Skip to main content

Modern Techniques for Protein Assessment

  • Chapter
  • First Online:
Success in Academic Surgery: Basic Science

Part of the book series: Success in Academic Surgery ((SIAS))

  • 1205 Accesses

Abstract

Despite the advances in modern medicine, our ability to adequately diagnose and treat a number of disease processes is still lacking. Key to our knowledge is the understanding of genetic regulation, intracellular activity, and cell-to-cell interactions. It is estimated that there are 20,000–30,000 genes that comprise the human genome; these genes code for greater than one million different proteins, any of which may be biomarkers for disease, targets for drug therapies, or insights into formulating better or more tolerable treatment strategies. With the expanding interest in basic and translational science in the field of surgery, it is important that the academic surgeon revisit the fundamentals of protein analysis to successfully formulate an experimental design. There are an endless number of ways to purify, identify, and classify the function of proteins. The major steps in protein analysis involve (1) determining the source, (2) extracting the protein, (3) purifying the protein, (4) identifying and/or quantifying the protein, and (5) establishing its function by assessing how it interacts with other proteins. This chapter reviews the current methods involved with each of these steps and acts as a guide to answering the academic surgeon’s queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  PubMed  CAS  Google Scholar 

  2. Legrain P, Aebersold R, Archakov A, et al. The human proteome project: current state and future direction. Mol Cell Proteomics. 2011;10(7):M111.009993.

    Article  PubMed  Google Scholar 

  3. Alberts B. Molecular biology of the cell. 5th ed. New York: Garland Science; 2008.

    Google Scholar 

  4. Schwenzer KJ. Practical tips for working effectively with your institutional review board. Respir Care. 2008;53:1354–61.

    PubMed  Google Scholar 

  5. Enfield KB, Truwit JD. The purpose, composition, and function of an institutional review board: balancing priorities. Respir Care. 2008;53:1330–6.

    PubMed  Google Scholar 

  6. de Jong M, Maina T. Of mice and humans: are they the same? – Implications in cancer translational research. J Nucl Med. 2010;51:501–4.

    Article  PubMed  Google Scholar 

  7. Seetharam R, Sharma SK. Purification and analysis of recombinant proteins. New York: M. Dekker; 1991.

    Google Scholar 

  8. Carroll WL. Introduction to recombinant-DNA technology. Am J Clin Nutr. 1993;58:249S–58.

    PubMed  CAS  Google Scholar 

  9. Miles JS, Wolf CR. Principles of DNA cloning. BMJ. 1989;299:1019–22.

    Article  PubMed  CAS  Google Scholar 

  10. Kamionka M. Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol. 2011;12:268–74.

    Article  PubMed  CAS  Google Scholar 

  11. Shizuya H, Kouros-Mehr H. The development and applications of the bacterial artificial chromosome cloning system. Keio J Med. 2001;50:26–30.

    Article  PubMed  CAS  Google Scholar 

  12. Strachan T, Read AP. Human molecular genetics. 4th ed. New York: Garland Science; 2011.

    Google Scholar 

  13. Fadini GP, Avogaro A. Cell-based methods for ex vivo evaluation of human endothelial biology. Cardiovasc Res. 2010;87:12–21.

    Article  PubMed  CAS  Google Scholar 

  14. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010;24:2463–79.

    Article  PubMed  CAS  Google Scholar 

  15. Whitehead RH, Robinson PS. Establishment of conditionally immortalized epithelial cell lines from the intestinal tissue of adult normal and transgenic mice. Am J Physiol Gastrointest Liver Physiol. 2009;296:G455–60.

    Article  PubMed  CAS  Google Scholar 

  16. Nomellini V, Brubaker AL, Mahbub S, Palmer JL, Gomez CR, Kovacs EJ. Dysregulation of neutrophil CXCR2 and pulmonary endothelial icam-1 promotes age-related pulmonary inflammation. Aging Dis. 2012;3:234–47.

    PubMed  Google Scholar 

  17. Yeager TR, Reddel RR. Constructing immortalized human cell lines. Curr Opin Biotechnol. 1999;10:465–9.

    Article  PubMed  CAS  Google Scholar 

  18. Lucey BP, Nelson-Rees WA, Hutchins GM. Henrietta lacks, HeLa cells, and cell culture contamination. Arch Pathol Lab Med. 2009;133:1463–7.

    PubMed  Google Scholar 

  19. The field of homogenizing. PRO Scientific Inc., 2012. Available at: http://www.proscientific.com/Homogenizing.shtml. Accessed 2 Dec 2012.

  20. Burgess RR. Protein precipitation techniques. Methods Enzymol. 2009;463:331–42.

    Article  PubMed  CAS  Google Scholar 

  21. Liu J, Andya JD, Shire SJ. A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J. 2006;8:E580–9.

    Article  PubMed  CAS  Google Scholar 

  22. Moser AC, Hage DS. Immunoaffinity chromatography: an introduction to applications and recent developments. Bioanalysis. 2010;2:769–90.

    Article  PubMed  CAS  Google Scholar 

  23. Phizicky EM, Fields S. Protein-protein interactions: methods for detection and analysis. Microbiol Rev. 1995;59:94–123.

    PubMed  CAS  Google Scholar 

  24. Meleady P. 2D gel electrophoresis and mass spectrometry identification and analysis of proteins. Methods Mol Biol. 2011;784:123–37.

    Article  PubMed  CAS  Google Scholar 

  25. Guo Y, Fu Z, Van Eyk JE. A proteomic primer for the clinician. Proc Am Thorac Soc. 2007;4:9–17.

    Article  PubMed  CAS  Google Scholar 

  26. Issaq H, Veenstra T. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. Biotechniques. 2008;44:697–8, 700.

    Article  PubMed  CAS  Google Scholar 

  27. Monteoliva L, Albar JP. Differential proteomics: an overview of gel and non-gel based approaches. Brief Funct Genomic Proteomic. 2004;3:220–39.

    Article  PubMed  CAS  Google Scholar 

  28. McLeod HL, Murray GI. Tumour markers of prognosis in colorectal cancer. Br J Cancer. 1999;79:191–203.

    Article  PubMed  CAS  Google Scholar 

  29. Panteghini M, Bonora R, Pagani F. Measurement of pancreatic lipase activity in serum by a kinetic colorimetric assay using a new chromogenic substrate. Ann Clin Biochem. 2001;38:365–70.

    Article  PubMed  CAS  Google Scholar 

  30. Melanson SE, Tanasijevic MJ, Jarolim P. Cardiac troponin assays: a view from the clinical chemistry laboratory. Circulation. 2007;116:e501–4.

    Article  PubMed  Google Scholar 

  31. Lubec G, Afjehi-Sadat L. Limitations and pitfalls in protein identification by mass spectrometry. Chem Rev. 2007;107:3568–84.

    Article  PubMed  CAS  Google Scholar 

  32. Herosimczyk A, Dejeans N, Sayd T, Ozgo M, Skrzypczak WF, Mazur A. Plasma proteome analysis: 2D gels and chips. J Physiol Pharmacol. 2006;57 Suppl 7:81–93.

    PubMed  Google Scholar 

  33. Dressler F, Whalen JA, Reinhardt BN, Steere AC. Western blotting in the serodiagnosis of Lyme disease. J Infect Dis. 1993;167:392–400.

    Article  PubMed  CAS  Google Scholar 

  34. Franco-Paredes C, Tellez I, del Rio C. Rapid HIV testing: a review of the literature and implications for the clinician. Curr HIV/AIDS Rep. 2006;3:169–75.

    Article  PubMed  Google Scholar 

  35. Overview of western blotting thermo scientific. 2012. Available at: http://www.piercenet.com/browse.cfm?fldID=8259A7B6-7DA6-41CF-9D55-AA6C14F31193. Accessed 1 Jan 2013.

  36. Nomellini V, Faunce DE, Gomez CR, Kovacs EJ. An age-associated increase in pulmonary inflammation after burn injury is abrogated by CXCR2 inhibition. J Leukoc Biol. 2008;83:1493–501.

    Article  PubMed  CAS  Google Scholar 

  37. Lee JS, Cella M, McDonald KG, et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol. 2012;13:144–51.

    Article  CAS  Google Scholar 

  38. Caro-Oleas JL, Gonzalez-Escribano MF, Gentil-Govantes MA, et al. Clinical relevance of anti-HLA donor-specific antibodies detected by Luminex assay in the development of rejection after renal transplantation. Transplantation. 2012;94:338–44.

    Article  PubMed  CAS  Google Scholar 

  39. Pickering JW, Martins TB, Schroder MC, Hill HR. Comparison of a multiplex flow cytometric assay with enzyme-linked immunosorbent assay for quantitation of antibodies to tetanus, diphtheria, and Haemophilus influenzae Type b. Clin Diagn Lab Immunol. 2002;9:872–6.

    PubMed  CAS  Google Scholar 

  40. Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods. 1983;65:109–21.

    Article  PubMed  CAS  Google Scholar 

  41. Dittrich M, Lehmann PV. Statistical analysis of ELISPOT assays. Methods Mol Biol. 2012;792:173–83.

    Article  PubMed  CAS  Google Scholar 

  42. Slota M, Lim JB, Dang Y, Disis ML. ELISpot for measuring human immune responses to vaccines. Expert Rev Vaccines. 2011;10:299–306.

    Article  PubMed  CAS  Google Scholar 

  43. Tuchin VV, Tarnok A, Zharov VP. In vivo flow cytometry: a horizon of opportunities. Cytometry A. 2011;79:737–45.

    PubMed  Google Scholar 

  44. Xu X, Yang Z, Liu Q, Wang Y. In vivo fluorescence imaging of muscle cell regeneration by transplanted EGFP-labeled myoblasts. Mol Ther. 2010;18:835–42.

    Article  PubMed  CAS  Google Scholar 

  45. Ray P. Multimodality molecular imaging of disease progression in living subjects. J Biosci. 2011;36:499–504.

    Article  PubMed  Google Scholar 

  46. Tavare JM, Fletcher LM, Welsh GI. Using green fluorescent protein to study intracellular signalling. J Endocrinol. 2001;170:297–306.

    Article  PubMed  CAS  Google Scholar 

  47. Dwane S, Kiely PA. Tools used to study how protein complexes are assembled in signaling cascades. Bioeng Bugs. 2011;2:247–59.

    Article  PubMed  Google Scholar 

  48. Sun Y, Wallrabe H, Seo SA, Periasamy A. FRET microscopy in 2010: the legacy of Theodor Forster on the 100th anniversary of his birth. Chemphyschem. 2011;12:462–74.

    Article  PubMed  CAS  Google Scholar 

  49. Zaccolo M. Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ Res. 2004;94:866–73.

    Article  PubMed  CAS  Google Scholar 

  50. Sekar RB, Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol. 2003;160:629–33.

    Article  PubMed  CAS  Google Scholar 

  51. Hiraoka Y, Shimi T, Haraguchi T. Multispectral imaging fluorescence microscopy for living cells. Cell Struct Funct. 2002;27:367–74.

    Article  PubMed  Google Scholar 

  52. Lakowicz JR, Ray K, Chowdhury M, et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst. 2008;133:1308–46.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Kennedy MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Nomellini, V., Kennedy, G.D. (2014). Modern Techniques for Protein Assessment. In: Kibbe, M., LeMaire, S. (eds) Success in Academic Surgery: Basic Science. Success in Academic Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-4736-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4736-7_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4735-0

  • Online ISBN: 978-1-4471-4736-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics