Fluid, Electrolyte and Nutritional Support of the Surgical Neonate

Chapter

Abstract

The newborn infant is in a “critical epoch” of development. A healthy term infant grows at a rate of 25–30 g per day over the first 6 months of life, so that weight has doubled by the age of 5 months. This growth clearly requires adequate nutrition, but especially where medical or surgical conditions exist, must also be carefully managed together with fluid and electrolytes. Thus a significant period of inadequate nutrition, or inappropriate fluid and electrolyte administration, may not only affect short-term outcomes, but may also be a risk factor for the long-term menace of stunted mental and physical development. Amongst preterm infants, lower in-hospital growth velocity is associated with impaired neurodevelopmental outcome. Fluids and electrolytes undergo changes during the perinatal period, so an understanding of the perinatal changes in body composition is useful to understand the principles behind the fluid, electrolyte and nutritional management of surgical neonates. As well as providing the components necessary for increase in tissue mass, adequate provision of nutrients is also required to mount an appropriate immune response is extremely important, as infection and sepsis may impair growth and neurodevelopmental outcome.

Keywords

Fluids and electrolytes Nutrition Intravenous feeding Parenteral nutrition 

References

  1. 1.
    Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006;117(4):1253–61.Google Scholar
  2. 2.
    Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292(19):2357–65.Google Scholar
  3. 3.
    Friis-Hansen B. Water distribution in the foetus and newborn infant. Acta Paediatr Scand Suppl. 1983;305:7–11.Google Scholar
  4. 4.
    Denne SC, Poindexter BB, Leitch CA, Ernst JA, Lemons PK, Lemons JA. Nutrition and metabolism in the high-risk neonate. In: MARTIN RJ, Fanarof AA, Walsh MC, editors. Fanaroff and Martin’s neonatal-perinatal medicine. 8th ed. Philadelphia, PA: Mosby-Elsevier; 2006. p. 661–93.Google Scholar
  5. 5.
    Hartnoll G, Betremieux P, Modi N. Body water content of extremely preterm infants at birth. Arch Dis Child Fetal Neonatal Ed. 2000;83(1):F56–9.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Wilson DC, Cairns P, Halliday HL, Reid M, McClure G, Dodge JA. Randomised controlled trial of an aggressive nutritional regimen in sick very low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 1997;77(1):F4–11.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Tsang RC, Uauy R, Koletzko B, Zlotkin SH. Nutrition of the preterm infant: scientific basis and practical guidelines. 2nd ed; 2005.Google Scholar
  8. 8.
    Teitelbaum DH, Coran AG. Perioperative nutritional support in pediatrics. Nutrition. 1998;14(1):130–42.Google Scholar
  9. 9.
    WHO. Energy and protein requirements. Report of a joint FAO/WHO/UNU Expert Consultation. World Health Organ Tech Rep Ser. 1985;724:1–206.Google Scholar
  10. 10.
    FAO/WHO/UNU. Human energy requirements: Report of a Joint FAO/WHO/UNU Expert Consultation. Rome: FAO; 2004. p. 1–96.Google Scholar
  11. 11.
    Pierro A, Carnielli V, Filler RM, Kicak L, Smith J, Heim TF. Partition of energy metabolism in the surgical newborn. J Pediatr Surg. 1991;26(5):581–6.Google Scholar
  12. 12.
    Freymond D, Schutz Y, Decombaz J, Micheli JL, Jequier E. Energy-balance, physical-activity, and thermogenic effect of feeding in premature-infants. Pediatr Res. 1986;20(7):638–45.Google Scholar
  13. 13.
    Reichman BL, Chessex P, Putet G, Verellen GJ, Smith JM, Heim T, et al. Partition of energy metabolism and energy cost of growth in the very low-birth-weight infant. Pediatrics. 1982;69(4):446–51.Google Scholar
  14. 14.
    Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 2. Energy. J Pediatr Gastroenterol Nutr. 2005;41:S5–S11.Google Scholar
  15. 15.
    Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39(Suppl 1):5–41.Google Scholar
  16. 16.
    Harris JA, Benedict FG. A biometric study of basal metabolism in man. Washington, Carnegie Institute of Washington; 1919.Google Scholar
  17. 17.
    Pierro A, Jones MO, Hammond P, Donnell SC, Lloyd DA. A new equation to predict the resting energy expenditure of surgical infants. J Pediatr Surg. 1994;29(8):1103–8.Google Scholar
  18. 18.
    Hill AG, Hill GL. Metabolic response to severe injury. Br J Surg. 1998;85(7):884–90.Google Scholar
  19. 19.
    Garza JJ, Shew SB, Keshen TH, Dzakovic A, Jahoor F, Jaksic T. Energy expenditure in ill premature neonates. J Pediatr Surg. 2002;37(3):289–93.Google Scholar
  20. 20.
    Powis MR, Smith K, Rennie M, Halliday D, Pierro A. Characteristics of protein and energy metabolism in neonates with necrotizing enterocolitis—a pilot study. J Pediatr Surg. 1999;34(1):5–10.Google Scholar
  21. 21.
    Jaksic T, Shew SB, Keshen TH, Dzakovic A, Jahoor F. Do critically ill surgical neonates have increased energy expenditure? J Pediatr Surg. 2001;36(1):63–7.Google Scholar
  22. 22.
    Bauer J, Hentschel R, Linderkamp O. Effect of sepsis syndrome on neonatal oxygen consumption and energy expenditure. Pediatrics. 2002;110(6):art-e69.Google Scholar
  23. 23.
    Mrozek JD, GEORGIEFF MK, Blazar BR, Mammel MC, Schwarzenberg SJ. Effect of sepsis syndrome on neonatal protein and energy metabolism. J Perinatol. 2000;20(2):96–100.Google Scholar
  24. 24.
    Jones MO, Pierro A, Hammond P, Lloyd DA. The metabolic response to operative stress in infants. J Pediatr Surg. 1993;28(10):1258–62.Google Scholar
  25. 25.
    Shanbhogue RLK, Lloyd DA. Absence of hypermetabolism after operation in the newborn- infant. J Parenter Enteral Nutr. 1992;16(4):333–6.Google Scholar
  26. 26.
    Anand KJS, Sippell WG, Aynsley-Green A. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet. 1987;1(8524):62–6.Google Scholar
  27. 27.
    Chwals WJ, Letton RW, Jamie A, Charles B. Stratification of injury severity using energy-expenditure response in surgical infants. J Pediatr Surg. 1995;30(8):1161–4.Google Scholar
  28. 28.
    Anand KJS, Hickey PR. Halothane-morphine compared with high-dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery. N Engl J Med. 1992;326(1):1–9.Google Scholar
  29. 29.
    Facchinetti F, Bagnoli F, Bracci R, Genazzani AR. Plasma opioids in the first hours of life. Pediatr Res. 1982;16(2):95–8.Google Scholar
  30. 30.
    Harrison RA, Lewin MR, Halliday D, Clark CG. Leucine kinetics in surgical patients. II: A study of the effect of malignant disease and tumour burden [see comments]. Br J Surg. 1989;76(5):509–11.Google Scholar
  31. 31.
    Carli F, Webster J, Pearson M, Forrest J, Venkatesan S, Wenham D, et al. Postoperative protein metabolism: effect of nursing elderly patients for 24 h after abdominal surgery in a thermoneutral environment. Br J Anaesth. 1991;66(3):292–9.Google Scholar
  32. 32.
    Essen P, McNurlan MA, Wernerman J, Vinnars E, Garlick PJ. Uncomplicated surgery, but not general anesthesia, decreases muscle protein synthesis. Am J Physiol. 1992;262(3 Pt 1):E253–60.Google Scholar
  33. 33.
    Powis MR, Smith K, Rennie M, Halliday D, Pierro A. Effect of major abdominal operations on energy and protein metabolism in infants and children. J Pediatr Surg. 1998;33(1):49–53.Google Scholar
  34. 34.
    Groner JI, Brown MF, Stallings VA, Ziegler MM, O’Neill-JA J. Resting energy expenditure in children following major operative procedures. J Pediatr Surg. 1989;24(8):825–7.Google Scholar
  35. 35.
    Tilden SJ, Watkins S, Tong TK, Jeevanandam M. Measured Energy-Expenditure in Pediatric Intensive-Care Patients. Am J Dis Child. 1989;143(4):490–2.Google Scholar
  36. 36.
    Phillips R, Ott L, Young B, Walsh J. Nutritional support and measured energy expenditure of the child and adolescent with head injury. J Neurosurg. 1987;67(6):846–51.PubMedPubMedCentralGoogle Scholar
  37. 37.
    White MS, Shepherd RW, McEniery JA. Energy expenditure in 100 ventilated, critically ill children: Improving the accuracy of predictive equations. Crit Care Med. 2000;28(7):2307–12.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Briassoulis G, Venkataraman S, Thompson AE. Energy expenditure in critically ill children. Crit Care Med. 2000;28(4):1166–72.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Chwals WJ, Lally KP, Woolley MM, Mahour GH. Measured energy expenditure in critically ill infants and young children. J Surg Res. 1988;44(5):467–72.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Coss-Bu JA, Klish WJ, Walding D, Stein F, Smith EO, Jefferson LS. Energy metabolism, nitrogen balance, and substrate utilization in critically ill children. Am J Clin Nutr. 2001;74(5):664–9.Google Scholar
  41. 41.
    Turi RA, Petros A, Eaton S, Fasoli L, Powis M, Basu R, et al. Energy metabolism of infants and children with systemic inflammatory response syndrome and sepsis. Ann Surg. 2001;233:581–7.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Taylor RM, Cheeseman P, Preedy VR, Baker AJ, Grimble GK. Can energy expenditure be predicted in critically ill children? Pediatr Crit Care Med. 2003;4:176–80.Google Scholar
  43. 43.
    Skillman HE, Wischmeyer PE. Nutrition therapy in critically ill infants and children. J Parenter Enteral Nutr. 2008;32(5):520–34.Google Scholar
  44. 44.
    Rosenkrantz TS. Polycythemia and hyperviscosity in the newborn. Semin Thromb Hemost. 2003;29(5):515–27.Google Scholar
  45. 45.
    Modi N, Betremieux P, Midgley J, Hartnoll G. Postnatal weight loss and contraction of the extracellular compartment is triggered by atrial natriuretic peptide. Early Hum Dev. 2000;59(3):201–8.Google Scholar
  46. 46.
    Holliday MA, Segar WE. The maintenance need for water in parenteral fluid therapy. Pediatrics. 1957;19(5):823–32.Google Scholar
  47. 47.
    Usher R, Lind J. Blood volume of the newborn premature infant. Acta Paediatr Scand. 1965;54:419–31.Google Scholar
  48. 48.
    Sisson TR, Lund CJ, Whalen LE, Telek A. The blood volume of infants. I. The full-term infant in the first year of life. J Pediatr. 1959;55(2):163–79.Google Scholar
  49. 49.
    Hazinski MF. Understanding fluid balance in the seriously ill child. Pediatr Nurs. 1988;14(3):231–6.Google Scholar
  50. 50.
    Hall NJ, Drewett M, Wheeler RA, Griffiths DM, Kitteringham LJ, Burge DM. Trans-anastomotic tubes reduce the need for central venous access and parenteral nutrition in infants with congenital duodenal obstruction. Pediatr Surg Int. 2011;27(8):851–5.Google Scholar
  51. 51.
    Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 9. Venous access. J Pediatr Gastroenterol Nutr. 2005;41:S54–62.Google Scholar
  52. 52.
    Ainsworth SB, Clerihew L, McGuire W. Percutaneous central venous catheters versus peripheral cannulae for delivery of parenteral nutrition in neonates. Cochrane Database Syst Rev. 2007;3:CD004219.Google Scholar
  53. 53.
    NCEPOD. A mixed bag: An enquiry into the care of hospital patients receiving parenteral nutrition. In: Stewart JAD, Mason DG, Smith N, Protopapa K, Mason M, editors. London: National Confidential Enquiry into Patient Outcome and Death; 2010.Google Scholar
  54. 54.
    Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 5. Carbohydrates. J Pediatr Gastroenterol Nutr. 2005;41:S28–32.Google Scholar
  55. 55.
    Pierro A, Eaton S, Ong E. Neonatal physiology and metabolic considerations. In: Grosfeld JL, O’Neill JA, Fonkalsrud EW, Coran AG, editors. Pediatric Surgery. 6th ed. Philadelphia: Mosby Elsevier; 2006. p. 89–113.Google Scholar
  56. 56.
    Cornblath M, Hawdon JM, Williams AF, Aynsley-Green A, Ward-Platt MP, Schwartz R, et al. Controversies regarding definition of neonatal hypoglycemia: Suggested operational thresholds. Pediatrics. 2000;105(5):1141–5.Google Scholar
  57. 57.
    Kao LS, Morris BH, Lally KP, Stewart CD, Huseby V, Kennedy KA. Hyperglycemia and morbidity and mortality in extremely low birth weight infants. J Perinatol. 2006;26(12):730–6.Google Scholar
  58. 58.
    Hallstrom M, Koivisto AM, Janas M, Tammela O. Laboratory parameters predictive of developing necrotizing enterocolitis in infants born before 33 weeks of gestation. J Pediatr Surg. 2006;41(4):792–8.Google Scholar
  59. 59.
    Hall NJ, Peters M, Eaton S, Pierro A. Hyperglycemia is associated with increased morbidity and mortality rates in neonates with necrotizing enterocolitis. J Pediatr Surg. 2004;39(6):898–901.Google Scholar
  60. 60.
    Beardsall K, Vanhaesebrouck S, Ogilvy-Stuart AL, Vanhole C, Palmer CR, van Weissenbruch M, et al. Early insulin therapy in very-low-birth-weight infants. N Engl J Med. 2008;359(18):1873–84.Google Scholar
  61. 61.
    Bottino M, Cowett RM, Sinclair JC. Interventions for treatment of neonatal hyperglycemia in very low birth weight infants. Cochrane Database Syst Rev. 2011;10:CD007453.Google Scholar
  62. 62.
    Macrae D, Pappachan J, Grieve R, Parslow R, Nadel S, Schindler M, et al. Control of hyperglycaemia in paediatric intensive care (CHiP): study protocol. BMC Pediatr. 2010;10:5.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Nose O, Tipton JR, Ament ME, Yabuuchi H. Effect of the energy source on changes in energy expenditure, respiratory quotient, and nitrogen balance during total parenteral nutrition in children. Pediatr Res. 1987;21(6):538–41.Google Scholar
  64. 64.
    Van Aerde JE, Sauer PJ, Pencharz PB, Smith JM, Swyer PR. Effect of replacing glucose with lipid on the energy metabolism of newborn infants. Clin Sci. 1989;76(6):581–8.Google Scholar
  65. 65.
    Pierro A, Jones MO, Hammond P, Nunn A, Lloyd DA. Utilisation of intravenous fat in the surgical newborn infant. Proc Nutr Soc. 1993;52:237A.Google Scholar
  66. 66.
    Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 4. Lipids. J Pediatr Gastroenterol Nutr. 2005;41:S19–27.Google Scholar
  67. 67.
    Clayton PT, Bowron A, Mills KA, Massoud A, Casteels M, Milla PJ. Phytosterolemia in children with parenteral nutrition-associated cholestatic liver disease. Gastroenterology. 1993;105(6):1806–13.Google Scholar
  68. 68.
    Bianchi A. From the cradle to enteral autonomy: the role of autologous gastrointestinal reconstruction. Gastroenterology. 2006;130(2 Suppl 1):S138–46.Google Scholar
  69. 69.
    Cober MP, Teitelbaum DH. Prevention of parenteral nutrition-associated liver disease: lipid minimization. Curr Opin Organ Transplant. 2010;15(3):330–3.Google Scholar
  70. 70.
    Puder M, Valim C, Meisel JA, Le HD, De Meijer VE, Robinson EM, et al. Parenteral fish oil improves outcomes in patients with parenteral nutrition-associated liver injury. Ann Surg. 2009;250(3):395–402.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Bishay M, Pichler J, Horn V, Macdonald S, Ellmer M, Eaton S, et al. Intestinal failure-associated liver disease in surgical infants requiring long-term parenteral nutrition. J Pediatr Surg. 2012;47(2):359–62.Google Scholar
  72. 72.
    Socha P, Koletzko B, Demmelmair H, Jankowska I, Stajniak A, Bednarska-Makaruk M, et al. Short-term effects of parenteral nutrition of cholestatic infants with lipid emulsions based on medium-chain and long-chain triacylglycerols. Nutrition. 2007;23(2):121–6.Google Scholar
  73. 73.
    Donnell SC, Lloyd DA, Eaton S, Pierro A. The metabolic response to intravenous medium-chain triglycerides in infants after surgery. J Pediatr. 2002;141(5):689–94.Google Scholar
  74. 74.
    Tomsits E, Pataki M, Tolgyesi A, Fekete G, Rischak K, Szollar L. Safety and Efficacy of a Lipid Emulsion Containing a Mixture of Soybean Oil, Medium-chain Triglycerides, Olive Oil, and Fish Oil: A Randomised, Double-blind Clinical Trial in Premature Infants Requiring Parenteral Nutrition. J Pediatr Gastroenterol Nutr. 2010;51(4):514–21.Google Scholar
  75. 75.
    Goulet O, Antebi H, Wolf C, Talbotec C, Alcindor LG, Corriol O, et al. A new intravenous fat emulsion containing soybean oil, medium-chain triglycerides, olive oil, and fish oil: a single-center, double-blind randomized study on efficacy and safety in pediatric patients receiving home parenteral nutrition. J Parenter Enteral Nutr. 2010;34(5):485–95.Google Scholar
  76. 76.
    Flynn DM, Gowen H. Paediatric parenteral nutrition and lipid usage in the UK—A pick N’ mix situation? Clin Nutr. 2010;29(2):275–6.Google Scholar
  77. 77.
    Wesson DE, Hampton Rich R, Zlotkin SH, Pencharz PB. Fat overload syndrome causing respiratory insufficiency. J Pediatr Surg. 1984;19:777–8.Google Scholar
  78. 78.
    Pitkanen O, Hallman M, Andersson S. Generation of free-radicals in lipid emulsion used in parenteral- nutrition. Pediatr Res. 1991;29(1):56–9.Google Scholar
  79. 79.
    Basu R, Muller DPR, Eaton S, Merryweather I, Pierro A. Lipid peroxidation can be reduced in infants on total parenteral nutrition by promoting fat utilisation. J Pediatr Surg. 1999;34:255–9.Google Scholar
  80. 80.
    Denne SC, Poindexter BB. Evidence supporting early nutritional support with parenteral amino acid infusion. Semin Perinatol. 2007;31(2):56–60.Google Scholar
  81. 81.
    Zlotkin SH, Bryan MH, Anderson GH. Intravenous nitrogen and energy intakes required to duplicate in utero nitrogen accretion in prematurely born human infants. J Pediatr. 1981;99(1):115–20.Google Scholar
  82. 82.
    Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R, for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 3. Amino Acids. J Pediatr Gastroenterol Nutr. 2005;41:S12–8.Google Scholar
  83. 83.
    Kerner JA. Carbohydrate requirements. In: Kerner JA, editor. Manual of pediatric parenteral nutrition. New York: Wiley; 1983. p. 79–88.Google Scholar
  84. 84.
    American Academy of Pediatrics Committee on Nutrition. Commentary on parenteral nutrition. Pediatrics. 1983;71:547–52.Google Scholar
  85. 85.
    Zlotkin SH, Stallings VA, Pencharz PB. Total parenteral nutrition in children. Pediatr Clin North Am. 1985;32(2):381–400.Google Scholar
  86. 86.
    te Braake FWJ, van den Akker CHP, Riedijk MA, van Goudoever JB. Parenteral amino acid and energy administration to premature infants in early life. Semin Fetal Neonatal Med. 2007;12(1):11–8.Google Scholar
  87. 87.
    Soghier LM, Brion LP. Cysteine, cystine or N-acetylcysteine supplementation in parenterally fed neonates. Cochrane Database Syst Rev. 2006;4:CD004869.Google Scholar
  88. 88.
    Eaton S, Aufieri R, Pierro A. Functions of glutamine in critical illness. CAB Reviews: Perspectives in agriculture, veterinary science, nutrition and natural resources. 2010;5:013, 11 pp.Google Scholar
  89. 89.
    Lacey JM, Crouch JB, Benfell K, Ringer SA, Wilmore CK, Maguire D, et al. The effects of glutamine-supplemented parenteral nutrition in premature infants. J Parenter Enteral Nutr. 1996;20(1):74–80.Google Scholar
  90. 90.
    Thompson SW, McClure BG, Tubman TR. A Randomized, Controlled Trial of Parenteral Glutamine in Ill, Very Low Birth-weight Neonates. J Pediatr Gastroenterol Nutr. 2003;37(5):550–3.Google Scholar
  91. 91.
    Poindexter BB, Ehrenkranz RA, Stoll BJ, Wright LL, Poole WK, Oh W, et al. Parenteral glutamine supplementation does not reduce the risk of mortality or late-onset sepsis in extremely low birth weight infants. Pediatrics. 2004;113(5):1209–15.Google Scholar
  92. 92.
    Albers MJ, Steyerberg EW, Hazebroek FW, Mourik M, Borsboom GJ, Rietveld T, et al. Glutamine supplementation of parenteral nutrition does not improve intestinal permeability, nitrogen balance, or outcome in newborns and infants undergoing digestive-tract surgery: results from a double-blind, randomized, controlled trial. Ann Surg. 2005;241(4):599–606.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Ong EGP, Eaton S, Wade AM, Horn V, Losty PD, Curry JI, et al. Randomised controlled trial of glutamine supplemented versus regular parenteral nutrition of surgical infants. Br J Surg. 2012;99(7):929–38.Google Scholar
  94. 94.
    Becker RM, Wu GY, Galanko JA, Chen WN, Maynor AR, Bose CL, et al. Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr. 2000;137(6):785–93.Google Scholar
  95. 95.
    Zamora SA, Amin HJ, McMillan DD, Kubes P, Fick GH, Butzner JD, et al. Plasma L-arginine concentrations in premature infants with necrotizing enterocolitis. J Pediatr. 1997;131(2):226–32.Google Scholar
  96. 96.
    Richir MC, Siroen MPC, van Elburg RM, Fetter WPF, Quik F, Nijveldt RJ, et al. Low plasma concentrations of arginine and asymmetric dimethylarginine in premature infants with necrotizing enterocolitis. Br J Nutr. 2007;97(5):906–11.Google Scholar
  97. 97.
    Amin HJ, Zamora SA, McMillan DD, Fick GH, Butzner JD, Parsons HG, et al. Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J Pediatr. 2002;140:425–31.Google Scholar
  98. 98.
    Moonen RM, Paulussen AD, Souren NY, Kessels AG, Rubio-Gozalbo ME, Villamor E. Carbamoyl phosphate synthetase polymorphisms as a risk factor for necrotizing enterocolitis. Pediatr Res. 2007;62(2):188–90.Google Scholar
  99. 99.
    Roberts SA, Ball RO, Moore AM, Filler RM, Pencharz PB. The effect of graded intake of glycyl-L-tyrosine on phenylalanine and tyrosine metabolism in parenterally fed neonates with an estimation of tyrosine requirement. Pediatr Res. 2001;49(1):111–9.Google Scholar
  100. 100.
    Stapleton PP, Charles RP, Redmond HP, BouchierHayes DJ. Taurine and human nutrition. Clin Nutr. 1997;16(3):103–8.Google Scholar
  101. 101.
    Carver J. Conditionally essential nutrients. In: Hay WW, Thureen PJ, editors. Neonatal nutrition and metabolism. 2nd ed. Cambridge: Cambridge University Press; 2006. p. 301–11.Google Scholar
  102. 102.
    Wharton BA, Morley R, Isaacs EB, Cole TJ, Lucas A. Low plasma taurine and later neurodevelopment. Arch Dis Child. 2004;89(6):F497–8.Google Scholar
  103. 103.
    Spencer AU, Yu S, Tracy TF, Aouthmany MM, Llanos A, Brown MB, et al. Parenteral nutrition-associated cholestasis in neonates: multivariate analysis of the potential protective effect of taurine. JPEN J Parenter Enteral Nutr. 2005;29:337–43.Google Scholar
  104. 104.
    Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 7. Iron, Minerals and Trace Elements. J Pediatr Gastroenterol Nutr. 2005;41:S39–46.Google Scholar
  105. 105.
    Eaton S. The biochemical basis of antioxidant therapy in critical illness. Proc Nutr Soc. 2006;65(3):242–9.Google Scholar
  106. 106.
    Darlow BA, Austin NC. Selenium supplementation to prevent short-term morbidity in preterm neonates. Cochrane Database Syst Rev. 2003;4:CD003312.Google Scholar
  107. 107.
    American Academy of Pediatrics Committee on Nutrition. Parenteral nutrition. In: Kleinman RE, editor. Pediatric nutrition handbook. 5th ed. Elk Grove Village: American Academy of Pediatrics; 2004. p. 369–89.Google Scholar
  108. 108.
    Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 8. Vitamins. J Pediatr Gastroenterol Nutr. 2005;41:S47–53.Google Scholar
  109. 109.
    Bishay M, Retrosi G, Horn V, Cloutman-Green E, Harris K, De CP, et al. Chlorhexidine antisepsis significantly reduces the incidence of sepsis and septicemia during parenteral nutrition in surgical infants. J Pediatr Surg. 2011;46(6):1064–9.Google Scholar
  110. 110.
    Pierro A, van Saene HKF, Donnell SC, Hughes J, Ewan C, Nunn AJ, et al. Microbial translocation in neonates and infants receiving long-term parenteral-nutrition. Arch Surg. 1996;131(2):176–9.Google Scholar
  111. 111.
    Pierro A, van Saene HKF, Jones MO, Brown D, Nunn AJ, Lloyd DA. Clinical impact of abnormal gut flora in infants receiving parenteral nutrition. Ann Surg. 1998;227(4):547–52.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Puntis JWL, Holden CE, Smallman S, Finkel Y, George RH, Booth IW. Staff training—a key factor in reducing intravascular catheter sepsis. Arch Dis Child. 1991;66(3):335–7.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Bishay M, Retrosi G, Horn V, Cloutman-Green E, Harris K, De CP, et al. Septicaemia due to enteric organisms is a later event in surgical infants requiring parenteral nutrition. Eur J Pediatr Surg. 2012;22(1):50–3.Google Scholar
  114. 114.
    Okada Y, Klein NJ, van Saene HK, Webb G, Holzel H, Pierro A. Bactericidal activity against coagulase-negative staphylococci is impaired in infants receiving long-term parenteral nutrition. Ann Surg. 2000;231(2):276–81.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Wilkins CE, Emmerson AJB. Extravasation injuries on regional neonatal units. Arch Dis Child. 2004;89(3):F274–5.Google Scholar
  116. 116.
    Beath SV, on behalf of the BSPGHAN Nutrition Working Group. Review of current management practices in Intestinal Failure Associated Liver Disease. http://bspghan.org.uk/working_groups/documents/ReviewofcurrentmanagementpracticesinIntestinalFailureAssociatedLiverDisease.doc. 2010.
  117. 117.
    Kelly DA. Preventing parenteral nutrition liver disease. Early Hum Dev. 2010;86(11):683–7.Google Scholar
  118. 118.
    Kubota A, Yonekura T, Hoki M, Oyanagi H, Kawahara H, Yagi M, et al. Total parenteral nutrition-associated intrahepatic cholestasis in infants: 25 years’ experience. J Pediatr Surg. 2000;35(7):1049–51.Google Scholar
  119. 119.
    Carter BA, Shulman RJ. Mechanisms of Disease: update on the molecular etiology and fundamentals of parenteral nutrition associated cholestasis. Nat Clin Pract Gastroenterol Hepatol. 2007;4(5):277–87.Google Scholar
  120. 120.
    Christensen RD, Henry E, Wiedmeier SE, Burnett J, Lambert DK. Identifying patients, on the first day of life, at high-risk of developing parenteral nutrition-associated liver disease. J Perinatol. 2007;27(5):284–90.Google Scholar
  121. 121.
    Watkins JB, Szczepanik P, Gould JB, Klein P, Lester R. Bile salt metabolism in the human premature infant. Preliminary observations of pool size and synthesis rate following prenatal administration of dexamethasone and phenobarbital. Gastroenterology. 1975;69(3):706–13.Google Scholar
  122. 122.
    Venigalla S, Gourley GR. Neonatal cholestasis. Semin Perinatol. 2004;28(5):348–55.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Pichler J, Horn V, Macdonald S, Hill S. Intestinal failure-associated liver disease in hospitalised children. Arch Dis Child. 2012;97(3):211–4.Google Scholar
  124. 124.
    Sudan D, Thompson J, Botha J, Grant W, Antonson D, Raynor S, et al. Comparison of intestinal lengthening procedures for patients with short bowel syndrome. Ann Surg. 2007;246(4):593–601.Google Scholar
  125. 125.
    Khalil BA, Ba’ath ME, Aziz A, Forsythe L, Gozzini S, Murphy F, et al. Intestinal rehabilitation and bowel reconstructive surgery: improved outcomes in children with short bowel syndrome. J Pediatr Gastroenterol Nutr. 2012;54(4):505–9.Google Scholar
  126. 126.
    Dell-Olio D, Beath SV, de Ville de GJ, Clarke S, Davies P, Lloyd C, et al. Isolated liver transplant in infants with short bowel syndrome: insights into outcomes and prognostic factors. J Pediatr Gastroenterol Nutr. 2009;48(3):334–40.Google Scholar
  127. 127.
    Gupte GL, Beath SV, Protheroe S, Murphy MS, Davies P, Sharif K, et al. Improved outcome of referrals for intestinal transplantation in the UK. Arch Dis Child. 2007;92(2):147–52.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Okada Y, Klein N, van Saene HK, Pierro A. Small volumes of enteral feedings normalise immune function in infants receiving parenteral nutrition. J Pediatr Surg. 1998;33(1):16–9.Google Scholar
  129. 129.
    Chowdhury MM, Pierro A. Gastrointestinal problems of the newborn. In: Guandalini S, editor. Textbook of pediatric gastroenterology and nutrition. London: Taylor & Francis; 2004. p. 579–98.Google Scholar
  130. 130.
    Bohnhorst B, Muller S, Dordelmann M, Peter CS, Petersen C, Poets CF. Early feeding after necrotizing enterocolitis in preterm infants. J Pediatr. 2003;143(4):484–7.Google Scholar
  131. 131.
    Jawaheer G, Pierro A, Lloyd D, Shaw N. Gall-bladder contractility in neonates—effects of parenteral and enteral feeding. Arch Dis Child. 1995;72(3):F200–2.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Jawaheer G, Shaw NJ, Pierro A. Continuous enteral feeding impairs gallbladder emptying in infants. J Pediatr. 2001;138(6):822–5.Google Scholar
  133. 133.
    Mehall JR, Kite CA, Saltzman DA, Wallett T, Jackson RJ, Smith SD. Prospective study of the incidence and complications of bacterial contamination of enteral feeding in neonates. J Pediatr Surg. 2002;37(8):1177–82.Google Scholar
  134. 134.
    Hall NJ, Ward HC. Lactobezoar with perforation in a premature infant. Biol Neonate. 2005;88(4):328–30.Google Scholar
  135. 135.
    Shou J, Lappin J, Minnard EA, Daly JM. Total parenteral nutrition, bacterial translocation, and host immune function. Am J Surg. 1994;167(1):145–50.Google Scholar
  136. 136.
    Okada Y, Klein N, van Saene HK, Pierro A. Small volumes of enteral feedings normalise immune function in infants receiving parenteral nutrition. J Pediatr Surg. 1998;33(1):16–9.Google Scholar
  137. 137.
    Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition. Pediatrics. 1961;28:169–81.Google Scholar
  138. 138.
    Modi N. Fluid and electrolyte balance. In: Rennie JM, editor. Roberton’s textbook of neonatology. 4th ed. Edinburgh: Churchill Livingstone; 2005. p. 335–54.Google Scholar
  139. 139.
    Wells JCK, Davies PSW. Energy-cost of physical-activity in 12-week-old infants. Am J Hum Biol. 1995;7(1):85–92.Google Scholar
  140. 140.
    Heird WC, Driscoll JM Jr, Schullinger JN, Grebin B, Winters RW. Intravenous alimentation in pediatric patients. J Pediatr. 1972;80(3):351–72.Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Paediatric SurgeryUCL Institute of Child Health and Great Ormond Street Children’s HospitalLondonUK
  2. 2.Surgery UnitInstitute of Child HealthLondonUK
  3. 3.Division of General and Thoracic Surgery, The Hospital for Sick ChildrenUniversity of TorontoTorontoCanada

Personalised recommendations