Antenatal Diagnosis: Current Status for Paediatric Surgeons

  • Ryan Hodges
  • Luc De Catte
  • Roland Devlieger
  • Liesbeth Lewi
  • Tim Van Mieghem
  • Jan Deprest
Chapter

Abstract

In this chapter we review antenatal diagnosis and obstetric management of fetal conditions that are relevant to paediatric surgeons. We restrict our discussion to fetal conditions that have been shown to, or have the potential to, benefit from in utero surgical therapy.

Keywords

Prenatal diagnosis Fetal medicine Fetal surgery 

References

  1. 1.
    Gilmore, L., et al., Arginine functionalization of hydrogels for heparin binding-a supramolecular approach to developing a pro-angiogenic biomaterial. Biotechnol Bioeng, 2012.Google Scholar
  2. 2.
    Altman D, et al. Anterior colporrhaphy versus transvaginal mesh for pelvic-organ prolapse. N Engl J Med. 2011;364(19):1826–36.Google Scholar
  3. 3.
    Falcon O, et al. Screening for trisomy 21 by fetal tricuspid regurgitation, nuchal translucency and maternal serum free beta-hCG and PAPP-A at 11 + 0 to 13 + 6 weeks. Ultrasound Obstet Gynecol. 2006;27(2):151–5.Google Scholar
  4. 4.
    Stanford E, Moen M, Cassidenti A. Traditional native tissue vs mesh-augmented pelvic organ prolapse repairs: providing an accurate interpretation of current literature. Reply. Int Urogynecol J. 2012;23(9):1319–20.Google Scholar
  5. 5.
    Dane B, et al. Ultrasound screening for fetal major abnormalities at 11–14 weeks. Acta Obstet Gynecol Scand. 2007;86(6):666–70.Google Scholar
  6. 6.
    Shepherd JP, et al. Uniaxial biomechanical properties of seven different vaginally implanted meshes for pelvic organ prolapse. Int Urogynecol J. 2012;23(5):613–20.Google Scholar
  7. 7.
    Hodges RJ, Wallace EM. Testing for Down syndrome in the older woman: a risky business? Aust N Z J Obstet Gynaecol. 2005;45(6):486–8.Google Scholar
  8. 8.
    Morris JK, Waters JJ, de Souza E, The population impact of screening for Down syndrome. audit of 19 326 invasive diagnostic tests in England and Wales in. Prenat Diagn. 2008;32(6):596–601.Google Scholar
  9. 9.
    Lose G, Gras S. While we wait for a new regulatory framework for surgical mesh. Int Urogynecol J. 2012;23(8):969–70.Google Scholar
  10. 10.
    Hillman, S.C., et al. Microarray comparative genomic hybridization in prenatal diagnosis: a review. Ultrasound Obstet Gynecol. 2012;40(4):385–91.Google Scholar
  11. 11.
    Harrison MR, Adzick NS. The fetus as a patient. Surgical considerations. Ann Surg. 1991;213(4):279–91. discussion 277–8PubMedPubMedCentralGoogle Scholar
  12. 12.
    Deprest JA, et al. Fetal surgery is a clinical reality. Semin Fetal Neonatal Med. 2010;15(1):58–67.Google Scholar
  13. 13.
    Senat MV, et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004;351(2):136–44.Google Scholar
  14. 14.
    Adzick NS, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):993–1004.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Harrison MR, et al. A randomized trial of fetal endoscopic tracheal occlusion for severe fetal congenital diaphragmatic hernia. N Engl J Med. 2003;349(20):1916–24.Google Scholar
  16. 16.
    Rodrigues HC, Deprest J, v d Berg PP. When referring physicians and researchers disagree on equipoise: the TOTAL trial experience. Prenat Diagn. 2011;31(6):589–94.Google Scholar
  17. 17.
    Kilby M, et al. PLUTO trial protocol: percutaneous shunting for lower urinary tract obstruction randomised controlled trial. BJOG. 2007;114(7):904–5. e1–4Google Scholar
  18. 18.
    Creasy RKR, Iams R, Lockwood JD, Moore CJ, Creasy TR. Resnik’s maternal-fetal medicine. Principles and practice, 6th edn. Invasive fetal therapy. Philadelphia: Saunders Elsevier; 2009.Google Scholar
  19. 19.
    Anumba DO, et al. Diagnosis and outcome of fetal lower urinary tract obstruction in the northern region of England. Prenat Diagn. 2005;25(1):7–13.Google Scholar
  20. 20.
    Feist, A., et al., Increased incidence of cutaneous squamous cell carcinoma in lung transplant recipients taking long-term voriconazole. J Heart Lung Transplant, 2012.Google Scholar
  21. 21.
    Escamilla J, Lane MA, Maitin V. Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutr Cancer. 2012;64(6):871–8.Google Scholar
  22. 22.
    Wondergem B, et al. Expression of the PTTG1 oncogene is associated with aggressive clear cell renal cell carcinoma. Cancer Res. 2012;72(17):4361–71.Google Scholar
  23. 23.
    Lor KW, et al. Plerixafor as first- and second-line strategies for autologous stem cell mobilization in patients with non-Hodgkin’s lymphoma or multiple myeloma. Pharmacotherapy. 2012;32(7):596–603.Google Scholar
  24. 24.
    Weigert O, et al. Molecular ontogeny of donor-derived follicular lymphomas occurring after hematopoietic cell transplantation. Cancer Discov. 2012;2(1):47–55.Google Scholar
  25. 25.
    Muller, P.A., et al., Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene, 2012.Google Scholar
  26. 26.
    Ng YZ, et al. Fibroblast-derived dermal matrix drives development of aggressive cutaneous squamous cell carcinoma in patients with recessive dystrophic epidermolysis bullosa. Cancer Res. 2012;72(14):3522–34.Google Scholar
  27. 27.
    Weinger, J.G., et al., MHC Mismatch Results in Neural Progenitor Cell Rejection Following Spinal Cord Transplantation in a Model of Viral-Induced Demyelination. Stem Cells, 2012.Google Scholar
  28. 28.
    Thobakgale CF, et al. Frequent and strong antibody-mediated natural killer cell activation in response to HIV-1 Env in individuals with chronic HIV-1 infection. J Virol. 2012;86(12):6986–93.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem. 2012;81:715–36.Google Scholar
  30. 30.
    Styles L, et al. Refining the value of secretory phospholipase A2 as a predictor of acute chest syndrome in sickle cell disease: results of a feasibility study (PROACTIVE). Br J Haematol. 2012;157(5):627–36.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Roberts NA, et al. Rank signaling links the development of invariant gammadelta T cell progenitors and Aire(+) medullary epithelium. Immunity. 2012;36(3):427–37.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Johnson MP, et al. Sequential urinalysis improves evaluation of fetal renal function in obstructive uropathy. Am J Obstet Gynecol. 1995;173(1):59–65.Google Scholar
  33. 33.
    Morris RK, et al. Systematic review of accuracy of fetal urine analysis to predict poor postnatal renal function in cases of congenital urinary tract obstruction. Prenat Diagn. 2007;27(10):900–11.Google Scholar
  34. 34.
    Lane LV, et al. Pathology in practice. Nonepitheliotropic B-cell lymphoma of the nasal cavity with associated suppurative rhinitis and epidermal ulceration and lymphoma of the right kidney. J Am Vet Med Assoc. 2012;240(6):677–9.Google Scholar
  35. 35.
    Soghoian, D.Z., et al., HIV-specific cytolytic CD4 T cell responses during acute HIV infection predict disease outcome. Sci Transl Med. 2012;4(123):123ra25.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Menkhorst EM, et al. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation. PLoS One. 2012;7(2):e31418.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Campbell JM, et al. Insulin Increases epiblast cell number of in vitro cultured mouse embryos via the PI3K/GSK3/p53 pathway. Stem Cells Dev. 2012;21(13):2430–41.Google Scholar
  38. 38.
    Levy Y, et al. Effect of intermittent interleukin-2 therapy on CD4+ T-cell counts following antiretroviral cessation in patients with HIV. AIDS. 2012;26(6):711–20.Google Scholar
  39. 39.
    Morris RK, et al. Systematic review of the effectiveness of antenatal intervention for the treatment of congenital lower urinary tract obstruction. BJOG. 2010;117(4):382–90.Google Scholar
  40. 40.
    Lane JT. Does the fat cell have something to say to the platelet about keeping thrombosis in check in diabetes? Transl Res. 2012;159(1):12–4.Google Scholar
  41. 41.
    Lane AA, et al. Risk factors for development of pneumonitis after high-dose chemotherapy with cyclophosphamide, BCNU and etoposide followed by autologous stem cell transplant. Leuk Lymphoma. 2012;53(6):1130–6.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Morris RK, et al. Percutaneous vesicoamniotic shunting versus conservative management for fetal lower urinary tract obstruction (PLUTO): a randomised trial. Lancet. 2013;382(9903):1496–506.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ruano R, et al. Early fetal cystoscopy for first-trimester severe megacystis. Ultrasound Obstet Gynecol. 2011;37(6):696–701.Google Scholar
  44. 44.
    Morris RK, Ruano R, Kilby MD. Effectiveness of fetal cystoscopy as a diagnostic and therapeutic intervention for lower urinary tract obstruction: a systematic review. Ultrasound Obstet Gynecol. 2011;37(6):629–37.Google Scholar
  45. 45.
    Partridge, E.A. and A.W. Flake, Maternal-fetal surgery for structural malformations. Best Pract Res Clin Obstet Gynaecol. 2012;26(5):669–82.Google Scholar
  46. 46.
    Schropp KP, et al. Sacrococcygeal teratoma: the experience of four decades. J Pediatr Surg. 1992;27(8):1075–8; discussion 1078–9Google Scholar
  47. 47.
    Altman RP, Randolph JG, Lilly JR. Sacrococcygeal teratoma: American Academy of Pediatrics Surgical Section Survey-1973. J Pediatr Surg. 1974;9(3):389–98.Google Scholar
  48. 48.
    Nygaard I, et al. Summary of research recommendations from the Inaugural American Urogynecologic Society Research Summit. Female Pelvic Med Reconstr Surg. 2011;17(1):4–7.Google Scholar
  49. 49.
    Feola A, et al. Impact of pregnancy and vaginal delivery on the passive and active mechanics of the rat vagina. Ann Biomed Eng. 2011;39(1):549–58.Google Scholar
  50. 50.
    Yamaguchi Y, et al. Spontaneous rupture of sacrococcygeal teratoma associated with acute fetal anemia. Ultrasound Obstet Gynecol. 2006;28(5):720–2.Google Scholar
  51. 51.
    Olutoye OO, et al. Abnormal umbilical cord Dopplers may predict impending demise in fetuses with sacrococcygeal teratoma. A report of 2 cases. Fetal Diagn Ther. 2003;18(6):428–31.Google Scholar
  52. 52.
    Higgins, E.W., et al., Effect of estrogen replacement on the histologic response to polypropylene mesh implanted in the rabbit vagina model. Am J Obstet Gynecol. 2009;201(5):505 e1–9.Google Scholar
  53. 53.
    Flake AW, et al. Fetal sacrococcygeal teratoma. J Pediatr Surg. 1986;21(7):563–6.Google Scholar
  54. 54.
    Bond SJ, et al. Death due to high-output cardiac failure in fetal sacrococcygeal teratoma. J Pediatr Surg. 1990;25(12):1287–91.Google Scholar
  55. 55.
    Pierce, L.M., et al. Biomechanical properties of synthetic and biologic graft materials following long-term implantation in the rabbit abdomen and vagina. Am J Obstet Gynecol. 2009;200(5):549 e1–8.Google Scholar
  56. 56.
    Letouzey, V., et al., Is degradable antibiotic coating for synthetic meshes provide protection against experimental animal infection after fascia repair?. J Biomed Mater Res B Appl Biomater, 2011.Google Scholar
  57. 57.
    Hedrick HL, et al. Sacrococcygeal teratoma: prenatal assessment, fetal intervention, and outcome. J Pediatr Surg. 2004;39(3):430–8. discussion 430–8PubMedPubMedCentralGoogle Scholar
  58. 58.
    Wilson RD, et al. Sacrococcygeal teratomas: prenatal surveillance, growth and pregnancy outcome. Fetal Diagn Ther. 2009;25(1):15–20.Google Scholar
  59. 59.
    Westerburg B, et al. Sonographic prognostic factors in fetuses with sacrococcygeal teratoma. J Pediatr Surg. 2000;35(2):322–5. discussion 325–6Google Scholar
  60. 60.
    Benachi A, et al. Prenatally diagnosed sacrococcygeal teratoma: a prognostic classification. J Pediatr Surg. 2006;41(9):1517–21.Google Scholar
  61. 61.
    Makin EC, et al. Outcome of antenatally diagnosed sacrococcygeal teratomas: single-center experience (1993–2004). J Pediatr Surg. 2006;41(2):388–93.Google Scholar
  62. 62.
    Rodriguez MA, et al. Tumor volume to fetal weight ratio as an early prognostic classification for fetal sacrococcygeal teratoma. J Pediatr Surg. 2011;46(6):1182–5.Google Scholar
  63. 63.
    Mari G. Middle cerebral artery peak systolic velocity: is it the standard of care for the diagnosis of fetal anemia? J Ultrasound Med. 2005;24(5):697–702.Google Scholar
  64. 64.
    Jouannic JM, et al. Successful intrauterine shunting of a sacrococcygeal teratoma (SCT) causing fetal bladder obstruction. Prenat Diagn. 2001;21(10):824–6.Google Scholar
  65. 65.
    Stutchfield P, Whitaker R, Russell I. Antenatal betamethasone and incidence of neonatal respiratory distress after elective caesarean section: pragmatic randomised trial. BMJ. 2005;331(7518):662.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Subramanian D, et al. Rate, type, and cost of pelvic organ prolapse surgery in Germany, France, and England. Eur J Obstet Gynecol Reprod Biol. 2009;144(2):177–81.Google Scholar
  67. 67.
    Hoehn T, et al. Fatal rupture of a sacrococcygeal teratoma during delivery. J Perinatol. 1999;19(8 Pt 1):596–8.Google Scholar
  68. 68.
    Kotecha S, et al. Antenatal and postnatal management of congenital cystic adenomatoid malformation. Paediatr Respir Rev. 2012;13(3):162–71.Google Scholar
  69. 69.
    Garne E, et al. EUROCAT website data on prenatal detection rates of congenital anomalies. J Med Screen. 2010;17(2):97–8.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Stocker JT, Madewell JE, Drake RM. Congenital cystic adenomatoid malformation of the lung. Classification and morphologic spectrum. Hum Pathol. 1977;8(2):155–71.Google Scholar
  71. 71.
    Chen CC, Ridgeway B, Paraiso MF. Biologic grafts and synthetic meshes in pelvic reconstructive surgery. Clin Obstet Gynecol. 2007;50(2):383–411.Google Scholar
  72. 72.
    Langston C. New concepts in the pathology of congenital lung malformations. Semin Pediatr Surg. 2003;12(1):17–37.Google Scholar
  73. 73.
    Hernanz-Schulman M, et al. Pulmonary sequestration: diagnosis with color Doppler sonography and a new theory of associated hydrothorax. Radiology. 1991;180(3):817–21.Google Scholar
  74. 74.
    Adzick NS, et al. Fetal lung lesions: management and outcome. Am J Obstet Gynecol. 1998;179(4):884–9.Google Scholar
  75. 75.
    Stocker J. Congenital pulmonary airway malformation: a new name and an expanded classification of congenital cystic adenomatoid malformation of the lung. Histopathology. 2002;41:424–31.Google Scholar
  76. 76.
    Adzick NS. Management of fetal lung lesions. Clin Perinatol. 2003;30(3):481–92.Google Scholar
  77. 77.
    Hubbard AM, et al. Congenital chest lesions: diagnosis and characterization with prenatal MR imaging. Radiology. 1999;212(1):43–8.Google Scholar
  78. 78.
    Crombleholme TM, et al. Cystic adenomatoid malformation volume ratio predicts outcome in prenatally diagnosed cystic adenomatoid malformation of the lung. J Pediatr Surg. 2002;37(3):331–8.Google Scholar
  79. 79.
    Knox EM, et al. In-utero pulmonary drainage in the management of primary hydrothorax and congenital cystic lung lesion: a systematic review. Ultrasound Obstet Gynecol. 2006;28(5):726–34.Google Scholar
  80. 80.
    Wilson RD, et al. Cystic adenomatoid malformation of the lung: review of genetics, prenatal diagnosis, and in utero treatment. Am J Med Genet A. 2006;140(2):151–5.Google Scholar
  81. 81.
    Witlox RS, Lopriore E, Oepkes D. Prenatal interventions for fetal lung lesions. Prenat Diagn. 2011;31(7):628–36.Google Scholar
  82. 82.
    Merchant AM, et al. Postnatal chest wall deformities after fetal thoracoamniotic shunting for congenital cystic adenomatoid malformation. Fetal Diagn Ther. 2007;22(6):435–9.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Tsao K, et al. Resolution of hydrops fetalis in congenital cystic adenomatoid malformation after prenatal steroid therapy. J Pediatr Surg. 2003;38(3):508–10.Google Scholar
  84. 84.
    Peranteau WH, et al. Effect of maternal betamethasone administration on prenatal congenital cystic adenomatoid malformation growth and fetal survival. Fetal Diagn Ther. 2007;22(5):365–71.Google Scholar
  85. 85.
    Curran PF, et al. Prenatal steroids for microcystic congenital cystic adenomatoid malformations. J Pediatr Surg. 2010;45(1):145–50.Google Scholar
  86. 86.
    Bermudez C, et al. Percutaneous ultrasound-guided sclerotherapy for complicated fetal intralobar bronchopulmonary sequestration. Ultrasound Obstet Gynecol. 2007;29(5):586–9.Google Scholar
  87. 87.
    Oepkes D, et al. Successful ultrasound-guided laser treatment of fetal hydrops caused by pulmonary sequestration. Ultrasound Obstet Gynecol. 2007;29(4):457–9.Google Scholar
  88. 88.
    Ruano, R., et al. Percutaneous laser ablation under ultrasound guidance for fetal hyperechogenic microcystic lung lesions with hydrops: a single center cohort and a literature review. Prenat Diagn. 2012;32(12):1127–32.Google Scholar
  89. 89.
    Baud D, et al. Minimally invasive fetal therapy for hydropic lung masses: three different approaches and review of the literature. Ultrasound Obstet Gynecol. 2013;42(4):440–8.Google Scholar
  90. 90.
    Ruano R, et al. Prenatal diagnosis and natural history of fetuses presenting with pleural effusion. Prenat Diagn. 2011;31(5):496–9.Google Scholar
  91. 91.
    Su KC, et al. Abdominovaginal sacral colpoperineopexy: patient perceptions, anatomical outcomes, and graft erosions. Int Urogynecol J Pelvic Floor Dysfunct. 2007;18(5):503–11.Google Scholar
  92. 92.
    Gainey HL. Postpartum observation of pelvic tissue damage: further studies. Am J Obstet Gynecol. 1955;70(4):800–7.Google Scholar
  93. 93.
    Bigras JL, et al. Echocardiographic evaluation of fetal hydrothorax: the effusion ratio as a diagnostic tool. Ultrasound Obstet Gynecol. 2003;21(1):37–40.Google Scholar
  94. 94.
    Chang J, et al. Port insertion and removal techniques to minimize premature rupture of the membranes in endoscopic fetal surgery. J Pediatr Surg. 2006;41(5):905–9.Google Scholar
  95. 95.
    Handa VL, et al. Pelvic floor disorders 5–10 years after vaginal or cesarean childbirth. Obstet Gynecol. 2011;118(4):777–84.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Longaker MT, et al. Primary fetal hydrothorax: natural history and management. J Pediatr Surg. 1989;24(6):573–6.Google Scholar
  97. 97.
    Yinon, Y., et al., Perinatal outcome following fetal chest shunt insertion for pleural effusion. Ultrasound Obstet Gynecol. 2010;36(1):58–64.Google Scholar
  98. 98.
    Ruano, R., et al., Three-dimensional ultrasonographic assessment of fetal total lung volume as a prognostic factor in primary pleural effusion. J Ultrasound Med. 2012;31(11):1731–9.Google Scholar
  99. 99.
    Rustico MA, et al. Fetal pleural effusion. Prenat Diagn. 2007;27(9):793–9.Google Scholar
  100. 100.
    Tanemura M, et al. A case of successful fetal therapy for congenital chylothorax by intrapleural injection of OK-432. Ultrasound Obstet Gynecol. 2001;18(4):371–5.Google Scholar
  101. 101.
    Deurloo KL, et al. Isolated fetal hydrothorax with hydrops: a systematic review of prenatal treatment options. Prenat Diagn. 2007;27(10):893–9.Google Scholar
  102. 102.
    Picone O, et al. Thoracoamniotic shunting for fetal pleural effusions with hydrops. Am J Obstet Gynecol. 2004;191(6):2047–50.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Wilson RH, et al. Prenatal pleural effusion associated with congenital pulmonary lymphangiectasia. Prenat Diagn. 1985;5(1):73–6.Google Scholar
  104. 104.
    Graham G, Devine PC. Antenatal diagnosis of congenital diaphragmatic hernia. Semin Perinatol. 2005;29(2):69–76.Google Scholar
  105. 105.
    Dott MM, Wong LY, Rasmussen SA. Population-based study of congenital diaphragmatic hernia: risk factors and survival in Metropolitan Atlanta, 1968–1999. Birth Defects Res A Clin Mol Teratol. 2003;67(4):261–7.Google Scholar
  106. 106.
    Holder AM, et al. Genetic factors in congenital diaphragmatic hernia. Am J Hum Genet. 2007;80(5):825–45.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Brady, P.D., et al., Recent Developments in the Genetic Factors Underlying Congenital Diaphragmatic Hernia. Fetal Diagn Ther, 2010.Google Scholar
  108. 108.
    Srisupundit K, et al. Targeted array comparative genomic hybridisation (array CGH) identifies genomic imbalances associated with isolated congenital diaphragmatic hernia (CDH). Prenat Diagn. 2010;30(12–13):1198–206.Google Scholar
  109. 109.
    Brady PD, et al. Identification of dosage-sensitive genes in fetuses referred with severe isolated congenital diaphragmatic hernia. Prenat Diagn. 2013;33(13):1283–92.Google Scholar
  110. 110.
    Grushka JR, et al. Effect of hospital case volume on outcome in congenital diaphragmatic hernia: the experience of the Canadian Pediatric Surgery Network. J Pediatr Surg. 2009;44(5):873–6.Google Scholar
  111. 111.
    van den Hout L, et al. Actual outcome in infants with congenital diaphragmatic hernia: the role of a standardized postnatal treatment protocol. Fetal Diagn Ther. 2011;29(1):55–63.Google Scholar
  112. 112.
    Hayakawa M, et al. Effect of hospital volume on the mortality of congenital diaphragmatic hernia in Japan. Pediatr Int. 2013;55(2):190–6.Google Scholar
  113. 113.
    Delacourt, C., et al., Long term respiratory outcomes of congenital diaphragmatic hernia, esophageal atresia, and cardiovascular anomalies. Seminars in fetal & neonatal medicine, 2012.Google Scholar
  114. 114.
    van den Hout L, et al. Can we improve outcome of congenital diaphragmatic hernia? Pediatr Surg Int. 2009;25(9):733–43.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Gallot D, et al. Antenatal detection and impact on outcome of congenital diaphragmatic hernia: a 12-year experience in Auvergne, France. Eur J Obstet Gynecol Reprod Biol. 2006;125(2):202–5.Google Scholar
  116. 116.
    Gallot D, et al. Prenatal detection and outcome of congenital diaphragmatic hernia: a French registry-based study. Ultrasound Obstet Gynecol. 2007;29(3):276–83.Google Scholar
  117. 117.
    Metkus AP, et al. Sonographic predictors of survival in fetal diaphragmatic hernia. J Pediatr Surg. 1996;31(1):148–51. discussion 151–2Google Scholar
  118. 118.
    Peralta CF, et al. Assessment of lung area in normal fetuses at 12–32 weeks. Ultrasound Obstet Gynecol. 2005;26(7):718–24.Google Scholar
  119. 119.
    Jani J, et al. Assessment of lung area in fetuses with congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2007;30(1):72–6.Google Scholar
  120. 120.
    Dekoninck P, et al. Results of fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia and the set up of the randomized controlled TOTAL trial. Early Hum Dev. 2011;87(9):619–24.Google Scholar
  121. 121.
    Knox E, et al. Prenatal detection of pulmonary hypoplasia in fetuses with congenital diaphragmatic hernia: a systematic review and meta-analysis of diagnostic studies. J Matern Fetal Neonatal Med. 2010;23(7):579–88.Google Scholar
  122. 122.
    Jani J, et al. Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol. 2007;30(1):67–71.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Jani JC, et al. Prenatal prediction of neonatal morbidity in survivors with congenital diaphragmatic hernia: a multicenter study. Ultrasound Obstet Gynecol. 2009;33(1):64–9.Google Scholar
  124. 124.
    Jani JC, et al. Lung volumes in fetuses with congenital diaphragmatic hernia: comparison of 3D US and MR imaging assessments. Radiology. 2007;244(2):575–82.Google Scholar
  125. 125.
    Cannie M, et al. Prenatal prediction of survival in isolated diaphragmatic hernia using observed to expected total fetal lung volume determined by magnetic resonance imaging based on either gestational age or fetal body volume. Ultrasound Obstet Gynecol. 2008;32(5):633–9.Google Scholar
  126. 126.
    Cannie M, et al. Fetal body volume: use at MR imaging to quantify relative lung volume in fetuses suspected of having pulmonary hypoplasia. Radiology. 2006;241(3):847–53.Google Scholar
  127. 127.
    Mayer, S., et al. The correlation between lung volume and liver herniation measurements by fetal MRI in isolated congenital diaphragmatic hernia: a systematic review and meta-analysis of observational studies. Prenat Diagn, 2011.Google Scholar
  128. 128.
    Jani J, et al. Value of prenatal magnetic resonance imaging in the prediction of postnatal outcome in fetuses with diaphragmatic hernia. Ultrasound Obstet Gynecol. 2008;32(6):793–9.Google Scholar
  129. 129.
    Cannie M, et al. Quantification of intrathoracic liver herniation by magnetic resonance imaging and prediction of postnatal survival in fetuses with congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2008;32(5):627–32.Google Scholar
  130. 130.
    Claus F, et al. Prenatal anatomical imaging in fetuses with congenital diaphragmatic hernia. Fetal Diagn Ther. 2011;29(1):88–100.Google Scholar
  131. 131.
    Goodfellow T, et al. Congenital diaphragmatic hernia: the prognostic significance of the site of the stomach. Br J Radiol. 1987;60(718):993–5.Google Scholar
  132. 132.
    Hatch E Jr, Kendall J, Blumhagen J. Stomach position as an in utero predictor of neonatal outcome in left-sided diaphragmatic hernia. J Pediatr Surg. 1992;27(6):778–9.Google Scholar
  133. 133.
    Kitano Y, et al. Re-evaluation of stomach position as a simple prognostic factor in fetal left congenital diaphragmatic hernia: a multicenter survey in Japan. Ultrasound Obstet Gynecol. 2011;37(3):277–82.Google Scholar
  134. 134.
    Cordier, A.G., et al. Stomach position versus liver-to-thoracic volume ratio in left-sided congenital diaphragmatic hernia. J Matern Fetal Neonatal Med, 2014.Google Scholar
  135. 135.
    Done, E., et al. Maternal hyperoxygenation test in fetuses undergoing FETO for severe isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol, 2010.Google Scholar
  136. 136.
    Cruz-Martinez R, et al. Contribution of intrapulmonary artery Doppler to improve prediction of survival in fetuses with congenital diaphragmatic hernia treated with fetal endoscopic tracheal occlusion. Ultrasound Obstet Gynecol. 2010;35(5):572–7.Google Scholar
  137. 137.
    Deprest JA, et al. The making of fetal surgery. Prenat Diagn. 2010;30(7):653–67.Google Scholar
  138. 138.
    Deprest JA, Nicolaides K, Gratacos E. Fetal surgery for congenital diaphragmatic hernia is back from never gone. Fetal Diagn Ther. 2011;29(1):6–17.Google Scholar
  139. 139.
    Khan PA, Cloutier M, Piedboeuf B. Tracheal occlusion: a review of obstructing fetal lungs to make them grow and mature. Am J Med Genet C Semin Med Genet. 2007;145C(2):125–38.Google Scholar
  140. 140.
    Flageole H, et al. The plug-unplug sequence: an important step to achieve type II pneumocyte maturation in the fetal lamb model. J Pediatr Surg. 1998;33(2):299–303.Google Scholar
  141. 141.
    Davey, M., et al. Pulmonary arteriole muscularization in lambs with diaphragmatic hernia after combined tracheal occlusion/glucocorticoid therapy. Am J Obstet Gynecol. 2007;197(4):381e1–7.Google Scholar
  142. 142.
    Nelson SM, et al. Rescue of the hypoplastic lung by prenatal cyclical strain. Am J Respir Crit Care Med. 2005;171(12):1395–402.Google Scholar
  143. 143.
    Bealer JF, et al. The ‘PLUG’ odyssey: adventures in experimental fetal tracheal occlusion. J Pediatr Surg. 1995;30(2):361–4. discussion 364–5Google Scholar
  144. 144.
    Deprest J, Gratacos E, Nicolaides KH. Fetoscopic tracheal occlusion (FETO) for severe congenital diaphragmatic hernia: evolution of a technique and preliminary results. Ultrasound Obstet Gynecol. 2004;24(2):121–6.Google Scholar
  145. 145.
    Deprest J, et al. Technical aspects of fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia. J Pediatr Surg. 2011;46(1):22–32.Google Scholar
  146. 146.
    Jani JC, et al. Severe diaphragmatic hernia treated by fetal endoscopic tracheal occlusion. Ultrasound Obstet Gynecol. 2009;34(3):304–10.Google Scholar
  147. 147.
    Done, E., et al. Predictors of neonatal morbidity in fetuses with severe isolated congenital diaphragmatic hernia undergoing fetoscopic tracheal occlusion. Ultrasound Obstet Gynecol, 2013.Google Scholar
  148. 148.
    Wegrzyn P, et al. Premature labor after fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia: post-procedure management problems. Ultrasound Obstet Gynecol. 2010;36(1):124–5.Google Scholar
  149. 149.
    McHugh K, et al. Tracheomegaly: a complication of fetal endoscopic tracheal occlusion in the treatment of congenital diaphragmatic hernia. Pediatr Radiol. 2010;40(5):674–80.Google Scholar
  150. 150.
    Fauza DO, et al. Fetal tissue engineering: diaphragmatic replacement. J Pediatr Surg. 2001;36(1):146–51.Google Scholar
  151. 151.
    Ruano R, et al. Comparison between fetal endoscopic tracheal occlusion using a 1.0-mm fetoscope and prenatal expectant management in severe congenital diaphragmatic hernia. Fetal Diagn Ther. 2011;29(1):64–70.Google Scholar
  152. 152.
    Peralta CF, et al. Fetoscopic endotracheal occlusion for severe isolated diaphragmatic hernia: initial experience from a single clinic in Brazil. Fetal Diagn Ther. 2011;29(1):71–7.Google Scholar
  153. 153.
    Kohl T, et al. Encouraging early clinical experience with deliberately delayed temporary fetoscopic tracheal occlusion for the prenatal treatment of life-threatening right and left congenital diaphragmatic hernias. Fetal Diagn Ther. 2006;21(3):314–8.Google Scholar
  154. 154.
    Ruano R, et al. A randomized controlled trial of fetal endoscopic tracheal occlusion versus postnatal management of severe isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2012;39(1):20–7.Google Scholar
  155. 155.
    Cannie MM, et al. Evidence and patterns in lung response after fetal tracheal occlusion: clinical controlled study. Radiology. 2009;252(2):526–33.Google Scholar
  156. 156.
    Reiss I, et al. Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: the CDH EURO Consortium consensus. Neonatology. 2010;98(4):354–64.Google Scholar
  157. 157.
    Tworetzky W, et al. In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes. Pediatrics. 2009;124(3):e510–8.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Divanovic, A., et al. Prediction and perinatal management of severely restrictive atrial septum in fetuses with critical left heart obstruction: clinical experience using pulmonary venous Doppler analysis. J Thorac Cardiovasc Surg. 2011;141(4):988–94.Google Scholar
  159. 159.
    Arzt W, et al. Intrauterine aortic valvuloplasty in fetuses with critical aortic stenosis: experience and results of 24 procedures. Ultrasound Obstet Gynecol. 2011;37(6):689–95.Google Scholar
  160. 160.
    Oepkes D, et al. 2010 Report from the ISPD Special Interest Group fetal therapy: fetal cardiac interventions. Prenat Diagn. 2011;31(3):249–51.Google Scholar
  161. 161.
    Glazener CM, et al. New postnatal urinary incontinence: obstetric and other risk factors in primiparae. BJOG. 2006;113(2):208–17.Google Scholar
  162. 162.
    Sharland G, et al. Hypoplastic left-heart syndrome. Lancet. 2001;357(9257):722.Google Scholar
  163. 163.
    Sharland GK, et al. Left ventricular dysfunction in the fetus: relation to aortic valve anomalies and endocardial fibroelastosis. Br Heart J. 1991;66(6):419–24.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Kaltman JR, et al. Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus. Ultrasound Obstet Gynecol. 2005;25(1):32–6.Google Scholar
  165. 165.
    Limperopoulos C, et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation. 2010;121(1):26–33.Google Scholar
  166. 166.
    Rychik J, et al. The hypoplastic left heart syndrome with intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. J Am Coll Cardiol. 1999;34(2):554–60.Google Scholar
  167. 167.
    Rychik J, et al. Perinatal and early surgical outcome for the fetus with hypoplastic left heart syndrome: a 5-year single institutional experience. Ultrasound Obstet Gynecol. 2010;36(4):465–70.Google Scholar
  168. 168.
    Gewillig M. The Fontan circulation. Heart. 2005;91(6):839–46.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Gaynor JW, Elliott MJ. Congenital left ventricular outflow tract obstruction. J Heart Valve Dis. 1993;2(1):80–93.Google Scholar
  170. 170.
    Nguyen, T., et al. Echocardiography of hypoplastic left heart syndrome. Cardiol Young. 2011;21(Suppl 2):28–37.Google Scholar
  171. 171.
    Makikallio, K., et al. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. Circulation. 2006;113(11):1401–5.Google Scholar
  172. 172.
    Viktrup L, Lose G. The risk of stress incontinence 5 years after first delivery. Am J Obstet Gynecol. 2001;185(1):82–7.Google Scholar
  173. 173.
    Tabbutt S, et al. Neurodevelopmental outcomes after staged palliation for hypoplastic left heart syndrome. Pediatrics. 2008;121(3):476–83.Google Scholar
  174. 174.
    McElhinney DB, et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation. 2009;120(15):1482–90.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Gardiner HM, Kumar S. Fetal cardiac interventions. Clin Obstet Gynecol. 2005;48(4):956–63.Google Scholar
  176. 176.
    Mizrahi-Arnaud A, et al. Pathophysiology, management, and outcomes of fetal hemodynamic instability during prenatal cardiac intervention. Pediatr Res. 2007;62(3):325–30.Google Scholar
  177. 177.
    Marshall AC, et al. Results of in utero atrial septoplasty in fetuses with hypoplastic left heart syndrome. Prenat Diagn. 2008;28(11):1023–8.Google Scholar
  178. 178.
    Tegerstedt G, et al. Obstetric risk factors for symptomatic prolapse: a population-based approach. Am J Obstet Gynecol. 2006;194(1):75–81.Google Scholar
  179. 179.
    Hartmann K, et al. Outcomes of routine episiotomy: a systematic review. JAMA. 2005;293(17):2141–8.Google Scholar
  180. 180.
    Olivieri, L., et al. Hypoplastic left heart syndrome with intact atrial septum sequelae of left atrial hypertension in utero. J Am Coll Cardiol. 2011;57(20):e369.Google Scholar
  181. 181.
    Sandvik H, et al. Validation of a severity index in female urinary incontinence and its implementation in an epidemiological survey. J Epidemiol Community Health. 1993;47(6):497–9.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Richter, J., et al. Fetoscopic release of an amniotic band with risk of amputation: case report and review of the literature. Fetal diagnosis and therapy, 2012.Google Scholar
  183. 183.
    Torpin R. Amniochorionic Mesoblastic Fibrous Strings and Amnionic Bands: Associated Constricting Fetal Malformations or Fetal Death. Am J Obstet Gynecol. 1965;91:65–75.Google Scholar
  184. 184.
    Van Allen MI. Fetal vascular disruptions: mechanisms and some resulting birth defects. Pediatr Ann. 1981;10(6):219–33.Google Scholar
  185. 185.
    Moerman P, et al. Constrictive amniotic bands, amniotic adhesions, and limb-body wall complex: discrete disruption sequences with pathogenetic overlap. Am J Med Genet. 1992;42(4):470–9.Google Scholar
  186. 186.
    Thom DH, et al. Parturition events and risk of urinary incontinence in later life. NeurourolUrodyn. 2011;30(8):1456–61.Google Scholar
  187. 187.
    Rodrigues, A., et al. Limb constriction secondary to pseudoamniotic band syndrome after selective fetoscopic laser surgery: report of a case with a favorable outcome. Fetal Diagn Ther. 2012;32(4):288–91.Google Scholar
  188. 188.
    Fritel X, et al. Pelvic floor disorders 4 years after first delivery: a comparative study of restrictive versus systematic episiotomy. BJOG. 2008;115(2):247–52.Google Scholar
  189. 189.
    Wehbeh H, et al. The relationship between the ultrasonographic diagnosis of innocent amniotic band development and pregnancy outcomes. Obstet Gynecol. 1993;81(4):565–8.Google Scholar
  190. 190.
    Urwitz-Lane R, Ozel B. Sexual function in women with urodynamic stress incontinence, detrusor overactivity, and mixed urinary incontinence. Am J Obstet Gynecol. 2006;195(6):1758–61.Google Scholar
  191. 191.
    Tadmor O, et al. Analysis of umbilical artery flow parameters during fetal variable decelerations using computerized Doppler waveforms. Fetal Diagn Ther. 1999;14(1):2–10.Google Scholar
  192. 192.
    Pedersen TK, Thomsen SG. Spontaneous resolution of amniotic bands. Ultrasound Obstet Gynecol. 2001;18(6):673–4.Google Scholar
  193. 193.
    Kanayama MD, Gaffey TA, Ogburn PL Jr. Constriction of the umbilical cord by an amniotic band, with fetal compromise illustrated by reverse diastolic flow in the umbilical artery. A case report. J Reprod Med. 1995;40(1):71–3.Google Scholar
  194. 194.
    Husler MR, et al. When is fetoscopic release of amniotic bands indicated? Review of outcome of cases treated in utero and selection criteria for fetal surgery. Prenat Diagn. 2009;29(5):457–63.Google Scholar
  195. 195.
    Weinzweig N. Constriction band-induced vascular compromise of the foot: classification and management of the “intermediate” stage of constriction-ring syndrome. Plast Reconstr Surg. 1995;96(4):972–7.Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Ryan Hodges
    • 1
  • Luc De Catte
    • 2
  • Roland Devlieger
    • 2
  • Liesbeth Lewi
    • 2
  • Tim Van Mieghem
    • 3
  • Jan Deprest
    • 4
  1. 1.Department of Obstetrics and Gynecology—Maternal Fetal MedicineClaytonAustralia
  2. 2.Department of Obstetrics and GynaecologyUniversity Hospitals LeuvenLeuvenBelgium
  3. 3.Department of Obstetrics and Gynecology—Maternal Fetal MedicineMount Sinai HospitalTorontoCanada
  4. 4.University Hospital LeuvenLeuvenBelgium

Personalised recommendations