Vascular Anomalies

Chapter

Abstract

Vascular anomalies have long confused patients and physicians alike. Historically, it was believed that a mother’s emotions or diet could imprint upon her unborn child, resulting in a vascular birthmark. This use of the terms “cherry”, “strawberry”, or “port wine stain” reflect this doctrine of maternal impressions. Virchow was likely the first to attempt to categorize vascular anomalies based upon histological features. Despite his attempts, overlapping vernacular and histopathologic terms continued to contribute to confusion, resulting in misdiagnosis, inappropriate treatment, and misdirected research. In 1983, Mulliken and Glowacki presented a reliable classification system for vascular anomalies, dividing the field into two major categories: hemangiomas and malformations. Following modification to tumors and malformations, this system was formally accepted by the International Society for the Study of Vascular Anomalies in 1996 and remains in use today.

Keywords

Arteriovenous malformation Hemangioma Lymphatic malformation Kaposiformhemangioendothelioma Vascular anomaly Vascular malformation Venous malformation 

References

  1. 1.
    Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg. 1982;69:412–22.Google Scholar
  2. 2.
    Mulliken JB, Young AE. Vascular birthmarks: hemangiomas and malformations. Philadelphia: Saunders; 1988.Google Scholar
  3. 3.
    Virchow R. Angioma in die krankhaften Geschwulste. Berlin: Hirschwald; 1863.Google Scholar
  4. 4.
    Enjolras O. Vascular tumors and vascular malformations: are we at the dawn of a better knowledge? Pediatr Dermatol. 1999;16:238–41.Google Scholar
  5. 5.
    Mulliken JB, Fishman SJ, Burrows PE. Vascular anomalies. Curr Probl Surg. 2000;37:517–84.Google Scholar
  6. 6.
    Holmdahl K. Cutaneous hemangiomas in premature and mature infants. Acta Paediatr. 1955;44:370–9.Google Scholar
  7. 7.
    Amir J, Metzker A, Krikler R, et al. Strawberry hemangioma in preterm infants. Pediatr Dermatol. 1986;3:331–2.Google Scholar
  8. 8.
    Drolet BA, Swanson EA, Frieden IJ. Infantile hemangiomas: an emerging health issue linked to an increased rate of low birth weight infants. J Pediatr. 2008;153:712–715. , 715.e711.Google Scholar
  9. 9.
    Haggstrom AN, Drolet BA, Baselga E, et al. Prospective study of infantile hemangiomas: demographic, prenatal, and perinatal characteristics. J Pediatr. 2007;150:291–4.Google Scholar
  10. 10.
    Chiller KG, Passaro D, Frieden IJ. Hemangiomas of infancy: clinical characteristics, morphologic subtypes, and their relationship to race, ethnicity, and sex. Arch Dermatol. 2002;138:1567–76.Google Scholar
  11. 11.
    Finn MC, Glowacki J, Mulliken JB. Congenital vascular lesions: clinical application of a new classification. J Pediatr Surg. 1983;18:894–900.Google Scholar
  12. 12.
    Horii KA, Drolet BA, Frieden IJ, et al. Prospective study of the frequency of hepatic hemangiomas in infants with multiple cutaneous infantile hemangiomas. Pediatr Dermatol. 2011;28:245–253. doi:2 https://doi.org/10.1111/j.1525–1470.2011.01420.x. Epub 2011 Apr 26.
  13. 13.
    Bowers R, Graham E, Tomlinson K. The natural history of the strawberry birthmark. Arch Dermatol. 1960;82:667–80.Google Scholar
  14. 14.
    Boye E, Yu Y, Paranya G, et al. Clonality and altered behavior of endothelial cells from hemangiomas. J Clin Invest. 2001;107:745–52.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Bischoff J. Progenitor cells in infantile hemangioma. J Craniofac Surg. 2009;20:695–7.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Khan ZA, Boscolo E, Picard A, et al. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest. 2008;118:2592–9.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Marchuk DA. Pathogenesis of hemangioma. J Clin Invest. 2001;107:665–6.PubMedPubMedCentralGoogle Scholar
  18. 18.
    North PE, Waner M, Mizeracki A, et al. A unique microvascular phenotype shared by juvenile hemangiomas and human placenta. Arch Dermatol. 2001;137:559–70.Google Scholar
  19. 19.
    Leon-Villapalos J, Wolfe K, Kangesu L. GLUT-1: an extra diagnostic tool to differentiate between haemangiomas and vascular malformations. Br J Plast Surg. 2005;58:348–52.Google Scholar
  20. 20.
    Huang SA, Tu HM, Harney JW, et al. Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N Engl J Med. 2000;343:185–9.Google Scholar
  21. 21.
    Picard A, Boscolo E, Khan ZA, et al. IGF-2 and FLT-1/VEGF-R1 mRNA levels reveal distinctions and similarities between congenital and common infantile hemangioma. Pediatr Res. 2008;63:263–7.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Bree AF, Siegfried E, Sotelo-Avila C, et al. Infantile hemangiomas: speculation on placental trophoblastic origin. Arch Dermatol. 2001;137:573–7.Google Scholar
  23. 23.
    Kleinman ME, Tepper OM, Capla JM, et al. Increased circulating AC133+ CD34+ endothelial progenitor cells in children with hemangioma. Lymphat Res Biol. 2003;1:301–7.Google Scholar
  24. 24.
    Chang J, Most D, Bresnick S, et al. Proliferative hemangiomas: analysis of cytokine gene expression and angiogenesis. Plast Reconstr Surg. 1999;103:1–9; discussion 10.Google Scholar
  25. 25.
    Roberts DM, Kearney JB, Johnson JH, et al. The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation. Am J Pathol. 2004;164:1531–5.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Jinnin M, Medici D, Park L, et al. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med. 2008;14:1236–1246. Epub 2008 Oct 19.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Fong GH, Rossant J, Gertsenstein M, et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995;376:66–70.Google Scholar
  28. 28.
    Jinnin M, Ishihara T, Boye E, et al. Recent progress in studies of infantile hemangioma. J Dermatol. 2010;37:939–55. doi:10.1111/j.1346-8138.2010.00927.x. Epub 2010 Aug 16.CrossRefGoogle Scholar
  29. 29.
    Tille JC, Pepper MS. Hereditary vascular anomalies: new insights into their pathogenesis. Arterioscler Thromb Vasc Biol. 2004;24:1578–1590. Epub 2010 Jan 13.Google Scholar
  30. 30.
    Razon MJ, Kraling BM, Mulliken JB, et al. Increased apoptosis coincides with onset of involution in infantile hemangioma. Microcirculation. 1998;5:189–95.Google Scholar
  31. 31.
    Takahashi K, Mulliken JB, Kozakewich HP, et al. Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J Clin Invest. 1994;93:2357–64.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Bielenberg DR, Bucana CD, Sanchez R, et al. Progressive growth of infantile cutaneous hemangiomas is directly correlated with hyperplasia and angiogenesis of adjacent epidermis and inversely correlated with expression of the endogenous angiogenesis inhibitor. IFN-beta Int J Oncol. 1999;14:401–8.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Goldberg NS, Hebert AA, Esterly NB. Sacral hemangiomas and multiple congenital abnormalities. Arch Dermatol. 1986;122:684–7.Google Scholar
  34. 34.
    Albright AL, Gartner JC, Wiener ES. Lumbar cutaneous hemangiomas as indicators of tethered spinal cords. Pediatrics. 1989;83:977–80.Google Scholar
  35. 35.
    Frieden IJ, Reese V, Cohen D. PHACE syndrome. The association of posterior fossa brain malformations, hemangiomas, arterial anomalies, coarctation of the aorta and cardiac defects, and eye abnormalities. Arch Dermatol. 1996;132:307–11.Google Scholar
  36. 36.
    Metry D, Heyer G, Hess C, et al. Consensus Statement on Diagnostic Criteria for PHACE syndrome. Pediatrics. 2009;124:1447–56. Epub 2009 Oct 26.Google Scholar
  37. 37.
    Paltiel HJ, Burrows PE, Kozakewich HP, et al. Soft-tissue vascular anomalies: utility of US for diagnosis. Radiology. 2000;214:747–54.Google Scholar
  38. 38.
    Meyer JS, Hoffer FA, Barnes PD, et al. Biological classification of soft-tissue vascular anomalies: MR correlation. AJR Am J Roentgenol. 1991;157:559–64.Google Scholar
  39. 39.
    Burrows PE, Laor T, Paltiel H, et al. Diagnostic imaging in the evaluation of vascular birthmarks. Dermatol Clin. 1998;16:455–88.Google Scholar
  40. 40.
    Greene AK, Rogers GF, Mulliken JB. Management of parotid hemangioma in 100 children. Plast Reconstr Surg. 2004;113:53–60.Google Scholar
  41. 41.
    Margileth AM, Museles M. Cutaneous hemangiomas in children. Diagnosis and conservative management Jama. 1965;194:523–6.Google Scholar
  42. 42.
    Hermans DJ, Boezeman JB, Van de Kerkhof PC, et al. Differences between ulcerated and non-ulcerated hemangiomas, a retrospective study of 465 cases. Eur J Dermatol. 2009;19:152–156. Epub 2008 Dec 23.Google Scholar
  43. 43.
    Waner M, Suen JY. The natural history of hemangiomas. New York, NY: Wiley-Liss; 1999.Google Scholar
  44. 44.
    Leaute-Labreze C. Dumas de la Roque E, Hubiche T, et al: propranolol for severe hemangiomas of infancy. N Engl J Med. 2008;358:2649–51.Google Scholar
  45. 45.
    Leaute-Labreze C, Taieb A. [Efficacy of beta-blockers in infantile capillary haemangiomas: the physiopathological significance and therapeutic consequences]. Ann Dermatol Venereol. 2008;135:860–862. Epub 2008 Nov 20.Google Scholar
  46. 46.
    Buckmiller LM, Munson PD, Dyamenahalli U, et al. Propranolol for infantile hemangiomas: early experience at a tertiary vascular anomalies center. Laryngoscope. 2010;120:676–81.Google Scholar
  47. 47.
    Bagazgoitia L, Torrelo A, Gutierrez JC, et al. Propranolol for infantile hemangiomas. Pediatr Dermatol. 2011;28:108–114. doi: 1 https://doi.org/10.1111/j.1525–1470.2011.01345.x. Epub 2011 Mar 8.
  48. 48.
    Storch CH, Hoeger PH. Propranolol for infantile haemangiomas: insights into the molecular mechanisms of action. Br J Dermatol. 2010;163:269–274. Epub 2010 May 8.Google Scholar
  49. 49.
    Sommers Smith SK, Smith DM. Beta blockade induces apoptosis in cultured capillary endothelial cells. In Vitro Cell Dev Biol Anim. 2002;38:298–304.Google Scholar
  50. 50.
    Zhang D, Ma Q, Shen S, et al. Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction: the study of beta-adrenoceptor antagonist’s anticancer effect in pancreatic cancer cell. Pancreas. 2009;38:94–100.Google Scholar
  51. 51.
    Cushing SL, Boucek RJ, Manning SC, et al. Initial experience with a multidisciplinary strategy for initiation of propranolol therapy for infantile hemangiomas. Otolaryngol Head Neck Surg. 2011;144:78–84.Google Scholar
  52. 52.
    Maisel AS, Motulsky HJ, Insel PA. Propranolol treatment externalizes beta-adrenergic receptors in guinea pig myocardium and prevents further externalization by ischemia. Circ Res. 1987;60:108–12.Google Scholar
  53. 53.
    Harrison DC, Meffin PJ, Winkle RA. Clinical pharmacokinetics of antiarrhythmic drugs. Prog Cardiovasc Dis. 1977;20:217–42.Google Scholar
  54. 54.
    Holland KE, Frieden IJ, Frommelt PC, et al. Hypoglycemia in children taking propranolol for the treatment of infantile hemangioma. Arch Dermatol. 2010;146:775–8.Google Scholar
  55. 55.
    Pope E, Chakkittakandiyil A. Topical timolol gel for infantile hemangiomas: a pilot study. Arch Dermatol. 2010;146:564–5.Google Scholar
  56. 56.
    George ME, Sharma V, Jacobson J, et al. Adverse effects of systemic glucocorticosteroid therapy in infants with hemangiomas. Arch Dermatol. 2004;140:963–9.Google Scholar
  57. 57.
    Boon LM, MacDonald DM, Mulliken JB. Complications of systemic corticosteroid therapy for problematic hemangioma. Plast Reconstr Surg. 1999;104:1616–23.Google Scholar
  58. 58.
    Blei F, Chianese J. Corticosteroid toxicity in infants treated for endangering hemangiomas: experience and guidelines for monitoring. Int Pediatr. 1999;14:146–53.Google Scholar
  59. 59.
    Barlow CF, Priebe CJ, Mulliken JB, et al. Spastic diplegia as a complication of interferon Alfa-2a treatment of hemangiomas of infancy. J Pediatr. 1998;132:527–30.Google Scholar
  60. 60.
    Greenberger S, Boscolo E, Adini I, et al. Corticosteroid suppression of VEGF-A in infantile hemangioma-derived stem cells. N Engl J Med. 2010;362:1005–13.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Marler JJ, Mulliken JB. Plastic surgery. Philadelphia: Elsevier; 2009.Google Scholar
  62. 62.
    Dubois J, Garel L. Imaging and therapeutic approach of hemangiomas and vascular malformations in the pediatric age group. Pediatr Radiol. 1999;29:879–93.Google Scholar
  63. 63.
    Haisley-Royster C, Enjolras O, Frieden IJ, et al. Kasabach-Merritt phenomenon: a retrospective study of treatment with vincristine. J Pediatr Hematol Oncol. 2002;24:459–62.Google Scholar
  64. 64.
    Perez J, Pardo J, Gomez C. Vincristine—an effective treatment of corticoid-resistant life-threatening infantile hemangiomas. Acta Oncol. 2002;41:197–9.Google Scholar
  65. 65.
    Sie KC, McGill T, Healy GB. Subglottic hemangioma: ten years’ experience with the carbon dioxide laser. Ann Otol Rhinol Laryngol. 1994;103:167–72.Google Scholar
  66. 66.
    Fishman SJ, Burrows PE, Leichtner AM, et al. Gastrointestinal manifestations of vascular anomalies in childhood: varied etiologies require multiple therapeutic modalities. J Pediatr Surg. 1998;33:1163–7.Google Scholar
  67. 67.
    Fishman SJ, Fox VL. Visceral vascular anomalies. Gastrointest Endosc Clin N Am. 2001;11:813–834, viii.Google Scholar
  68. 68.
    Mulliken JB, Rogers GF, Marler JJ. Circular excision of hemangioma and purse-string closure: the smallest possible scar. Plast Reconstr Surg. 2002;109:1544–1554; discussion 1555.Google Scholar
  69. 69.
    Boon LM, Enjolras O, Mulliken JB. Congenital hemangioma: evidence of accelerated involution. J Pediatr. 1996;128:329–35.Google Scholar
  70. 70.
    Marler JJ, Fishman SJ, Upton J, et al. Prenatal diagnosis of vascular anomalies. J Pediatr Surg. 2002;37:318–26.Google Scholar
  71. 71.
    Elia D, Garel C, Enjolras O, et al. Prenatal imaging findings in rapidly involuting congenital hemangioma of the skull. Ultrasound Obstet Gynecol. 2008;31:572–5.Google Scholar
  72. 72.
    Berenguer B, Mulliken JB, Enjolras O, et al. Rapidly involuting congenital hemangioma: clinical and histopathologic features. Pediatr Dev Pathol. 2003;6:495–510.Google Scholar
  73. 73.
    Enjolras O, Mulliken JB, Boon LM, et al. Noninvoluting congenital hemangioma: a rare cutaneous vascular anomaly. Plast Reconstr Surg. 2001;107:1647–54.Google Scholar
  74. 74.
    Boon LM, Fishman SJ, Lund DP, et al. Congenital fibrosarcoma masquerading as congenital hemangioma: report of two cases. J Pediatr Surg. 1995;30:1378–81.Google Scholar
  75. 75.
    Christison-Lagay ER, Burrows PE, Alomari A, et al. Hepatic hemangiomas: subtype classification and development of a clinical practice algorithm and registry. J Pediatr Surg. 2007;42:62–67; discussion 67–68.Google Scholar
  76. 76.
    Morris J, Abbott J, Burrows P, et al. Antenatal diagnosis of fetal hepatic hemangioma treated with maternal corticosteroids. Obstet Gynecol. 1999;94:813–5.Google Scholar
  77. 77.
    Marsciani A, Pericoli R, Alaggio R, et al. Massive response of severe infantile hepatic hemangioma to propanolol. Pediatr Blood Cancer. 2010;54:176.Google Scholar
  78. 78.
    Kassarjian A, Zurakowski D, Dubois J, et al. Infantile hepatic hemangiomas: clinical and imaging findings and their correlation with therapy. AJR Am J Roentgenol. 2004;182:785–95.Google Scholar
  79. 79.
    Patrice SJ, Wiss K, Mulliken JB. Pyogenic granuloma (lobular capillary hemangioma): a clinicopathologic study of 178 cases. Pediatr Dermatol. 1991;8:267–76.Google Scholar
  80. 80.
    Browning JC, Eldin KW, Kozakewich HP, et al. Congenital disseminated pyogenic granuloma. Pediatr Dermatol. 2009;26:323–7.Google Scholar
  81. 81.
    Kirschner RE, Low DW. Treatment of pyogenic granuloma by shave excision and laser photocoagulation. Plast Reconstr Surg. 1999;104:1346–9.Google Scholar
  82. 82.
    Kasabach H, Merritt K. Capillary hemangioma with extensive purpura: report of a case. Am J Dis Child. 1940;59:1063–70.Google Scholar
  83. 83.
    Enjolras O, Gelbert F. Superficial hemangiomas: associations and management. Pediatr Dermatol. 1997;14:173–9.Google Scholar
  84. 84.
    Sarkar M, Mulliken JB, Kozakewich HP, et al. Thrombocytopenic coagulopathy (Kasabach-Merritt phenomenon) is associated with Kaposiform hemangioendothelioma and not with common infantile hemangioma. Plast Reconstr Surg. 1997;100:1377–86.Google Scholar
  85. 85.
    Jones EW, Orkin M. Tufted angioma (angioblastoma). A benign progressive angioma, not to be confused with Kaposi’s sarcoma or low-grade angiosarcoma. J Am Acad Dermatol. 1989;20:214–25.Google Scholar
  86. 86.
    Martinez-Perez D, Fein NA, Boon LM, et al. Not all hemangiomas look like strawberries: uncommon presentations of the most common tumor of infancy. Pediatr Dermatol. 1995;12:1–6.Google Scholar
  87. 87.
    Hall GW. Kasabach-Merritt syndrome: pathogenesis and management. Br J Haematol. 2001;112:851–62.Google Scholar
  88. 88.
    Rodriguez V, Lee A, Witman PM, et al. Kasabach-Merritt phenomenon: case series and retrospective review of the mayo clinic experience. J Pediatr Hematol Oncol. 2009;31:522–6.Google Scholar
  89. 89.
    Seo SK, Suh JC, Na GY, et al. Kasabach-Merritt syndrome: identification of platelet trapping in a tufted angioma by immunohistochemistry technique using monoclonal antibody to CD61. Pediatr Dermatol. 1999;16:392–4.Google Scholar
  90. 90.
    Gruman A, Liang MG, Mulliken JB, et al. Kaposiform hemangioendothelioma without Kasabach-Merritt phenomenon. J Am Acad Dermatol. 2005;52:616–22.Google Scholar
  91. 91.
    Fahrtash F, McCahon E, Arbuckle S. Successful treatment of kaposiform hemangioendothelioma and tufted angioma with vincristine. J Pediatr Hematol Oncol. 2010;32:506–10.Google Scholar
  92. 92.
    Gidding CE, Kellie SJ, Kamps WA, et al. Vincristine revisited. Crit Rev Oncol Hematol. 1999;29:267–87.Google Scholar
  93. 93.
    Chang E, Boyd A, Nelson CC, et al. Successful treatment of infantile hemangiomas with interferon-alpha-2b. J Pediatr Hematol Oncol. 1997;19:237–44.Google Scholar
  94. 94.
    Harper L, Michel JL, Enjolras O, et al. Successful management of a retroperitoneal kaposiform hemangioendothelioma with Kasabach-Merritt phenomenon using alpha-interferon. Eur J Pediatr Surg. 2006;16:369–72.Google Scholar
  95. 95.
    Hammill AM, Wentzel M, Gupta A, et al. Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr Blood Cancer. 2011;28:23124.Google Scholar
  96. 96.
    Blatt J, Stavas J, Moats-Staats B, et al. Treatment of childhood kaposiform hemangioendothelioma with sirolimus. Pediatr Blood Cancer. 2010;55:1396–8.Google Scholar
  97. 97.
    Enjolras O, Mulliken JB, Wassef M, et al. Residual lesions after Kasabach-Merritt phenomenon in 41 patients. J Am Acad Dermatol. 2000;42:225–35.Google Scholar
  98. 98.
    Christison-Lagay ER, Fishman SJ. Vascular anomalies. Surg Clin North Am 86:393–425, x;2006.Google Scholar
  99. 99.
    Brouillard P, Vikkula M. Genetic causes of vascular malformations. Hum Mol Genet. 2007;16:R140–149. Epub 2007 Jul 31.Google Scholar
  100. 100.
    Limaye N, Boon LM, Vikkula M. From germline towards somatic mutations in the pathophysiology of vascular anomalies. Hum Mol Genet. 2009;18:R65–74.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Sadler TW. Langman’s medical embryology. Philadelphia: Lippincott Williams & Wilkins; 2004.Google Scholar
  102. 102.
    Folkman J, D’Amore PA. Blood vessel formation: what is its molecular basis? Cell. 1996;87:1153–5.Google Scholar
  103. 103.
    Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998;93:741–53.Google Scholar
  104. 104.
    Ramsauer M, D’Amore PA. Getting Tie(2)d up in angiogenesis. J Clin Invest. 2002;110:1615–7.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Karpanen T, Alitalo K. Molecular biology and pathology of lymphangiogenesis. Annu Rev Pathol. 2008;3:367–97.Google Scholar
  106. 106.
    Rodriguez-Niedenfuhr M, Papoutsi M, Christ B, et al. Prox1 is a marker of ectodermal placodes, endodermal compartments, lymphatic endothelium and lymphangioblasts. Anat Embryol (Berl). 2001;204:399–406.Google Scholar
  107. 107.
    Oliver G, Srinivasan RS. Lymphatic vasculature development: current concepts. Ann N Y Acad Sci. 2008;1131:75–81.Google Scholar
  108. 108.
    Banerji S, Ni J, Wang SX, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 1999;144:789–801.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Hong YK, Harvey N, Noh YH, et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn. 2002;225:351–7.Google Scholar
  110. 110.
    Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5:74–80. Epub 2003 Nov 23.Google Scholar
  111. 111.
    Jacobs AH, Walton RG. The incidence of birthmarks in the neonate. Pediatrics. 1976;58:218–22.Google Scholar
  112. 112.
    Smoller BR, Rosen S. Port-wine stains. A disease of altered neural modulation of blood vessels? Arch Dermatol. 1986;122:177–9.Google Scholar
  113. 113.
    Breugem CC, Alders M, Salieb-Beugelaar GB, et al. A locus for hereditary capillary malformations mapped on chromosome 5q. Hum Genet. 2002;110:343–347. Epub 2002 Mar 2.Google Scholar
  114. 114.
    Eerola I, Boon LM, Mulliken JB, et al. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet. 2003;73:1240–1249. Epub 2003 Nov 24.Google Scholar
  115. 115.
    Tan OT, Sherwood K, Gilchrest BA. Treatment of children with port-wine stains using the flashlamp-pulsed tunable dye laser. N Engl J Med. 1989;320:416–21.Google Scholar
  116. 116.
    van der Horst CM, Koster PH, de Borgie CA, et al. Effect of the timing of treatment of port-wine stains with the flash-lamp-pumped pulsed-dye laser. N Engl J Med. 1998;338:1028–33.Google Scholar
  117. 117.
    Chapas AM, Eickhorst K, Geronemus RG. Efficacy of early treatment of facial port wine stains in newborns: a review of 49 cases. Lasers Surg Med. 2007;39:563–8.Google Scholar
  118. 118.
    Amitai DB, Fichman S, Merlob P, et al. Cutis marmorata telangiectatica congenita: clinical findings in 85 patients. Pediatr Dermatol. 2000;17:100–4.Google Scholar
  119. 119.
    Kienast AK, Hoeger PH. Cutis marmorata telangiectatica congenita: a prospective study of 27 cases and review of the literature with proposal of diagnostic criteria. Clin Exp Dermatol. 2009;34:319–323. Epub 2009 Jan 12.Google Scholar
  120. 120.
    Fujita M, Darmstadt GL, Dinulos JG. Cutis marmorata telangiectatica congenita with hemangiomatous histopathologic features. J Am Acad Dermatol. 2003;48:950–4.Google Scholar
  121. 121.
    Vogel AM, Paltiel HJ, Kozakewich HP, et al. Iliac artery stenosis in a child with cutis marmorata telangiectatica congenita. J Pediatr Surg. 2005;40:e9–12.Google Scholar
  122. 122.
    McDonald J, Damjanovich K, Millson A, et al. Molecular diagnosis in hereditary hemorrhagic telangiectasia: findings in a series tested simultaneously by sequencing and deletion/duplication analysis. Clin Genet. 2011;79:335–344. doi: 10.1111/j.1399-0004.2010.01596.x. Epub 2010 Dec 16.CrossRefGoogle Scholar
  123. 123.
    McAllister KA, Grogg KM, Johnson DW, et al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994;8:345–51.Google Scholar
  124. 124.
    Johnson DW, Berg JN, Baldwin MA, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996;13:189–95.Google Scholar
  125. 125.
    Shovlin CL. Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev. 2010;24:203–219. Epub 2010 Sep 25.Google Scholar
  126. 126.
    Govani FS, Shovlin CL. Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum Genet 2009;17:860–871. Epub 2009 Apr 1.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science. 2005;308:551–554. Epub 2005 Mar 24.Google Scholar
  128. 128.
    de la Torre L, Carrasco D, Mora MA, et al. Vascular malformations of the colon in children. J Pediatr Surg. 2002;37:1754–7.Google Scholar
  129. 129.
    Baskerville PA, Ackroyd JS, Lea Thomas M, et al. The Klippel-Trenaunay syndrome: clinical, radiological and haemodynamic features and management. Br J Surg. 1985;72:232–6.Google Scholar
  130. 130.
    Kulungowski AM, Fox VL, Burrows PE, et al. Portomesenteric venous thrombosis associated with rectal venous malformations. J Pediatr Surg. 2010;45:1221–7.Google Scholar
  131. 131.
    Limaye N, Wouters V, Uebelhoer M, et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat Genet. 2009;41:118–24. Epub 2008 Dec 14.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Jones N, Iljin K, Dumont DJ, et al. Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol. 2001;2:257–67.Google Scholar
  133. 133.
    Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60.Google Scholar
  134. 134.
    Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–80.Google Scholar
  135. 135.
    Vikkula M, Boon LM, Carraway KL 3rd, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell. 1996;87:1181–90.Google Scholar
  136. 136.
    Calvert JT, Riney TJ, Kontos CD, et al. Allelic and locus heterogeneity in inherited venous malformations. Hum Mol Genet. 1999;8:1279–89.Google Scholar
  137. 137.
    Boon LM, Mulliken JB, Enjolras O, et al. Glomuvenous malformation (glomangioma) and venous malformation: distinct clinicopathologic and genetic entities. Arch Dermatol. 2004;140:971–6.Google Scholar
  138. 138.
    Barnes CM, Huang S, Kaipainen A, et al. Evidence by molecular profiling for a placental origin of infantile hemangioma. Proc Natl Acad Sci U S A. 2005;102:19097–102. Epub 2005 Dec 19.Google Scholar
  139. 139.
    Brouillard P, Boon LM, Mulliken JB, et al. Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations (“glomangiomas”). Am J Hum Genet. 2002;70(4):866-74. Epub 2002 Feb 13.Google Scholar
  140. 140.
    Oranje AP. Blue rubber bleb nevus syndrome. Pediatr Dermatol. 1986;3:304–10.Google Scholar
  141. 141.
    Barlas A, Avsar E, Bozbas A, et al. Role of capsule endoscopy in blue rubber bleb nevus syndrome. Can J Surg. 2008;51:E119–20.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Puig S, Casati B, Staudenherz A, et al. Vascular low-flow malformations in children: current concepts for classification, diagnosis and therapy. Eur J Radiol. 2005;53:35–45.Google Scholar
  143. 143.
    Smithers CJ, Vogel AM, Kozakewich HP, et al. An injectable tissue-engineered embolus prevents luminal recanalization after vascular sclerotherapy. J Pediatr Surg. 2005;40:920–5.Google Scholar
  144. 144.
    Berenguer B, Burrows PE, Zurakowski D, et al. Sclerotherapy of craniofacial venous malformations: complications and results. Plast Reconstr Surg. 1999;104:1–11; discussion 12–5.Google Scholar
  145. 145.
    Fishman SJ, Smithers CJ, Folkman J, et al. Blue rubber bleb nevus syndrome: surgical eradication of gastrointestinal bleeding. Ann Surg. 2005;241:523–8.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Fishman SJ, Shamberger RC, Fox VL, et al. Endorectal pull-through abates gastrointestinal hemorrhage from colorectal venous malformations. J Pediatr Surg. 2000;35:982–4.Google Scholar
  147. 147.
    Liu AS, Mulliken JB, Zurakowski D, et al. Extracranial arteriovenous malformations: natural progression and recurrence after treatment. Plast Reconstr Surg. 2010;125:1185–94.Google Scholar
  148. 148.
    Revencu N, Boon LM, Mulliken JB, et al. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat. 2008;29:959–65.Google Scholar
  149. 149.
    Burrows PE, Mulliken JB, Fishman SJ, et al. Pharmacological treatment of a diffuse arteriovenous malformation of the upper extremity in a child. J Craniofac Surg. 2009;20:597–602.Google Scholar
  150. 150.
    Jacob AG, Driscoll DJ, Shaughnessy WJ, et al. Klippel-Trenaunay syndrome: spectrum and management. Mayo Clin Proc. 1998;73:28–36.Google Scholar
  151. 151.
    Smithers CJ, Fishman SJ. Vascular anomalies. Philadelphia: Elsevier Saunders; 2004.Google Scholar
  152. 152.
    Alomari AI. Characterization of a distinct syndrome that associates complex truncal overgrowth, vascular, and acral anomalies: a descriptive study of 18 cases of CLOVES syndrome. Clin Dysmorphol. 2008;18:1–7.Google Scholar
  153. 153.
    Sapp JC, Turner JT, van de Kamp JM, et al. Newly delineated syndrome of congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE syndrome) in seven patients. Am J Med Genet A. 2007;143A:2944–58.Google Scholar
  154. 154.
    Tan WH, Baris HN, Burrows PE, et al. The spectrum of vascular anomalies in patients with PTEN mutations: implications for diagnosis and management. J Med Genet. 2007;44:594–602. Epub 2007 May 25.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Hobert JA, Eng C. PTEN hamartoma tumor syndrome: an overview. Genet Med. 2009;11:687–94.Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of SurgeryChildren’s Hospital BostonBostonUSA

Personalised recommendations