  • First Online:
Financial Transmission Rights

Part of the book series: Lecture Notes in Energy ((LNEN,volume 7))

Abstract

Game theory is well suited to analyze a situation with strategic interdependence of multiple decision makers. Electricity markets include both physical and operational attributes. Likewise, electricity markets are characterized by a relatively small number of large market players, limited competitiveness and strategic behavior. Cournot models compete in quantities while Bertrand models compete in prices. Supply function equilibrium function models assume market players compete both in quantity and price. These are realistic assumptions for electricity markets where market players submit a price-quantity schedule. However these models are complex to solve and may not incorporate all technical attributes of electricity markets. Cournot models are easily solvable and yield under reasonable conditions a unique Nash equilibrium. They are also more suitable for short term analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is no case where (5.3) and (5.4) are achieved in an equilibrium in a symmetric model; however, in an asymmetric model, passive/aggressive equilibria are possible, in which case a pair of (5.3) and (5.4) will be an equilibrium output pair.

  2. 2.

    Of course, the amount of power transferred over the line remains limited to K.

References

  • Borenstein S, Bushnell J, Stoft SE (2000) The competitive effects of transmission capacity in a deregulated electricity industry. Rand J Econ 31:294–325

    Article  Google Scholar 

  • California ISO (2011) Business practice manual for congestion revenue rights. Available: www.caiso.com

  • Chandley JD, Hogan WW (2002) Initial comments of John D. Chandley and William W. Hogan on the standard market design NOPR. 11 Nov 2002. Available: http://www.whogan.com

  • Cho I-K (2003) Competitive equilibrium in a radial network. Rand J Econ 34:438–460

    Article  Google Scholar 

  • ERCOT (2011) ERCOT nodal protocols. www.ercot.com

  • Federal Energy Regulatory Commission (2002) Notice of proposed rulemaking remedying undue discrimination through open access transmission service and standard market design. Docket No. RM01-12-000, 31 July 2002

    Google Scholar 

  • Gilbert R, Neuhoff K, Newbery D (2004) Allocating transmission to mitigate market power in electricity networks. Rand J Econ 35:691–709

    Article  Google Scholar 

  • Joskow P, Tirole J (2000) Transmission rights and market power on electric power networks. Rand J Econ 31:450–487

    Article  Google Scholar 

  • Joung M (2008) Game-theoretic equilibrium analysis applications to deregulated electricity markets. Ph.D. thesis, The University of Texas at Austin

    Google Scholar 

  • LĂ©autier TO (2000) Regulation of an electric power transmission company. Energy J 21:61–92

    Google Scholar 

  • Midwest ISO (2011) ARR and FTR overview. www.midwestiso.org

  • New England ISO (2011) Financial transmission rights (FTRs) frequently asked questions. www.iso-ne.com

  • New York ISO (2011) Market participants user’s guide. www.nyiso.com

  • PJM (2011) FTR market frequently asked questions. www.pjm.com

  • Pritchard G, Philpott A (2005) On financial transmission rights and market power. Decis Supp Syst 40:507–515

    Article  Google Scholar 

  • RosellĂ³n J (2003) Different approaches towards transmission expansion. Rev Net Econ 2(3):238–269

    Google Scholar 

  • Schweppe F, Caramanis M, Tabors R, Bohn R (1988) Spot pricing of electricity. Kluwer, Boston

    Book  Google Scholar 

  • Stoft SE (1999) Financial transmission rights meet Cournot: how TCC’s curb market power. Energy J 20:1–23

    Google Scholar 

  • Willems B (2002) Modeling Cournot competition in an electricity market with transmission constraints. Energy J 23:95–125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Baldick .

Editor information

Editors and Affiliations

Appendix

Appendix

This appendix provides proofs of the Lemmas.

Proof of Lemma 1

First, we consider the direction of option share from market i to j. Suppose that there is no congestion. In this case, prices are equated across markets so each market gets half of the total output of both firms. On the other hand, if there is congestion, then the prices of the markets are different. Two congested situations can be differentiated: one is to import K MW with line congestion, and the other is to export K MW with line congestion. Here, I notice that line congestion can occur only when the output difference of both firms is greater than 2K MW. More precisely, market i imports with congestion when q i  < q j  − 2K, and exports with congestion when q i  > q j  + 2K. In this setting, the profit of firm i is represented by the profit function \( {\pi_i} \):

$$ {\pi_i}=\left\{ \begin{array}{lll} P\left( {{q_i}-K} \right){q_i}+\eta_i^{ij }K\left( {P\left( {{q_j}+K} \right)-P\left( {{q_i}-K} \right)} \right)-C\left( {{q_i}} \right),\quad if\;{q_i}>{q_j}+2K, \hfill \\ P\left( {{q_i}+K} \right){q_i}-C\left( {{q_i}} \right),\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad\;\;\;if\;{q_i}<{q_j}-2K, \hfill \\ P\left( {\frac{{{q_i}+{q_j}}}{2}} \right){q_i}-C\left( {{q_i}} \right),\quad \quad \quad \quad \quad \quad \quad \quad \quad\;if\;{q_j}-2K\le {q_i}\le {q_j}+2K, \end{array} \right\} $$
(5.22)

where q i is firm i’s output and q j is firm j’s output.

Using the explicit forms of demand and costs from (5.1) to (5.2), the profit function of firm i is:

$$ {\pi_i}=\left\{ \begin{array}{lll} {q_i}\left( {-\alpha {q_i}+\alpha K+\beta } \right)+\eta_i^{ij }K\left( {\alpha \left( {{q_i}-{q_j}} \right)-2\alpha K} \right)-\frac{a}{2}q_i^2-b{q_i}-c,\ if\;{q_i}>{q_j}+2K, \hfill \\ {q_i}\left( {-\alpha {q_i}-\alpha K+\beta } \right)-\frac{a}{2}q_i^2-b{q_i}-c,\quad \quad \quad \quad \quad \quad \quad \quad \quad\quad\quad\quad\quad\quad\quad\quad\;\;if\;{q_i}<{q_j}-2K, \hfill \\ {q_i}\left( {-\alpha \frac{{{q_i}+{q_j}}}{2}+\beta } \right)-\frac{a}{2}q_i^2-b{q_i}-c,\quad \quad \quad\quad\quad\quad\quad\quad\quad\;\;if\;{q_j}-2K\le {q_i}\le {q_j}+2K. \end{array} \right\} $$
(5.23)

From (5.23) and the definition, firm i’s optimal aggressive and passive outputs and Cournot best response output, which are denoted by \( q_i^{{u{o_{ij }}+}}\left( {K,\eta_i^{ij }} \right) \), \( q_i^{{u{o_{ij }}-}}(K) \), and \( q_i^{obC}\left( {{q_j}} \right) \), respectively, are obtained by (5.24), (5.25), and (5.26):

$$ \begin{array}{lll} q_i^{{u{o_{ij }}+}}\left( {K,\eta_i^{ij }} \right) =\mathop{{\arg \max }}\limits_{{{q_i}}}\cr \quad\times\left[ {{q_i}\left( {-\alpha {q_i}+\alpha K+\beta } \right)+\eta_i^{ij }K\left( {\alpha \left( {{q_i}-{q_j}} \right)-2\alpha K} \right)-\frac{a}{2}q_i^2-b{q_i}-c} \right],\end{array} $$
(5.24)
$$ q_i^{{u{o_{ij }}-}}(K)=\mathop{{\arg \max }}\limits_{{{q_i}}}\left[ {{q_i}\left( {-\alpha {q_i}-\alpha K+\beta } \right)-\frac{a}{2}q_i^2-b{q_i}-c} \right], $$
(5.25)
$$ q_i^{{u{o_{ij }}C}}\left( {{q_j}} \right)=\mathop{{\arg \max }}\limits_{{{q_i}}}\left[ {{q_i}\left( {-\alpha \frac{{{q_i}+{q_j}}}{2}+\beta } \right)-\frac{a}{2}q_i^2-b{q_i}-c} \right]. $$
(5.26)

By solving (5.24), (5.25), and (5.26), the optimal aggressive and passive outputs and the Cournot best response output can be explicitly expressed as (5.27), (5.28), and (5.29):

$$ q_i^{{u{o_{ij }}+}}\left( {K,\eta_i^{ij }} \right)=\frac{{\beta +\left( {1+\eta_i^{ij }} \right)\alpha K-b}}{{2\alpha +a}}, $$
(5.27)
$$ q_i^{{u{o_{ij }}-}}(K)=\frac{{\beta -\alpha K-b}}{{2\alpha +a}}, $$
(5.28)
$$ q_i^{{u{o_{ij }}C}}\left( {{q_j}} \right)=-\frac{\alpha }{{2\left( {\alpha +a} \right)}}{q_j}+\frac{{\beta -b}}{{\alpha +a}}. $$
(5.29)

By comparing (5.27), (5.28), and (5.29) with (5.3), (5.4), and (5.5), we can easily observe that (5.6), (5.7), and (5.8) hold.

Similarly, for the case in which firm i possesses an \( \eta_i^{ji } \) FTR option in the other direction, the following results are obtained:

$$ q_i^{{u{o_{ji }}+}}(K)=\frac{{\beta +\alpha K-b}}{{2\alpha +a}}, $$
(5.30)
$$ q_i^{{u{o_{ji }}-}}\left( {K,\eta_i^{ji }} \right)=\frac{{\beta -\left( {1+\eta_i^{ji }} \right)\alpha K-b}}{{2\alpha +a}}, $$
(5.31)
$$ q_i^{{u{o_{ji }}C}}\left( {{q_j}} \right)=-\frac{\alpha }{{2\left( {\alpha +a} \right)}}{q_j}+\frac{{\beta -b}}{{\alpha +a}}, $$
(5.32)

Therefore, we also observe that (5.9), (5.10), and (5.11) hold.

Q.E.D.

Proof of Lemma 3

In the FTR obligation model, the profit of each firm i is represented by the profit function \( {\pi_i} \):

$$ {\pi_i}=\left\{ \begin{array}{lll} P\left( {{q_i}-K} \right){q_i}+{\gamma_i}K\left( {P\left( {{q_j}+K} \right)-P\left( {{q_i}-K} \right)} \right)-C\left( {{q_i}} \right),\quad if\;{q_i}>{q_j}+2K, \hfill \\ P\left( {{q_i}+K} \right){q_i}-{\gamma_i}K\left( {P\left( {{q_i}+K} \right)-P\left( {{q_j}-K} \right)} \right)-C\left( {{q_i}} \right),\quad if\;{q_i}<{q_j}-2K, \hfill \\ P\left( {\frac{{{q_i}+{q_j}}}{2}} \right){q_i}-C\left( {{q_i}} \right),\quad \quad \quad \quad \quad \quad \quad \quad \quad if\;{q_j}-2K\le {q_i}\le {q_j}+2K, \end{array} \right\} $$
(5.33)

where q i is firm i’s output and q j is firm j’s output.

Using the explicit forms of demand and costs of (3.1) and (3.2), the profit function of firm i is rewritten such that:

$$ {\pi_i}=\left\{ \begin{array}{lll} {q_i}\left( {-\alpha {q_i}+\alpha K+\beta } \right)+{\gamma_i}K\left( {\alpha \left( {{q_i}-{q_j}} \right)-2\alpha K} \right)-\frac{a}{2}q_i^2-b{q_i}-c,\quad if\;{q_i}>{q_j}+2K, \hfill \\ {q_i}\left( {-\alpha {q_i}-\alpha K+\beta } \right)-{\gamma_i}K\left( {\alpha \left( {{q_j}-{q_i}} \right)-2\alpha K} \right)-\frac{a}{2}q_i^2-b{q_i}-c,\quad if\;{q_i}<{q_j}-2K, \hfill \\ {q_i}\left( {-\alpha \frac{{{q_i}+{q_j}}}{2}+\beta } \right)-\frac{a}{2}q_i^2-b{q_i}-c,\quad \quad \quad \;\;if\;{q_j}-2K\le {q_i}\le {q_j}+2K. \end{array} \right\} $$
(5.34)

From (5.34) and the definition, firm i’s optimal aggressive and passive outputs and Cournot best response output, which are denoted by \( q_i^{ob+}\left( {K,{\gamma_i}} \right) \), \( q_i^{ob-}\left( {K,{\gamma_i}} \right) \), and \( q_i^{obC}\left( {{q_j}} \right) \) respectively, are obtained by (5.35), (5.36), and (5.37).

$$ q_i^{ob+}\left( {K,{\gamma_i}} \right)=\mathop{{\arg \max }}\limits_{{{q_i}}}\left[ {{q_i}\left( {-\alpha {q_i}+\alpha K+\beta } \right)+{\gamma_i}K\left( {\alpha \left( {{q_i}-{q_j}} \right)-2\alpha K} \right)-\frac{a}{2}q_i^2-b{q_i}-c} \right], $$
(5.35)
$$ q_i^{ob-}\left( {K,{\gamma_i}} \right)=\mathop{{\arg \max }}\limits_{{{q_i}}}\left[ {{q_i}\left( {-\alpha {q_i}-\alpha K+\beta } \right)-{\gamma_i}K\left( {\alpha \left( {{q_j}-{q_i}} \right)-2\alpha K} \right)-\frac{a}{2}q_i^2-b{q_i}-c} \right], $$
(5.36)
$$ q_i^{obC}\left( {{q_j}} \right)=\mathop{{\arg \max }}\limits_{{{q_i}}}\left[ {{q_i}\left( {-\alpha \frac{{{q_i}+{q_j}}}{2}+\beta } \right)-\frac{a}{2}q_i^2-b{q_i}-c} \right]. $$
(5.37)

By solving (5.35), (5.36), and (5.37), the optimal aggressive and passive outputs and the Cournot best response output can be explicitly expressed as (5.16), (5.17), and (5.18).

Q.E.D.

Proof of Lemma 4

The profit of firm i, \( \pi_i^{{\eta_i^{ij }}} \), with an FTR \( \eta_i^{ij } \) is represented as:

$$ \pi_i^{{\eta_i^{ij }}}=\left\{ \begin{array}{lll} -\left( {\frac{c}{2}+\alpha } \right)q_i^2-\left( {b+\alpha K-\beta } \right){q_i}-a,\quad \quad \quad if\;{q_i}<\frac{1}{{c+\alpha }}\left( {\beta -b-\left( {2c+\alpha } \right)K} \right), \hfill \\ -\left( {\frac{c}{2}+\frac{{\alpha c}}{{2c+\alpha }}} \right)q_i^2-\left( {b-\frac{1}{{2c+\alpha }}\left( {2c\beta +\alpha b} \right)} \right){q_i}-a, \hfill \\ \quad \quad \quad \quad\;if\;\frac{1}{{c+\alpha }}\left( {\beta -b-\left( {2c+\alpha } \right)K} \right)\le {q_i}\le \frac{1}{{c+\alpha }}\left( {\beta -b+\left( {2c+\alpha } \right)K} \right), \hfill \\ -\left( {\frac{c}{2}+\alpha } \right)q_i^2-\left( {b-\alpha \left( {1+\eta_i^{ij }} \right)K-\beta } \right){q_i}-a-\frac{{\alpha \eta_i^{ij }K}}{{c+\alpha }}\left( {\beta -b+\left( {2c+\alpha } \right)K} \right), \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad if\;{q_i}>\frac{1}{{c+\alpha }}\left( {\beta -b+\left( {2c+\alpha } \right)K} \right). \end{array} \right\} $$
(5.38)

The profit of firm i, \( \pi_i^{{\eta_i^{ji }}} \), with an FTR \( \eta_i^{ji } \) is represented as:

$$ \pi_i^{{\eta_i^{ji }}}=\left\{ \begin{array}{lll} -\left( {\frac{c}{2}+\alpha } \right)q_i^2-\left( {b+\alpha \left( {1+\eta_i^{ji }} \right)K-\beta } \right){q_i}-a-\frac{{\alpha \eta_i^{ji }K}}{{c+\alpha }}\left( {\beta -b-\left( {2c+\alpha } \right)K} \right), \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad if\;{q_i}<\frac{1}{{c+\alpha }}\left( {\beta -b-\left( {2c+\alpha } \right)K} \right), \hfill \\ -\left( {\frac{c}{2}+\frac{{\alpha c}}{{2c+\alpha }}} \right)q_i^2-\left( {b-\frac{1}{{2c+\alpha }}\left( {2c\beta +\alpha b} \right)} \right){q_i}-a, \hfill \\ \quad \quad \quad \quad\;if\;\frac{1}{{c+\alpha }}\left( {\beta -b-\left( {2c+\alpha } \right)K} \right)\le {q_i}\le \frac{1}{{c+\alpha }}\left( {\beta -b+\left( {2c+\alpha } \right)K} \right), \hfill \\ -\left( {\frac{c}{2}+\alpha } \right)q_i^2-\left( {b-\alpha K-\beta } \right){q_i}-a,\quad \quad \quad if\;{q_i}>\frac{1}{{c+\alpha }}\left( {\beta -b+\left( {2c+\alpha } \right)K} \right). \end{array} \right\} $$
(5.39)

Since there is no strategic response from market j, firm i faces the above profit function to maximize. Each of \( \pi_i^{{\eta_i^{ij }}} \) and \( \pi_i^{{\eta_i^{ji }}} \) has three different regions with respect to \( {q_i} \) and we need to compare the maximum profit in each region to identify firm i’s optimal output. Since we can observe that the possession of FTRs only affects the third row of (5.38) and the first row of (5.39), we need to consider only these two rows in order to assess the effect of FTR rights. So, suppose that the maximum profit is obtained by the third row of (5.38) or the first row of (5.39) with the FTR option \( \eta_i^{ij } \) and \( \eta_i^{ji } \), respectively. Then, firm i’s optimal output \( q_i^{{\eta_i^{ij }}} \) (\( q_i^{ji } \)) with \( \eta_i^{ij } \) (\( \eta_i^{ji } \)) will be (5.20) ((5.21)).

Q.E.D.

Proof of Lemma 5

We denote by \( \pi_i^{{{\gamma_i}}} \) firm i’s profit with an FTR obligation \( {\gamma_i} \). It is given by:

$$ \pi_i^{{{\gamma_i}}}=\left\{ \begin{array}{lll} -\left( {\frac{c}{2}+\alpha } \right)q_i^2-\left( {b+\alpha \left( {1-{\gamma_i}} \right)K-\beta } \right){q_i}-a+\frac{{\alpha {\gamma_i}K}}{{c+\alpha }}\left( {\beta -b-\left( {2c+\alpha } \right)K} \right), \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad if\;{q_i}<\frac{1}{{c+\alpha }}\left( {\beta -b-\left( {2c+\alpha } \right)K} \right), \hfill \\ -\left( {\frac{c}{2}+\frac{{\alpha c}}{{2c+\alpha }}} \right)q_i^2-\left( {b-\frac{1}{{2c+\alpha }}\left( {2c\beta +\alpha b} \right)} \right){q_i}-a, \hfill \\ \quad \quad \quad \quad\;if\;\frac{1}{{c+\alpha }}\left( {\beta -b-\left( {2c+\alpha } \right)K} \right)\le {q_i}\le \frac{1}{{c+\alpha }}\left( {\beta -b+\left( {2c+\alpha } \right)K} \right), \hfill \\ -\left( {\frac{c}{2}+\alpha } \right)q_i^2-\left( {b-\alpha \left( {1+{\gamma_i}} \right)K-\beta } \right){q_i}-a-\frac{{\alpha {\gamma_i}K}}{{c+\alpha }}\left( {\beta -b+\left( {2c+\alpha } \right)K} \right), \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad if\;{q_i}>\frac{1}{{c+\alpha }}\left( {\beta -b+\left( {2c+\alpha } \right)K} \right). \end{array} \right\} $$
(5.40)

To examine the effect of FTR obligations, we suppose that the maximum profit is obtained either by the first row or by the third row of (5.40). Then, firm i’s optimal output will be either \( \displaystyle\frac{{\beta -b+\alpha \left( {1+{\gamma_i}} \right)K}}{{c+2\alpha }} \) or \( \displaystyle\frac{{\beta -b-\alpha \left( {1-{\gamma_i}} \right)K}}{{c+2\alpha }} \).

Q.E.D.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Joung, M., Baldick, R., Kristiansen, T. (2013). Generator Ownership of Financial Transmission Rights and Market Power. In: RosellĂ³n, J., Kristiansen, T. (eds) Financial Transmission Rights. Lecture Notes in Energy, vol 7. Springer, London. https://doi.org/10.1007/978-1-4471-4787-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4787-9_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4786-2

  • Online ISBN: 978-1-4471-4787-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics