Advertisement

Surgery for Congenital Hyperinsulinism

  • N. Scott Adzick
  • Pablo Laje
Chapter

Abstract

Transient hypoglycemia in the newborn period is common and generally associated either with immaturity of the glucose regulatory pathways (which responds to frequent feeds and resolves spontaneously within hours), or with stress-associated hyperinsulinism (which responds well to hyperglycemic drugs and resolves spontaneously within the first few weeks or months of life). Congenital Hyperinsulinism (HI) is the most frequent cause of persistent, long-term hypoglycemia in newborns and infants, and can lead to severe and irreversible brain damage and developmental delay. It is a rare congenital disorder of the glucose metabolism that has an estimated incidence of 1–1.4 cases per 50,000 live births, leading to about 80–120 new cases in the United States each year. An incidence as high as 1 in 2500 live births has been reported in populations with high consanguinity like Arabians and Ashkenazi Jews. Inappropriate oversecretion of insulin is the hallmark of HI, and the genetic background is quite variable. Depending on the genetic mutation, babies with HI may be treated medically or may require surgery either as a palliative treatment or as a definitive cure.

Keywords

Congenital pancreatic disease Congenital hyperinsulinism Surgery 

References

  1. 1.
    Stanley CA. Hyperinsulinism in infants and children. Pediatr Clin North Am. 1997;44:363–74.CrossRefGoogle Scholar
  2. 2.
    Arnoux JB, de Lonlay P, Ribeiro MJ, et al. Congenital hyperinsulinism. Early Hum Dev. 2010;86(5):287–94.CrossRefGoogle Scholar
  3. 3.
    McQuarrie I. Idiopathic spontaneously occurring hypoglycemia in infants; clinical significance of problem and treatment. Am J Dis Child. 1954;87(4):399–428.Google Scholar
  4. 4.
    Graham EA, Hartmann AF. Subtotal resection of the pancreas for hypoglycaemia. Surg Gynecol Obstet. 1934;59:474–9.Google Scholar
  5. 5.
    Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39:1157–75.CrossRefGoogle Scholar
  6. 6.
    Yakovac WC, Baker L, Hummeler K. Beta Cell nesidioblastosis in idiopathic hypoglycemia of infancy. J Pediatr. 1971;79(2):226–31.CrossRefGoogle Scholar
  7. 7.
    Rahier J, Fält K, Müntefering H, et al. The basic structural lesion of persistent neonatal hypoglycaemia with hyperinsulinism: deficiency of pancreatic D cells or hyperactivity of B-cells? Diabetologia. 1984;26:282–9.CrossRefGoogle Scholar
  8. 8.
    Palladino AA, Stanley CA. The hyperinsulinism/hyperammonemia syndrome. Rev Endocr Metab Disord. 2010;11(3):171–8.CrossRefGoogle Scholar
  9. 9.
    Stanley CA. Two genetic forms of hyperinsulinemic hypoglycemia caused by dysregulation of glutamate dehydrogenase. Neurochem Int 2010 2. 2011;59(4):465–72.CrossRefGoogle Scholar
  10. 10.
    Kassem S, Bhandari S, Rodríguez-Bada P, et al. Large islets, beta-cell proliferation, and a glucokinase mutation. N Engl J Med. 2010;362(14):1348–50.CrossRefGoogle Scholar
  11. 11.
    Glaser B, Kesavan P, Heyman M, et al. Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl J Med. 1998;338(4):226–30.CrossRefGoogle Scholar
  12. 12.
    Li C, Chen P, Palladino A, et al. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J Biol Chem. 2010;285(41):31806–18.CrossRefGoogle Scholar
  13. 13.
    Rahier J, Guiot Y, Sempoux C. Morphologic analysis of focal and diffuse forms of congenital hyperinsulinism. Semin Pediatr Surg. 2011;20(1):3–12.CrossRefGoogle Scholar
  14. 14.
    Peranteau WH, Bathaii SM, Pawel B, et al. Multiple ectopic lesions of focal islet adenomatosis identified by positron emission tomography scan in an infant with congenital hyperinsulinism. J Pediatr Surg. 2007;42(1):188–92.CrossRefGoogle Scholar
  15. 15.
    Suchi M, MacMullen C, Thornton PS, et al. Histopathology of congenital hyperinsulinism: retrospective study with genotype correlations. Pediatr Dev Pathol. 2003;6(4):322–33.CrossRefGoogle Scholar
  16. 16.
    Laje P, Stanley CA, Palladino AA, et al. Pancreatic head resection and Roux-en-Y pancreaticojejunostomy for the treatment of the focal form of congenital hyperinsulinism. J Pediatr Surg. 2012;47(1):131–5.CrossRefGoogle Scholar
  17. 17.
    Bellanné-Chantelot C, Saint-Martin C, Ribeiro MJ, et al. ABCC8 and KCNJ11 molecular spectrum of 109 patients with diazoxide-unresponsive congenital hyperinsulinism. J Med Genet. 2010;47(11):752–9.CrossRefGoogle Scholar
  18. 18.
    Flanagan SE, Clauin S, Bellanné-Chantelot C, et al. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat. 2009;30:170–80.CrossRefGoogle Scholar
  19. 19.
    Huopio H, Reimann F, Ashfield R, et al. Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest. 2000;106(7):897–906.CrossRefGoogle Scholar
  20. 20.
    Pinney SE, MacMullen C, Becker S, et al. Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations. J Clin Invest. 2008;118:2877–86.CrossRefGoogle Scholar
  21. 21.
    Dekel B, Lubin D, Modan-Moses D, et al. Compound heterozygosity for the common sulfonylurea receptor mutations can cause mild diazoxide-sensitive hyperinsulinism. Clin Pediatr. 2002;41:183–6.CrossRefGoogle Scholar
  22. 22.
    Dullaart RP, Hoogenberg K, Rouwe CW, et al. Family with autosomal dominant hyperinsulinism associated with A456V mutation in the glucokinase gene. J Intern Med. 2004;255:143–5.CrossRefGoogle Scholar
  23. 23.
    Christesen HB, Tribble ND, Molven A, et al. Activating glucokinase (GCK) mutations as a cause of medically responsive congenital hyperinsulinism: prevalence in children and characterisation of a novel GCK mutation. Eur J Endocrinol. 2008;159:27–34.CrossRefGoogle Scholar
  24. 24.
    Molven A, Matre GE, Duran M, et al. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes. 2004;53(1):221–7.CrossRefGoogle Scholar
  25. 25.
    González-Barroso MM, Giurgea I, Bouillaud F, et al. Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion. PLoS One. 2008;3(12):e3850.CrossRefGoogle Scholar
  26. 26.
    Otonkoski T, Jiao H, Kaminen-Ahola N, et al. Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta cells. Am J Hum Genet. 2007;81:467–74.CrossRefGoogle Scholar
  27. 27.
    Flanagan S, Kapoor R, Mali G, et al. Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations. Eur J Endocrinol. 2010;162:987–92.CrossRefGoogle Scholar
  28. 28.
    Marquard J, Palladino AA, Stanley CA, et al. Rare forms of congenital hyperinsulinism. Semin Pediatr Surg. 2011;20(1):38–44.CrossRefGoogle Scholar
  29. 29.
    Suchi M, MacMullen CM, Thornton PS, et al. Molecular and immunohistochemical analyses of the focal form of congenital hyperinsulinism. Mod Pathol. 2006;19(1):122–9.CrossRefGoogle Scholar
  30. 30.
    Peranteau WH, Ganguly A, Steinmuller L, et al. Prenatal diagnosis and postnatal management of diffuse congenital hyperinsulinism: a case report. Fetal Diagn Ther. 2006;21(6):515–8.CrossRefGoogle Scholar
  31. 31.
    Ismail D, Smith VV, de Lonlay P, et al. Familial focal congenital hyperinsulinism. J Clin Endocrinol Metab. 2011;96(1):24–8.CrossRefGoogle Scholar
  32. 32.
    Laje P, Halaby L, Adzick NS, et al. Necrotizing enterocolitis in neonates receiving octreotide for the management of congenital hyperinsulinism. Pediatr Diabetes. 2010;11:142–7.CrossRefGoogle Scholar
  33. 33.
    Palladino AA, Stanley CA. A specialized team approach to diagnosis and medical versus surgical treatment of infants with congenital hyperinsulinism. Semin Pediatr Surg. 2011;20(1):32–7.CrossRefGoogle Scholar
  34. 34.
    Lovvorn HN 3rd, Nance ML, Ferry RJ Jr, et al. Congenital hyperinsulinism and the surgeon: lessons learned over 35 years. J Pediatr Surg. 1999;34(5):786–92.CrossRefGoogle Scholar
  35. 35.
    Doppman JL, Miller DL, Chang R, et al. Insulinomas: localization with selective intraarterial injection of calcium. Radiology. 1991;178(1):237–41.CrossRefGoogle Scholar
  36. 36.
    Brunelle F, Negre V, Barth MO, et al. Pancreatic venous samplings in infants and children with primary hyperinsulinism. Pediatr Radiol. 1989;19(2):100–3.CrossRefGoogle Scholar
  37. 37.
    Adzick NS, Thornton PS, Stanley CA, et al. A multidisciplinary approach to the focal form of congenital hyperinsulinism leads to successful treatment by partial pancreatectomy. J Pediatr Surg. 2004;39(3):270–5.CrossRefGoogle Scholar
  38. 38.
    Hoegerle S, Schneider B, Kraft A, et al. Imaging of a metastatic gastrointestinal carcinoid by F-18-DOPA positron emission tomography. Nuklearmedizin. 1999;38(4):127–30.CrossRefGoogle Scholar
  39. 39.
    Ribeiro MJ, De Lonlay P, Delzescaux T, et al. Characterization of hyperinsulinism in infancy assessed with PET and 18F-fluoro-L-DOPA. J Nucl Med. 2005;46(4):560–6.Google Scholar
  40. 40.
    Otonkoski T, Näntö-Salonen K, Seppänen M, et al. Noninvasive diagnosis of focal hyperinsulinism of infancy with [18F]-DOPA positron emission tomography. Diabetes. 2006;55(1):13–8.CrossRefGoogle Scholar
  41. 41.
    Hardy OT, Hernandez-Pampaloni M, Saffer JR, et al. Accuracy of [18F]fluorodopa positron emission tomography for diagnosing and localizing focal congenital hyperinsulinism. J Clin Endocrinol Metab. 2007;92(12):4706–11.CrossRefGoogle Scholar
  42. 42.
    Hussain K, Seppänen M, Näntö-Salonen K, et al. The diagnosis of ectopic focal hyperinsulinism of infancy with [18F]-dopa positron emission tomography. J Clin Endocrinol Metab. 2006;91(8):2839–42.CrossRefGoogle Scholar
  43. 43.
    von Rohden L, Mohnike K, Mau H, et al. Visualization of the focus in congenital hyperinsulinism by intraoperative sonography. Semin Pediatr Surg. 2011;20(1):28–31.CrossRefGoogle Scholar
  44. 44.
    Bax NM, van der Zee DC, de Vroede M, et al. Laparoscopic identification and removal of focal lesions in persistent hyperinsulinemic hypoglycemia of infancy. Surg Endosc. 2003;17(5):833.CrossRefGoogle Scholar
  45. 45.
    Al-Shanafey S. Laparoscopic vs open pancreatectomy for persistent hyperinsulinemic hypoglycemia of infancy. J Pediatr Surg. 2009;44(5):957–61.CrossRefGoogle Scholar
  46. 46.
    Pierro A, Nah SA, et al. Surgical management of congenital hyperinsulinism of infancy. Semin Pediatr Surg. 2011;20(1):50–3.CrossRefGoogle Scholar
  47. 47.
    Laje P, Stanley CA, Adzick NS. Intussusception after pancreatic surgery in children: a case series. J Pediatr Surg. 2010;45(7):1496–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of SurgeryThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations