Skip to main content

Pollution Under Imperfect Competition in Vertical Related Energy Markets

  • Chapter
  • First Online:
Pollution Under Environmental Regulation in Energy Markets

Part of the book series: Lecture Notes in Energy ((LNEN,volume 6))

Abstract

This chapter aims at identifying the mechanisms through which imperfect competition in energy markets can affect the performance of environmental policy. Vertical related markets are investigated: (1) the electricity market (output market); (2) the market for natural gas (input market). Two supply scenarios are simulated: (1) Scenario 1 (highly polluting supply) where power generation is based on more polluting technologies; (2) Scenario 2 (cleaner supply) where power generation is based on cleaner technologies. Finally, two regulatory scenarios are explored: (a) Scenario A where firms can maximize profits; (b) Scenario B when, because of the regulatory pressure exerted by competition and sector-specific authorities, firms pursue strategies besides the profit maximization, namely by pursuing a short- or long-term profit target. The analysis shows that imperfect competition may lessen the performance of environmental policy, that is its ability to reduce pollution and/or its ability to minimize the cost of meeting environmental targets, in either Scenario 1 or Scenario 2 and in either Scenario A or Scenario B. However, in Scenario 2 relatively low pollution prices are necessary. Furthermore, this effect seems to be more likely when firms can maximize profits (Scenario A) rather than under regulatory pressure (Scenario B) unless environmental regulation is based on ETS with benchmarking and firms pursue a long-term profit target. Finally, looking at the entire demand cycle, increasing pollution in the short run is virtually excluded or very unlikely in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an analysis of the carbon cost pass-through when firms maximize market shares or sales revenues, see Vivid Economics (2007) and Sijm et al. (2008a, b).

  2. 2.

    This is a reasonable assumption. In addition, it allows us to avoid the problem of price indeterminacy due to the existence of bilateral market power.

  3. 3.

    In particular, in the model carried out in this chapter the long-run marginal cost of the alternative technology is represented by the average cost of the best alternative technology.

  4. 4.

    Extra fuel costs include capital costs, operating and maintenance costs.

  5. 5.

    The result may be different under other types of free allocation (see Sect. 6.4).

  6. 6.

    Indeed, the dominant firm exerts his market power not only when it bids the residual monopoly price but also when it is able to set prices just below the marginal cost of the least efficient units, whereas under perfect competition prices would converge to the marginal cost of the most efficient ones. We ignore this “second effect” since it depends on \( {\mathop {\underline K}}_e^{f_e } \) which does not depend on the pollution price.

  7. 7.

    With multiunit auctions, strictly speaking, only offer prices of sets that may become marginal need to equal the system marginal price. Thus, proportional rationing has a negligible impact on pollution if the unit size is relatively small.

  8. 8.

    It is to be noted that, since we assume constant marginal costs for each category of plants (namely one-stepped supply curve), the increase in price under full competition is always equal to the full carbon cost of the marginal technology (full pass-through) except in the case where the demand curve intercepts the step of the supply curve (before and/or after regulation). However, the number of hours in which the pass-through rate is lower than one is almost negligible if the difference in marginal costs between technologies (the step) is relatively limited.

  9. 9.

    On this issue, the economic literature provides a controversial framework. On the one hand, some authors find that the environmental policy never increases pollution. Among them, see Sugeta and Matsumoto (2007) and Canton et al. (2008). On the other hand, other authors (Levin 1985; Requate 2005) find that under imperfect competition the environmental policy can even increase emissions but only if specific conditions in terms of demand (extreme curvature) and supply (sufficiently asymmetric firms) are satisfied.

  10. 10.

    For instance, looking at the simplified case in which \( \mu_a^{d_e } = 1 \) and \( \mu_a^{f_e } = 0 \), \( {\overline {{\it MC}}_e} \) will be the marginal cost (including cycling cost) of the marginal unit (the unit setting price), i.e. the last fringe’s unit dispatched. \( {\underline {{\it MC}}_e} \) will be the average marginal cost of the dominant firm’s most efficient units.

  11. 11.

    In the variable demand periods, von der Fehr and Harbord (1993, 1998) demonstrate that the “high-cost generator profile stochastically dominates the strategy profile of the low-cost generator. Thus, the high-cost generator will generally (i.e. in expected terms) submit higher bids than the low-cost generator”. However, looking at the strategy probability distributions of the two firms, the extent to which the strategy profile of the high-cost generator dominates that of the low-cost generator decreases in demand. Consequently, we expect that the probability that the high-cost generator will be the high-bidding generator decreases in demand.

  12. 12.

    It is to be noted that assuming a dominant firm with competitive fringe model, rather than an oligopolistic framework, ensures that equilibria in pure strategy do exist. For an explanation of why equilibria in pure strategies do not exist in the case of oligopolistic competition, see von der Fehr and Harbord (1993, 1998).

  13. 13.

    Strictly speaking, bidding \( {\overline {{\it MC}}_e} \) for units of kind b and \( {\hat{p}_e} \le {\overline {{\it MC}}_e} - \varepsilon \) (where \( \varepsilon \cong {0^{+ }} \)) for units of kind a.

References

  • Canton J, Saubeyran A, Stahn H (2008) Environmental taxation and vertical Cournot oligopolies: how eco-industries matter. Environ Resour Econ 40:369–382

    Article  Google Scholar 

  • Chernyavs’ka L, Gullì F (2008a) Marginal CO2 cost pass-through under imperfect competition. Ecol Econ 68:408–421

    Article  Google Scholar 

  • Chernyavs’ka L, Gullì F (2008b) The impact of the European Emissions Trading Scheme on power prices in Italy: the “load duration curve approach”. In: Gullì F (ed) Markets for carbon and power pricing in Europe: theoretical issues and empirical analyses. Edward Elgar, Aldershot, UK, and Brookfield, WI

    Google Scholar 

  • Conrad K, Wang J (1993) The effect of emission taxes and abatement subsides on market structure. Int J Ind Organ 11:499–518

    Article  Google Scholar 

  • Denny E, O’Malley M (2009) The impact of carbon prices on generation-cycling costs. Energy Policy 37:1204–1212

    Article  Google Scholar 

  • Fabra N, von der Fehr N, Harbord D (2002) Modeling electricity auctions. Electr J 15(7)

    Google Scholar 

  • Garcia-Diaz A, Marin L (2003) Strategic bidding in electricity pools with short-lived bids: an application to the Spanish market. Int J Ind Organ 21:201–222

    Article  Google Scholar 

  • Gullì F (2008) Modeling the short-run impact of carbon emissions trading on the electricity sector. In: Gullì F (ed) Markets for carbon and power pricing in Europe: theoretical issues and empirical analyses. Edward Elgar, Aldershot, UK, and Brookfield, WI

    Google Scholar 

  • Levin D (1985) Taxation within Cournot oligopoly. J Public Econ 27:281–290

    Article  Google Scholar 

  • Requate T (2005) Environmental policy under imperfect competition – a survey. CAU, Economics Working Papers, 2005–12

    Google Scholar 

  • Sijm S, Hers S, Wetzelaer B (2008a) Options to address concerns regarding EU ETS-induced increases in power prices and generators’ profits: the case of carbon cost pass-through in Germany and the Netherlands. In: Gullì F (ed) Markets for carbon and power pricing in Europe: theoretical issues and empirical analyses. Edward Elgar, Aldershot, UK and Brookfield, WI

    Google Scholar 

  • Sijm J, Hers S, Lise W, Wetzelaer B (2008b) The impact of the EU ETS on electricity prices. Final report to the European Commission (DG Environment), Energy research Centre of the Netherlands, ECN-E-08-007, Petten/Amsterdam

    Google Scholar 

  • Sugeta H, Matsumoto S (2007) Upstream and downstream pollution taxations in vertically related markets with imperfect competition. Environ Resour Econ 38:407–432

    Article  Google Scholar 

  • Vivid Economics (2007) A study to estimate ticket price changes for aviation in the EU ETS. A Report to DEFRA and DfT, London, UK

    Google Scholar 

  • von der Fehr N, Harbord D (1993) Spot market competition in the UK electricity industry. Econ J 103(418):531–546

    Article  Google Scholar 

  • von der Fehr N, Harbord D (1998) Competition in electricity spot markets – economic theory and international experience. Memorandum, n. 5, Department of Economics, University of Oslo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Gullì .

Appendix

Appendix

1.1 Proof of Lemma 2

Let \( {\bar{K}_e} = {D_{e_M }} - \bar{K}_e^{d_e } \) be the peak demand minus the dominant firm's capacity in least efficient plants (\( \bar{K}_e^{d_e } \)) with \( \bar{H} = {D^{- 1 }}({\bar{K}_e}) \). It is immediately intuitive that when \( {D_e} \ge {\bar{K}_e} \) the system marginal price equals the price threshold, \( {\hat{p}_e} \). When \( {D_e} \le {\mathop {\underline K}}_e^{f_e } \), pure Bertrand equilibria (first marginal cost pricing) arise and prices equal the marginal cost of the most efficient plants (\( {\underline {{\it MC}}_e} \)).

In fact, on the one hand, whenever the demand is so high that both leader’s and the fringe’s least efficient units can enter the market, the dominant firm would not gain any advantage by competing à la Bertrand, i.e., by attempting to undercut the rivals. Therefore, it will maximize its profit by bidding the residual monopoly price.

On the other hand, whenever the power demand is lower than the fringe's power capacity in most efficient plants, competing Ă  la Bertrand is the only leader's available strategy in order to have a positive probability of entering the market. As a consequence, prices will converge to the marginal cost of the most efficient plants.

It remains to identify the leader's optimal choice on \( {D_e} \in \left] {{{\bar{K}}_e};\underline K_e^{f_e }} \right] \).Footnote 12 Under the assumptions of the model, each firm in the competitive fringe has a unique dominant strategy regardless of the market demand: bidding according to its own marginal cost of production. By converse the best choice of the dominant firm might consist in (i) bidding the price threshold (\( {\hat{p}_e} \)) or in (ii) bidding \( {\overline {{\it MC}}_e} \).Footnote 13

Let \( \pi_A^{d_e } \) and \( \pi_B^{d_e } \) be the profits corresponding to the first and second strategies above, respectively. Whenever the least efficient units could enter the market (i.e., \( {D_e} \ge {{\mathop {\underline K}}_e} \)), the profit the dominant firm earns by choosing the first strategy (i.e., \( \forall H \in \left] {\bar{H};{\mathop {\underline H}}} \right] \)) is

$$ \pi_A^{d_e } = ({\hat{p}_e} - {\underline {{\it MC}}_e})\left[ {D_e - (1 - \delta ){K_{e_T }}} \right] + \sum\nolimits_{i = 1}^z {\sum\nolimits_{j = a,b } { au \cdot {r_{bn }} \cdot \bar{q}_j^i} } $$
(4.8)

Where

\( {r_{bn }} \) =emission rate of the technology chosen as the benchmark

\( \bar{q}_j^i \) = reference production for the free allocation of allowances to the i-th unit belonging to the group j of plants. Obviously \( \bar{q}_j^i = 0 \) with full auctioning.

If the dominant firm chooses the second strategy, he earns

$$ \pi_B^{d_e } = ({\overline {{\it MC}}_e} - {\underline {{\it MC}}_e}){\mathop {\underline K}}_e^{d_e } + \sum\nolimits_{i = 1}^z {\sum\nolimits_{j = a,b } { au \cdot {r_{bn }} \cdot \bar{q}_j^i} } $$
(4.9)

Let \( {C_{e_d }} \) the dominant firm’s total cost. When the dominant firm maximizes profits, \( {\hat{p}_e} \) is the residual monopoly price with

$$ {\hat{p}_e} = p_e^r = {\arg}{\mathrm{ ma}}{{\mathrm{ x}}_{p_e }}\left\{ {p_e \left[ {D_e ({p_e}) - {K^{f_e }}} \right] - {C_{e_d }}} \right\} = \frac{1}{\beta}\left[ {D_e - (1 - \delta ){K_{e_T }}} \right] + {\underline {{\it MC}}_e} $$

if the share of most efficient plant operated by the dominant firm is large enough. It is to be noted that by differentiating this equation with respect to \( au \) and when \( au < { au^s} \), then \( \displaystyle\frac{\partial p_e^r }{{\partial au }} = \displaystyle\frac{r_a }{2} \).

Consequently \( \pi_A^{d_e } \ge \pi_B^{d_e } \) if and only if

$$ {D_e} \ge {\hat{D}_{e_1 }} = \left[ {{{\underline \mu}^{d_e }}\delta \zeta + (1 - \delta )} \right]{K_{e_T }} $$
(4.10)

Where \( \zeta = \displaystyle\frac{{{{\overline {{\it MC}}}_e} - {{\underline {{\it MC}}}_e}}}{{p_e^r - {{\underline {{\it MC}}}_e}}} \) and \( \displaystyle\beta = - \frac{{{{\it d}}{D_e}}}{{{{\it d}}{p_e}}} \)

When \( {D_e} \in \left] {{{\mathop {\underline K}}_e};{\mathop {\underline K}}_e^{f_e }} \right] \) (i.e., \( H \in \left] {{\mathop {\underline H}},{{\mathop {\underline H}}^{f_e }}} \right] \)) the profit the dominant firm earns by choosing the first strategy is

$$ \pi_C^{d_e } = (p_e^r - {\underline {{ MC}}_e})\left[ {D_e - (1 - \delta ){K_{e_T }}} \right] + \sum\nolimits_{i = 1}^z {\sum\nolimits_{j = a,b } { au \cdot {r_{bn }} \cdot \bar{q}_j^i} } $$
(4.11)

and by choosing the second strategy the profit is

$$ \pi_D^{d_e } = ({\overline {{\it MC}}_e} - {\underline {{\it MC}}_e})\left[ {D_e - {{\mathop {\underline \mu}}^{f_e }}(1 - \delta ){K_{e_T }}} \right] + \sum\nolimits_{i = 1}^z {\sum\nolimits_{j = a,b } { au \cdot {r_{bn }} \cdot \bar{q}_j^i} } $$
(4.12)

Thus, the dominant firm will choose the first strategy if and only if \( \pi_C^{d_e } \ge \pi_D^{d_e } \), i.e., if and only if

$$ {D_e} \ge {\hat{D}_{e_2 }} = (1 - \delta )\left[ {\frac{{1 - \zeta {{\underline \mu}^{f_e }}}}{{1 - \zeta }}} \right]{K_{e_T }} $$
(4.13)

Finally by differentiating \( {\hat{D}_e} \) with respect to \( {{\mathop {\underline \mu}}^{d_e }} \) and \( {{\mathop {\underline \mu}}^{f_e }} \) we get

$$ \frac{{\partial {{\hat{D}}_{e_1 }}}}{{\partial {{\mathop {\underline \mu}}^d}}} = \delta { \ }\zeta { \ }{K_{e_T }} > 0 $$

and

$$ \frac{{\partial {{\hat{D}}_{e_2 }}}}{{\partial {{\mathop {\underline \mu}}^f}}} = - {K_{e_T }}(1 - \delta )\frac{\zeta }{{1 - \zeta }}{} < 0 $$

1.2 Proof of Lemma 3

The derivative of \( {\hat{D}_e} \) with respect to \( au \) can be written as

$$ \frac{{\partial {{\hat{D}}_e}}}{{\partial au }} = \frac{{\partial {{\hat{D}}_e}}}{{\partial \zeta }}\frac{{\partial \zeta }}{{\partial au }} $$
(4.14)

Since [from (4.10) and (4.13)]

$$ \frac{{\partial {{\hat{D}}_{e_1 }}}}{{\partial \sigma }} = {{\mathop {\underline \mu}}^{d_e }} \cdot \delta \cdot {K_{e_T }} > 0 $$
(4.15a)

and

$$ \frac{{\partial {{\hat{D}}_{e_2 }}}}{{\partial \zeta }} = \frac{(1 - \delta )(1 - {{\underline \mu}}^{f_e })}{{{{(1 - \zeta )}^2}}}{K_{e_T }} > 0 $$
(4.15b)

then the degree of market power is a decreasing function of \( \zeta \).

By differentiating \( \zeta \) with respect to \( au \) and given that \( {\hat{p}_e} \) and \( {c_{e_g }} \) depend on \( au \), we get

$$ \begin{array}{clclcl}\frac{{\partial \zeta }}{{\partial au }} = \frac{1}{{{{(p_e^r - {c_{e_a }} - {r_a} au )}^2}}}\left[ {({r_{{\it AF}}} - {r_a})(p_e^r(0) - {c_{e_a }}) - ({\partial p_e^r \left/ {{\partial au }} \right.} - {r_a})({c_{e_g }}(0) - {c_{e_a }})} \right]\end{array} $$
(4.16)

if \( au < { au^s} \).

and

$$ \begin{array}{clclcllc}\frac{{\partial \zeta }}{{\partial au }} = \frac{1}{{{{(p_e^r - {c_{e_g }} - {r_g} au )}^2}}}\left[ {({r_a} - {r_{{\it AF}}})(p_e^r(0) - {c_{e_g }}(0)) - ({\partial p_e^r \left/ {{\partial au }} \right.} - {r_{{\it AF}}})({c_{e_a }} - {c_{e_g }}(0))} \right]\end{array} $$
(4.17)

if \( au \ge { au^s} \).

From (4.16), since \( \displaystyle\frac{\partial p_e^r }{{\partial au }} = \frac{r_a }{2} \) then \( \displaystyle\frac{{\partial \zeta }}{{\partial au }} > 0 \) and \( \displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }} > 0 \), if

$$ {r_{{ AF}}} > \hat{r} = {r_a}{ \ }\left( {1 - \frac{1}{2}\frac{{D_e - (1 - \delta ){K_{e_T }}}}{K_a^d }} \right) $$

Vice versa, if \( {r_{{ AF}}} < \hat{r} \) then \( \displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }} < 0 \).

From (4.17), since \( \displaystyle\frac{\partial p_e^r }{{\partial au }} = \displaystyle\frac{{{r_{{\it AF}}}}}{2} \) then \( \displaystyle\frac{{\partial \zeta }}{{\partial au }} > 0 \) and \( \displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }} > 0 \), if

$$ {r_a} > \hat{r} = {r_{{\it AF}}}{ \ }\left( {1 - \frac{1}{2}\frac{{D_e - (1 - \delta ){K_{e_T }}}}{K_g^d }} \right) $$

Vice versa, if \( {r_a} < \hat{r} \) then \( \displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }} < 0 \).

In conclusion \( \displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }} > 0 \) if

$$ \bar{r} > \hat{r} = {\mathop {\underline r}}{ \ }\left( {1 - \frac{1}{2}\frac{{D_e - (1 - \delta ){K_{e_T }}}}{K_g^d }} \right) $$

When the natural gas market is fully competitive then \( \bar{r} = {r_g} \) and \( {\mathop {\underline r}} = {r_a} \) if \( au < { au^s} \) while \( \bar{r} = {r_a} \) and \( {\mathop {\underline r}} = {r_g} \) if \( au \ge { au^s} \). When the natural gas market is imperfectly competitive then \( \bar{r} = {r_{{ AF}}} \) and \( {\mathop {\underline r}} = {r_a} \) if \( au < { au^s} \) while \( \bar{r} = {r_a} \) and \( {\mathop {\underline r}} = {r_{{\it AF}}} \) if \( au \ge { au^s} \).

It is to be noted that when \( au \ge { au^s} \) then \( {\left( {\displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }}} \right)_{{ au < { au^s}}}} > 0 \) always. Then, since \( \Delta {\hat{D}_e} \) can be expressed as

$$ \Delta {\hat{D}_e} = \int_0^{ au^s } {{{\left( {\frac{{\partial {{\hat{D}}_e}}}{{\partial au }}} \right)}_{{ au < { au^s}}}}{{\it d}} au } + \int_{ au^s}^{ au } {{{\left( {\frac{{\partial {{\hat{D}}_e}}}{{\partial au }}} \right)}_{{ au \ge { au^s}}}}{{\it d}} au } $$

For a given \( au \) and a given \( { au^s} \), \( \Delta {\hat{D}_e} > 0 \) when \( {\left( {\displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }}} \right)_{{ au < { au^s}}}} < 0 \) and \( {\left| {\displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }}} \right|_{{ au < { au^s}}}} \) is sufficiently high and/or \( {\left| {\displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }}} \right|_{{ au \ge { au^s}}}} \) is sufficiently low. This can occur when the dominant firm holds a low share of gas units (high \( {{\mathop {\underline \mu}}^{d_e }} = \mu_a^{d_e } \) when \( au < { au^s} \); low \( {{\mathop {\underline \mu}}^{d_e }} = \mu_g^{d_e } \) when \( au \ge { au^s} \)). Finally, note that \( \left| {\displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }}} \right| \) is an increasing function of \( au \).

1.3 Proof of Lemma 2bis

From (4.8) and (4.9)

$$ {D_e} \ge {\hat{D}_{e_1 }} = \left[ {{{\mathop {\underline \mu}}^{d_e }}\delta { \ }\sigma + (1 - \delta )} \right]{K_{e_T }} $$
(4.18)

and from (4.11) and (4.12)

$$ {D_e} \ge {\hat{D}_{e_2 }} = (1 - \delta )\left[ \frac{{1 - \sigma {\underline \mu}}^{f_e }}{{1 - \sigma }} \right]{K_{e_T }} $$
(4.19)

where \( \displaystyle\sigma = \frac{{{{\overline {{\it MC}}}_e} - {{\underline {{\it MC}}}_e}}}{{{{\hat{p}}_e} - {{\underline {{\it MC}}}_e}}} \)

1.4 Proof of Lemma 3bis

The derivative of \( {\hat{D}_e} \) with respect to \( au \) can be written as

$$ \frac{{\partial {{\hat{D}}_e}}}{{\partial au }} = \frac{{\partial {{\hat{D}}_e}}}{{\partial \sigma }}\frac{{\partial \sigma }}{{\partial au }} $$
(4.20)

Since (from (4.18) and (4.19))

$$ \frac{{\partial {{\hat{D}}_{e_1 }}}}{{\partial \sigma }} = {{\mathop {\underline \mu}}^{d_e }} \cdot \delta \cdot {K_{e_T }} > 0 $$
(4.21a)

and

$$ \frac{{\partial {{\hat{D}}_{e_2 }}}}{{\partial \sigma }} = \frac{{(1 - \delta )(1 - {{\mathop {\underline \mu}}^{f_e }})}}{{{{(1 - \sigma )}^2}}}{K_{e_T }} > 0 $$
(4.21b)

then the degree of market power is a decreasing function of \( \sigma \).

By differentiating \( \sigma \) with respect to \( au \) and given that \( {\hat{p}_e} \) and that \( {c_{e_g }} \) depends on \( au \), we get

$$ \begin{array}{clcllclc}\frac{{\partial \sigma }}{{\partial au }} = \frac{1}{{{{({{\hat{p}}_e} - {c_{e_a }} - {r_a} au )}^2}}}\left[ {({r_{{\it AF}}} - {r_a})({{\hat{p}}_e}(0) - {c_{e_a }}) - ({{{\partial {{\hat{p}}_e}}} \left/ {{\partial au }} \right.} - {r_a})({c_{e_g }}(0) - {c_{e_a }})} \right] \end{array}$$
(4.22)

if \( au < { au^s} \).

and

$$\begin{array}{clclclc} \frac{{\partial \sigma }}{{\partial au }} = \frac{1}{{{{({{\hat{p}}_e} - {c_{e_g }} - {r_g} au )}^2}}}\left[ {({r_a} - {r_{{\it AF}}})({{\hat{p}}_e}(0) - {c_{e_g }}(0)) - ({{{\partial {{\hat{p}}_e}}} \left/ {{\partial au }} \right.} - {r_{{\it AF}}})({c_{e_a }} - {c_{e_g }}(0))} \right] \end{array}$$
(4.23)

if \( au \ge { au^s} \).

From (4.22)

\( \displaystyle\frac{{\partial \sigma }}{{\partial au }} > 0 \) and \( \displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }} > 0 \), if \( {{{\partial {{\hat{p}}_e}}} \left/ {{\partial au }} \right.} < \hat{r} = {r_a} + \lambda ({r_{{\it AF}}} - {r_a}) \)

with \( \lambda = {{{({{\hat{p}}_e}(0) - {c_{e_a }})}} \left/ {(} \right.}{c_{e_g }}(0) - {c_{e_a }}) \). Vice versa, if \( {{{\partial {{\hat{p}}_e}}} \left/ {{\partial au }} \right.} > \hat{r} \) then \( \displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }} < 0 \).

From (4.23)

\( \displaystyle\frac{{\partial \sigma }}{{\partial au }} > 0 \) and \( \displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }} > 0 \), if \( {{{\partial {{\hat{p}}_e}}} \left/ {{\partial au }} \right.} < \hat{r} = {r_{{\it AF}}} + \lambda ({r_a} - {r_{{\it AF}}}) \) with \( \lambda = {{{({{\hat{p}}_e}(0) - {c_{e_g }})}} \left({c_{e_a }}(0) - {c_{e_g }}\right)} \). Vice versa, if \( {{{\partial {{\hat{p}}_e}}} \left/ {{\partial au }} \right.} > \hat{r} \) then \( \displaystyle\frac{{\partial {{\hat{D}}_e}}}{{\partial au }} < 0 \).

1.5 Proof of Corollary 3

The following procedure is based on the assumption that the dominant firm considers the profit in each hour of the year separately. In other words, the dominant firm looks at the target in each hour of the year regardless of what may happen in the remaining hours.

When \( {D_e} \in \left] {{{\bar{K}}_e};\underline K_e^{f_e }} \right] \) the profit that the dominant firm earns by setting the price threshold before the implementation of the ETS is

$$ {\hat{\pi}_e}(0) = ({\hat{p}_e}(0) - {c_{e_a }}){{ R}}{{{ D}}_e}({\hat{p}_e}(0)) $$
(4.24)

with \( {{ R}}{{{ D}}_e} = {D_e} - {K^{f_e }} \).

After the ETS the profit is

$$ {\hat{\pi}_{e_1 }}( au ) = ({\hat{p}_{e_1 }}( au ) - {{ M}}{{{ C}}_{e_a }}){{ R}}{{{ D}}_e}({\hat{p}_{e_1 }}( au )) + au \cdot {r_{bn }} \cdot {\bar{q}^{d_e }} $$
(4.25)

Then, \( {\hat{\pi}_{e_1 }}( au ) = {\hat{\pi}_e}(0) \) implies that

$$ \begin{array}{clclcl}({{\hat{p}}_{e_1 }}( au ) - {c_{e_a }}) = ({{\hat{p}}_{e_1 }}(0) - {c_{e_a }})\frac{{{{ R}}{{{ D}}_e}({{\hat{p}}_e}(0))}}{{{{ R}}{{{ D}}_e}({{\hat{p}}_{e_1 }}( au ))}} + \hfill \\ - au \cdot {r_{bn }} \cdot \frac{{\bar{q}_e^{d_e }}}{{{{ R}}{{{ D}}_e}({{\hat{p}}_{e_1 }}( au ))}} + au \cdot {r_a} \end{array}$$
(4.26)

Under full auctioning (\( {r_{bn }} = 0 \)), (4.26) implies that \( ({\hat{p}_e}( au ) - {\hat{p}_e}(0)) > {r_a} \cdot au \). Under benchmarking (\( {r_{bn }} > 0 \)), then \( ({\hat{p}_{e_1 }}( au ) - {\hat{p}_e}(0)) < {r_a} \cdot au \)

If the profit target is a short-term one, under auctioning market power never decreases. In fact, in order to maintain the profit constant, the price threshold has to increase more than the increase in marginal cost of the more efficient (more polluting) plants (\( \Delta {\hat{p}_e} > \Delta {{ M}}{{{ C}}_a} = {r_a} au \)).

Finally it remains to analyze the case in which the dominant firm pursues a long-term profit target (e.g., multiperiod) with the limit to ensure some stability in prices. Consider three periods: the initial one, before the ETS (\( au = 0 \)); the period \( t = 1 \), after the implementation of the ETS, in which the carbon price increases by \( au \) and the subsequent period \( t = 2 \) in which the carbon price decreases by \( au \). The dominant firm aims at maintaining the average profit (over the two periods after the ETS) equal to the initial profit, \( {\hat{\pi}_{e_1 }} + {\hat{\pi}_{e_1 }} = 2{\hat{\pi}_e}(0) \), at the same time reducing the price volatility.

If, in the first period, the dominant firm sets a price lower than the price corresponding to the profit invariance, \( \hat{p}_1^{*} < {\hat{p}_1} \), the profit loss will be

$$ \begin{array}{clclcl} \Delta {{\hat{\pi}}_{e_1 }}( au ) = \left[ {\hat{p}_{e_1}^{*} - ({c_{e_a }} + {r_a} au )} \right]{{ R}}{{{ D}}_e}(\hat{p}_{e_1}^{*}) + \hfill \\ - \left[ {{{\hat{p}}_e}(0) - {c_{e_a }}} \right]{{ R}}{{{ D}}_e}({{\hat{p}}_e}(0)) < 0 \end{array} $$

In order to keep constant the average profit, in the second period the dominant firm will choose a price, \( \hat{p}_{e_2}^{*} \), such that

$$ \begin{array}{clclclclclcl}{ \left[ {\hat{p}_{e_2}^{*} - {c_a}}\right]{{ R}}{{{ D}}_e}(\hat{p}_{e_2}^{*}) + \left[{\hat{p}_{e_1}^{*}( au ) - ({c_{e_a }} + {r_a} au )} \right]{{R}}{{{ D}}_e}(\hat{p}_{e_1}^{*}) =} \\ {= 2\left[ {{\hat{p}}_e}(0) -{c_a}\right]{{ R}}{{{ D}}_e}({\hat{p}_e}(0)) - 2{r_{bn }}{ \ } au{ \ }\bar{q}_e^{d_e }} \end{array}$$
(4.27)

From (4.27), \( \hat{p}_{e_2}^{*} < \hat{p}_{e_1}^{*} \) if

$$ \begin{array}{clclcl} \left[ {\hat{p}_{e_1}^{*}( au ) - {c_{e_a }}} \right] > {r_a} au \frac{{{{ R}}{{{ D}}_e}(\hat{p}_{e_1}^{*})}}{{{{ R}}{{{ D}}_e}(\hat{p}_{e_1}^{*}) + {{ R}}{{{ D}}_e}(\hat{p}_{e_2}^{*})}} +\\ +2\left[ {({{\hat{p}}_e}(0) - {c_{e_a }}) - {r_{bn }} au } \right]\frac{{{{ R}}{{{ D}}_e}({{\hat{p}}_e}(0))}}{{{{ R}}{{{ D}}_e}(\hat{p}_{e_1}^{*}) + {{ R}}{{{ D}}_e}(\hat{p}_{e_2}^{*})}} \end{array}$$
(4.28)

Now, by subtracting the expression \( {\hat{p}_e}(0) - {c_{e_a }} \) from either the right side or the left side of (4.28), in infinitesimal terms we get

$$ {\left( {\frac{{\partial {{\hat{p}}_e}}}{{\partial au }}} \right)_{t = 1 }} = \mathop{\lim}\limits_{{ au \to 0}} \frac{{\left[ {\hat{p}_{e_1}^{*}( au ) - {{\hat{p}}_e}(0)} \right]}}{ au } > \frac{1}{2}{r_a} - {r_{bn }} $$

Therefore, since \( {\hat{p}_e}(0) < \hat{p}_{e_2}^{*}( au ) < \hat{p}_{e_1}^{*}( au ) \), in infinitesimal terms if \( {\left( {\displaystyle\frac{{\partial {{\hat{p}}_e}}}{{\partial au }}} \right)_{t = 1 }} > \displaystyle\frac{1}{2}{r_a} \) or \( {\left( {\displaystyle\frac{{\partial {{\hat{p}}_e}}}{{\partial au }}} \right)_{t = 1 }} > \frac{1}{2}{r_a} - {r_{bn }} \), under auctioning and benchmarking, respectively, then \( {\left( {\displaystyle\frac{{\partial {{\hat{p}}_e}}}{{\partial au }}} \right)_{t = 2 }} > - {\left( {\displaystyle\frac{{\partial {{\hat{p}}_e}}}{{\partial au }}} \right)_{t = 1 }} \) .

If firms hold both kinds of plants, it is to be noted that when \( {D_e} \in \left] {{D_{e_M }};{{\bar{K}}_e}} \right] \) both kinds of dominant firm’s plants are dispatched: kind \( a \) with capacity \( K_a^{d_e } \); kind \( g \) with capacity \( {D_e} - (K_a^{d_e } - {K^{f_e }}) \). Therefore, the conditions above become:

$$ {\left( {\frac{{\partial {{\hat{p}}_e}}}{{\partial au }}} \right)_{t = 1 }} > \frac{1}{2}{r_m} $$

or

$$ {\left( {\frac{{\partial {{\hat{p}}_e}}}{{\partial au }}} \right)_{t = 1 }} > \frac{1}{2}{r_m} - {r_{bn }} $$

with

$$ {r_m} = \frac{{r_a K_a^{d_e } + {r_g}\left[ {D_e - (K_a^{d_e } + {K^{f_e }})} \right]}}{{K_a^{d_e } + \left[ {D_e - (K_a^{d_e } + {K^{f_e }})} \right]}} $$

Obviously when the dominant firm holds only plants \( a \) then \( {r_m} = {r_a} \).

1.6 Proof of Corollary 4

When the dominant firm pursues a short-term target, since \( \displaystyle\frac{{\partial {{\hat{p}}_e}}}{{\partial au }} > {r_a} \), the condition for decreasing market power (see Lemma 3bis), \( \displaystyle\frac{{\partial {{\hat{p}}_e}}}{{\partial au }} < \hat{r} = {r_a} + \lambda ({r_{{ AF}}} - {r_a}) \), becomes

$$ {r_{{ AF}}} > \hat{r} = {r_a}{ \ }\left[ {1 + (\rho - 1)\frac{{D_e - {K^f}}}{K_a^d }} \right] $$

with \( \rho > 1 \), under taxation or ETS with auctioning.

Conversely, with ETS and benchmarking, the change in the price cap is net of the carbon cost of the benchmark technology, \( \displaystyle\frac{{\partial {{\hat{p}}_e}}}{{\partial au }} > {r_a} - {r_{bn }} \). As a consequence the condition for decreasing market power is

$$ {r_{{ AF}}} > \hat{r} = {r_a}{ \ }\left[ {1 + (\rho - 1)\frac{{D_e - {K^f}}}{K_a^d }} \right] - \rho { \ }{r_{bn }}\frac{{D_e - {K^f}}}{K_a^d } $$

1.7 Proof of Corollary 5

When the dominant firm pursues a long-term target then \( \displaystyle\frac{{\partial {{\hat{p}}_e}}}{{\partial au }} > \frac{1}{2}{r_a} \). In this case the condition for decreasing market power, \( \displaystyle\frac{{\partial {{\hat{p}}_e}}}{{\partial au }} < \hat{r} = {r_a} + \lambda ({r_{{ AF}}} - {r_a}) \), becomes

$$ {r_{{ AF}}} > \hat{r} = {r_a}{ \ }\left[ {1 + \left( {\frac{\rho }{2} - 1} \right)\frac{{D_e - {K^f}}}{K_a^d }} \right] $$

with ETS and auctioning.

If allowances are benchmarked then \( \displaystyle\frac{{\partial {{\hat{p}}_e}}}{{\partial au }} > \frac{1}{2}{r_a} - {r_{bn }} \). The condition for decreasing market power becomes:

$$ {r_{{ AF}}} > \hat{r} = {r_a}{ \ }\left[ {1 + \left( {\frac{\rho }{2} - 1} \right)\frac{{D_e - {K^f}}}{K_a^d }} \right] - \rho { \ }{r_{bn }}\frac{{D_e - {K^f}}}{K_a^d } $$

1.8 Proof of Equation (4.5)

Given the load duration curves in Figs. 4.4 and 4.5, the total amount of pollutant emissions, \( E \), under imperfect competition is

$$ \begin{array}{clclcl}{E_{ic}} = {r_g}\left[ {\int_0^{\hat{H}} {D_e (H,{{\hat{p}}_e}){d}H} } \right] + {r_g}\left[ {\int_{\hat{H}}^{\underline H}} {D_e (H,{{\hat{p}}_e}){{ d}}H} \right] + ({r_g} - {r_a})({K_{e_T }}\hat{H} - {K^{d_e }}{\mathop {\underline H}}) +\cr \quad+{r_a}\left[ {\int_{{{{H}}( au )}}^{{H_L ( au )}} {D_e (H,{{\hat{p}}_e}){{ d}}H} } \right] \end{array}$$

And under full competition

$$ {E_{{ fc}}} = {r_g}\int_0^{{\underline H}} {D_e {{ d}}H} + {r_a}\left[ {\int_{{\underline H}}^{H_L } {D_e {{ d}}H} } \right] $$

By differentiating \( {E_{{ ic}}} \) and \( {E_{{ fc}}} \) with respect to \( au \) and given that

$$ \begin{array}{clclcl}\frac{\partial }{{\partial au }}\left[ {\int_{{H_i ({p_e}( au ))}}^{{H_j ({p_e}( au ))}} {D_e (H,{p_e}( au )){{ d}}H} } \right] = {D_e}({H_j},{p_e}( au ))\frac{{\partial {H_j}}}{{\partial au }} - {D_e}({H_i},p( au ))\frac{{\partial {H_i}}}{{\partial au }} +\\ + \int_{{H_i ({p_e}( au ))}}^{{H_j ({p_e}( au ))}} {\frac{{\partial {D_e}(H,p( au ))}}{{\partial au }}{{ d}}H} \end{array}$$

and that \( \beta = - \displaystyle\frac{{\partial {D_e}}}{{\partial {p_e}}} = - {{{\frac{{\partial {D_e}}}{{\partial au }}}} \left/ {{\frac{{\partial {p_e}}}{{\partial au }}}} \right.} \) we get

$$ \begin{array}{clclcl}\frac{{\partial {E_{{ ic}}}}}{{\partial au }} = {r_a}\left[ { - \beta \frac{{\partial {{\hat{p}}_e}}}{{\partial au }}\int_0^{\hat{H}} {D_e {{ d}}H} } \right] + ({r_g} - {r_a})\left[ {({K_{e_T }} - {{\hat{D}}_e})\frac{{\partial \hat{H}}}{{\partial au }}} \right] +\\ \quad+ {r_g}\left[ { - \beta { \ }{r_{{ AF}}}\int_{\hat{H}}^{\mathop {\raise0.3em\hbox{$\smash{\scriptscriptstyle}$}}{\underline H}} {D_e {{ d}}H} } \right] + {r_a}\left[ { - \beta { \ }{r_{{ AF}}}\int_{\mathop {\raise0.3em\hbox{$\smash{\scriptscriptstyle}$}}{\underline H}}^{H_L } {D_e {{ d}}H} } \right] \end{array}$$
(4.29)

and

$$ \frac{{\partial {E_{{ fc}}}}}{{\partial au }} = {r_g}\left[ { - \beta { \ }{r_g}\int_0^{\underline H}} {D_e {{ d}}H} \right] + {r_a}\left[ { - \beta { \ }{r_a}\int_{\underline H}}^{H_L } {D_e {{ d}}H} \right] $$
(4.30)

Where \( \displaystyle\frac{{\partial \hat{H}}}{{\partial au }} \) includes two components: \( \displaystyle\frac{\partial H }{{\partial {D_e}}}\frac{{\partial {{\hat{D}}_e}}}{{\partial au }} \) which is the change in \( \hat{H} \) due to the change in \( {\hat{D}_e} \) (see Lemma 3 and Lemma 3bis); \( \displaystyle\frac{\partial H }{{\partial {D_e}}}\frac{{\partial {D_e}}}{{\partial {p_e}}}\frac{{\partial {p_e}}}{{\partial au }} = - \beta \frac{\partial H }{{\partial {D_e}}}\frac{{\partial {p_e}}}{{\partial au }} \) which is the change in \( \hat{H} \) to the change in demand.

By replacing these components in (4.29) and by subtracting \( \displaystyle\frac{{\partial {E_{{ fc}}}}}{{\partial au }} \) from \( \displaystyle\frac{{\partial {E_{{ ic}}}}}{{\partial au }} \) we get the difference in marginal emissions between imperfect and full competition [(4.5) in Section 5].

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Gullì, F. (2013). Pollution Under Imperfect Competition in Vertical Related Energy Markets. In: Pollution Under Environmental Regulation in Energy Markets. Lecture Notes in Energy, vol 6. Springer, London. https://doi.org/10.1007/978-1-4471-4727-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4727-5_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4726-8

  • Online ISBN: 978-1-4471-4727-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics