Skip to main content

Stem Cells: Are They Pertinent to My Research?

  • Chapter
  • First Online:
Success in Academic Surgery: Basic Science

Part of the book series: Success in Academic Surgery ((SIAS))

  • 1198 Accesses

Abstract

Stem cells are a long-lived population of small round cells possessing two remarkable and distinct characteristics, immortality and pluripotency. These two characteristic properties are inherent in “stemness”: (1) immortality is the capacity for indefinite self-renewal, which is duplication or regeneration without the loss of developmental potential, and (2) pluripotency is the ability to differentiate into all the tissues of the adult body. So stem cells can replicate via mitotic division while retaining their undifferentiated state or differentiate into lineage-specific cells. The promise of stem cells now spans a multitude of fields with therapeutic applications for numerous diseases. Major areas of applications include reversal of target organ injury, reversal of senescence for end organ disease, targeting the cancer stem cell to reverse chemoresistance, and corrections for genetic and birth defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  PubMed  CAS  Google Scholar 

  2. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78:7634–8.

    Article  PubMed  CAS  Google Scholar 

  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  4. Cowan CA, Klimanskaya I, McMahon J, Atienza J, et al. Derivation of embryonic stem cell lines from human blastocysts. New Engl J Med. 2004;350:1353–6.

    Article  PubMed  CAS  Google Scholar 

  5. Ying QL, Wray J, Nichols J, et al. The ground state of embryonic stem cell self-renewal. Nature. 2008;453:519–23.

    Article  PubMed  CAS  Google Scholar 

  6. Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18:399–404.

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi K, Tanabe K, Ohnuki M, Narita M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  PubMed  CAS  Google Scholar 

  9. Pera MF, Tam PPL. Extrinsic regulation of pluripotent stem cells. Nature. 2010;465:713–20.

    Article  PubMed  CAS  Google Scholar 

  10. Bibikova M, Laurent LC, Ren B, et al. Unraveling epigenetic regulation in embryonic stem cells. Cell Stem Cell. 2008;2:123–34.

    Article  PubMed  CAS  Google Scholar 

  11. Chambers I, Tomlinson SR. The transcriptional foundation of pluripotency. Development. 2009;136:2311–22.

    Article  PubMed  CAS  Google Scholar 

  12. Alvarez CV, Montserrat G, Garcia-Rendueles MER, et al. Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells. J Mol Endocrinol. 2012;49:R89–111.

    Article  PubMed  CAS  Google Scholar 

  13. Assou S, Le Carrour T, Tondeur S, Ström S, et al. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells. 2007;25:961–73.

    Article  PubMed  CAS  Google Scholar 

  14. Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007;25:803–16.

    Article  PubMed  CAS  Google Scholar 

  15. Stewart CL, Kaspar P, Brunet LJ, et al. Blastocyst implantation depends on maternal expression of leukemia inhibitory factor. Nature. 1992;359:76–9.

    Article  PubMed  CAS  Google Scholar 

  16. Khoo CP, Pozzilli P, Alison MR. Endothelial progenitor cells and their potential therapeutic applications. Regen Med. 2008;3:863–76.

    Article  PubMed  CAS  Google Scholar 

  17. Ogawa M, LaRue AC, Watson PM, Watson DK. Hematopoietic stem cell origin of connective tissues. Exp Hematol. 2010;38:540–7.

    Article  PubMed  CAS  Google Scholar 

  18. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341–7.

    Article  PubMed  CAS  Google Scholar 

  19. Chao Y-H, Wu H-P, Chan C-K, et al. Umbilical cord-derived mesenchymal stem cells for hematopoietic stem cell transplantation. J Biomed Biotechnol. 2012;2012:759503.

    PubMed  Google Scholar 

  20. Okabe M, Ikawa M, Kominami K, et al. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett. 1997;407:313–9.

    Article  PubMed  CAS  Google Scholar 

  21. Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–5.

    Article  PubMed  CAS  Google Scholar 

  22. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stroma cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  PubMed  CAS  Google Scholar 

  23. Wang S, Qu X, Zhao RC. Clinical applications of mesenchymal stem cells. J Hematol Oncol. 2012;5(19):1–9.

    CAS  Google Scholar 

  24. Le Blanc K, Ringden O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2005;11:321–34.

    Article  PubMed  Google Scholar 

  25. Leeper NJ, Hunter AL, Cooke JP. Stem cell therapy for vascular regeneration: adult, embryonic and induced pluripotent stem cells. Circulation. 2010;122:517–26.

    Article  PubMed  Google Scholar 

  26. Prockop DJ. “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther. 2007;82:241–3.

    Article  PubMed  CAS  Google Scholar 

  27. Rochefort GY, Delorme B, Lopez A, et al. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells. 2006;24:2202–8.

    Article  PubMed  CAS  Google Scholar 

  28. Belema-Bedada F, Uchida S, Martire A, et al. Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell. 2008;2:566–75.

    Article  PubMed  CAS  Google Scholar 

  29. Hurst DR, Welch DR. A MSC-ing link in metastasis? Nat Med. 2007;13:1289–91.

    Article  PubMed  CAS  Google Scholar 

  30. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature. 2007;449:557–63.

    Article  PubMed  CAS  Google Scholar 

  31. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cells from human somatic cells. Science. 2007;318:1917–20.

    Article  PubMed  CAS  Google Scholar 

  32. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–7.

    Article  PubMed  CAS  Google Scholar 

  33. Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008;26:1269–75.

    Article  PubMed  CAS  Google Scholar 

  34. Nishikawa S, Goldstein RA, Nierras CR. The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol. 2008;9:725–9.

    Article  PubMed  CAS  Google Scholar 

  35. Houghton J, Stoicov C, Noura S, Rogers AB, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306:1568–71.

    Article  PubMed  CAS  Google Scholar 

  36. Bochkov NP, Voronina ES, Kosyakova NV, et al. Chromosome variability of human multipotent mesenchymal stromal cells. Bull Exp Biol Med. 2007;143:122–6.

    Article  PubMed  CAS  Google Scholar 

  37. Kode JA, Mukherjee S, Joglekar MV, et al. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy. 2009;11(4):377–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne C. Fischer MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Fischer, A.C. (2014). Stem Cells: Are They Pertinent to My Research?. In: Kibbe, M., LeMaire, S. (eds) Success in Academic Surgery: Basic Science. Success in Academic Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-4736-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4736-7_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4735-0

  • Online ISBN: 978-1-4471-4736-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics