Research in Pediatric Surgery

  • Christopher G. Turner
  • Dario O. Fauza


Pediatric surgeons have the privilege to care for patients at every stage of human development, from the fetus to the fully developed young adult. As such, we must cultivate and advance an all-encompassing knowledge base ranging from obstetrics to pediatrics to adult medicine and surgery. This unique, sweeping perspective on human disease requires an equally broad approach to research, which in our field is as vast and varied as it is stimulating.


Surgery research Newborn surgery Animal models Regenerative medicine Innovation 


  1. 1.
    Committee for the Update for the Care and Use of Laboratory Animals NRC. Guide for the care and use of laboratory animals. 8th ed. Washington, DC: The National Academies Press; 2011. p. 248.Google Scholar
  2. 2.
    Abbott A. Mouse project to find each gene's role. Nature. 2010;465(7297):410. Epub 2010/05/28CrossRefPubMedGoogle Scholar
  3. 3.
    Zhou Q, Renard JP, Le Friec G, Brochard V, Beaujean N, Cherifi Y, et al. Generation of fertile cloned rats by regulating oocyte activation. Science. 2003;302(5648):1179. Epub 2003/09/27CrossRefPubMedGoogle Scholar
  4. 4.
    Mortell A, Montedonico S, Puri P. Animal models in pediatric surgery. Pediatr Surg Int. 2006;22(2):111–28. Epub 2005/12/07CrossRefPubMedGoogle Scholar
  5. 5.
    Hillebrandt S, Streffer C, Muller WU. Genetic analysis of the cause of gastroschisis in the HLG mouse strain. Mutat Res. 1996;372(1):43–51. Epub 1996/11/11CrossRefPubMedGoogle Scholar
  6. 6.
    Hillebrandt S, Streffer C, Montagutelli X, Balling R. A locus for radiation-induced gastroschisis on mouse Chromosome 7. Mamm Genome. 1998;9(12):995–7. Epub 1999/01/09CrossRefPubMedGoogle Scholar
  7. 7.
    Takeno S, Sumita M, Saito H, Sakai T. Strain differences in susceptibility to the embryotoxic effects of aminopyrine in mice. Res Commun Chem Pathol Pharmacol. 1987;57(3):409–19. Epub 1987/09/01PubMedGoogle Scholar
  8. 8.
    Nomura T, Isa Y, Kurokawa N, Kanzaki T, Tanaka H, Tada E, et al. Enhancement effects of barbital on the teratogenicity of aminopyrine. Toxicology. 1984;29(4):281–91. Epub 1984/02/01CrossRefPubMedGoogle Scholar
  9. 9.
    Chung MK, Kim JC, Roh JK. Teratogenic effects of DA-125, a new anthracycline anticancer agent, in rats. Reprod Toxicol. 1995;9(2):159–64. Epub 1995/03/01CrossRefPubMedGoogle Scholar
  10. 10.
    Barrow MV, Steffek AJ. Teratologic and other embryotoxic effects of beta-aminopropionitrile in rats. Teratology. 1974;10(2):165–72. Epub 1974/10/01CrossRefPubMedGoogle Scholar
  11. 11.
    Yoshimura H. Teratogenicity of flubendazole in rats. Toxicology. 1987;43(2):133–8. Epub 1987/02/01CrossRefPubMedGoogle Scholar
  12. 12.
    Mortell A, Giles J, Bannigan J, Puri P. Adriamycin effects on the chick embryo. Pediatr Surg Int. 2003;19(5):359–64. Epub 2003/06/13CrossRefPubMedGoogle Scholar
  13. 13.
    Grinfeld H, Goldenberg S, Segre CA, Chadi G. Fetal alcohol syndrome in Sao Paulo, Brazil. Paediatr Perinat Epidemiol. 1999;13(4):496–7. Epub 1999/11/24CrossRefPubMedGoogle Scholar
  14. 14.
    Beauchemin RR Jr, Gartner LP, Provenza DV. Alcohol induced cardiac malformations in the rat. Anat Anz. 1984;155(1–5):17–28. Epub 1984/01/01PubMedGoogle Scholar
  15. 15.
    Lane GA, Nahrwold ML, Tait AR, Taylor-Busch M, Cohen PJ, Beaudoin AR. Anesthetics as teratogens: nitrous oxide is fetotoxic, xenon is not. Science. 1980;210(4472):899–901. Epub 1980/11/21CrossRefPubMedGoogle Scholar
  16. 16.
    Neeper-Bradley TL, Tyl RW, Fisher LC, Kubena MF, Vrbanic MA, Losco PE. Determination of a no-observed-effect level for developmental toxicity of ethylene glycol administered by gavage to CD rats and CD-1 mice. Fundam Appl Toxicol. 1995;27(1):121–30. Epub 1995/08/01CrossRefPubMedGoogle Scholar
  17. 17.
    McBride WG, Vardy PH, French J. Effects of scopolamine hydrobromide on the development of the chick and rabbit embryo. Aust J Biol Sci. 1982;35(2):173–8. Epub 1982/01/01CrossRefPubMedGoogle Scholar
  18. 18.
    Tellone CI, Baldwin JK, Sofia RD. Teratogenic activity in the mouse after oral administration of acetazolamide. Drug Chem Toxicol. 1980;3(1):83–98. Epub 1980/01/01CrossRefPubMedGoogle Scholar
  19. 19.
    Cappon GD, Cook JC, Hurtt ME. Relationship between cyclooxygenase 1 and 2 selective inhibitors and fetal development when administered to rats and rabbits during the sensitive periods for heart development and midline closure. Birth Defects Res B Dev Reprod Toxicol. 2003;68(1):47–56. Epub 2003/07/11CrossRefPubMedGoogle Scholar
  20. 20.
    Edwards MJ. Hyperthermia and congenital malformations in guinea-pigs. Aust Vet J. 1969;45(4):189–93. Epub 1969/04/01CrossRefPubMedGoogle Scholar
  21. 21.
    Haller JA Jr, Kehrer BH, Shaker IJ, Shermeta DW, Wyllie RG. Studies of the pathophysiology of gastroschisis in fetal sheep. J Pediatr Surg. 1974;9(5):627–32. Epub 1974/10/01CrossRefPubMedGoogle Scholar
  22. 22.
    Srinathan SK, Langer JC, Blennerhassett MG, Harrison MR, Pelletier GJ, Lagunoff D. Etiology of intestinal damage in gastroschisis. III: Morphometric analysis of the smooth muscle and submucosa. J Pediatr Surg. 1995;30(3):379–83. Epub 1995/03/01CrossRefPubMedGoogle Scholar
  23. 23.
    Langer JC, Bell JG, Castillo RO, Crombleholme TM, Longaker MT, Duncan BW, et al. Etiology of intestinal damage in gastroschisis, II. Timing and reversibility of histological changes, mucosal function, and contractility. J Pediatr Surg. 1990;25(11):1122–6. Epub 1990/11/01CrossRefPubMedGoogle Scholar
  24. 24.
    Langer JC, Longaker MT, Crombleholme TM, Bond SJ, Finkbeiner WE, Rudolph CA, et al. Etiology of intestinal damage in gastroschisis. I: Effects of amniotic fluid exposure and bowel constriction in a fetal lamb model. J Pediatr Surg. 1989;24(10):992–7. Epub 1989/10/01CrossRefPubMedGoogle Scholar
  25. 25.
    Aoki Y, Ohshio T, Komi N. An experimental study on gastroschisis using fetal surgery. J Pediatr Surg. 1980;15(3):252–6. Epub 1980/06/01CrossRefPubMedGoogle Scholar
  26. 26.
    Sherman NJ, Asch MJ, Isaacs H Jr, Rosenkrantz JG. Experimental gastroschisis in the fetal rabbit. J Pediatr Surg. 1973;8(2):165–9. Epub 1973/04/01CrossRefPubMedGoogle Scholar
  27. 27.
    Nelson JM, Krummel TM, Haynes JH, Flood LC, Sauer L, Flake AW, et al. Operative techniques in the fetal rabbit. J Investig Surg. 1990;3(4):393–8. Epub 1990/01/01CrossRefGoogle Scholar
  28. 28.
    Phillips JD, Kelly RE Jr, Fonkalsrud EW, Mirzayan A, Kim CS. An improved model of experimental gastroschisis in fetal rabbits. J Pediatr Surg. 1991;26(7):784–7. Epub 1991/07/11CrossRefPubMedGoogle Scholar
  29. 29.
    Albert A, Julia MV, Morales L, Parri FJ. Gastroschisis in the partially extraamniotic fetus: experimental study. J Pediatr Surg. 1993;28(5):656–9. Epub 1993/05/01CrossRefPubMedGoogle Scholar
  30. 30.
    Tibboel D, Molenaar JC, Van Nie CJ. New perspectives in fetal surgery: the chicken embryo. J Pediatr Surg. 1979;14(4):438–40. Epub 1979/08/01CrossRefPubMedGoogle Scholar
  31. 31.
    Aktug T, Ucan B, Olguner M, Akgur FM, Ozer E, Caliskan S, et al. Amnio-allantoic fluid exchange for the prevention of intestinal damage in gastroschisis. III: Determination of the waste products removed by exchange. Eur J Pediatr Surg. 1998;8(6):326–8. Epub 1999/02/02CrossRefPubMedGoogle Scholar
  32. 32.
    Aktug T, Ucan B, Olguner M, Akgur FM, Ozer E. Amnio-allantoic fluid exchange for prevention of intestinal damage in gastroschisis II: Effects of exchange performed by using two different solutions. Eur J Pediatr Surg. 1998;8(5):308–11. Epub 1998/11/24CrossRefPubMedGoogle Scholar
  33. 33.
    Aktug T, Erdag G, Kargi A, Akgur FM, Tibboel D. Amnio-allantoic fluid exchange for the prevention of intestinal damage in gastroschisis: an experimental study on chick embryos. J Pediatr Surg. 1995;30(3):384–7. Epub 1995/03/01CrossRefPubMedGoogle Scholar
  34. 34.
    Youson JH, Sidon EW. Lamprey biliary atresia: first model system for the human condition? Experientia. 1978;34(8):1084–6. Epub 1978/08/15CrossRefPubMedGoogle Scholar
  35. 35.
    Sidon EW, Youson JH. Morphological changes in the liver of the sea lamprey, Petromyzon marinus L., during metamorphosis: I. Atresia of the bile ducts. J Morphol. 1983;177(1):109–24. Epub 1983/07/01CrossRefPubMedGoogle Scholar
  36. 36.
    Makos BK, Youson JH. Tissue levels of bilirubin and biliverdin in the sea lamprey, Petromyzon marinus L., before and after biliary atresia. Comp Biochem Physiol A Comp Physiol. 1988;91(4):701–10. Epub 1988/01/01CrossRefPubMedGoogle Scholar
  37. 37.
    Vacanti JP, Folkman J. Bile duct enlargement by infusion of L-proline: potential significance in biliary atresia. J Pediatr Surg. 1979;14(6):814–8. Epub 1979/12/01CrossRefPubMedGoogle Scholar
  38. 38.
    Ogawa T, Suruga K, Kojima Y, Kitahara T, Kuwabara N. Experimental study of the pathogenesis of infantile obstructive cholangiopathy and its clinical evaluation. J Pediatr Surg. 1983;18(2):131–5. Epub 1983/04/01CrossRefPubMedGoogle Scholar
  39. 39.
    Ogawa T, Suruga K, Kuwabara N. Experimental model of infantile obstructive cholangiopathy using 1,4-phenylenediisothiocyanate. Jpn J Surg. 1981;11(5):372–6. Epub 1981/01/01CrossRefPubMedGoogle Scholar
  40. 40.
    Schmeling DJ, Oldham KT, Guice KS, Kunkel RG, Johnson KJ. Experimental obliterative cholangitis. A model for the study of biliary atresia. Ann Surg. 1991;213(4):350–5. Epub 1991/04/01PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Spitz L. Ligation of the common bile duct in the fetal lamb: an experimental model for the study of biliary atresia. Pediatr Res. 1980;14(5):740–8. Epub 1980/05/01CrossRefPubMedGoogle Scholar
  42. 42.
    Kunisaki SM, Azpurua H, Fuchs JR, Graves SC, Zurakowski D, Fauza DO. Fetal hepatic haematopoiesis is modulated by arterial blood flow to the liver. Br J Haematol. 2006;134(3):330–2. Epub 2006/07/20CrossRefPubMedGoogle Scholar
  43. 43.
    Ohkawa H, Matsumoto M, Hori T, Kashiwa H. Familial congenital diaphragmatic hernia in the pig—studies on pathology and heredity. Eur J Pediatr Surg. 1993;3(2):67–71. Epub 1993/04/01CrossRefPubMedGoogle Scholar
  44. 44.
    Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M, Chambon P, et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development. 1994;120(10):2749–71. Epub 1994/10/01PubMedGoogle Scholar
  45. 45.
    Lohnes D, Mark M, Mendelsohn C, Dolle P, Dierich A, Gorry P, et al. Function of the retinoic acid receptors (RARs) during development (I). Craniofacial and skeletal abnormalities in RAR double mutants. Development. 1994;120(10):2723–48. Epub 1994/10/01PubMedGoogle Scholar
  46. 46.
    Hentsch B, Lyons I, Li R, Hartley L, Lints TJ, Adams JM, et al. Hlx homeo box gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut. Genes Dev. 1996;10(1):70–9. Epub 1996/01/01CrossRefPubMedGoogle Scholar
  47. 47.
    Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell. 1993;74(4):679–91. Epub 1993/08/27CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Liu J, Zhang L, Wang D, Shen H, Jiang M, Mei P, et al. Congenital diaphragmatic hernia, kidney agenesis and cardiac defects associated with Slit3-deficiency in mice. Mech Dev. 2003;120(9):1059–70. Epub 2003/10/11CrossRefPubMedGoogle Scholar
  49. 49.
    De Lorimier AATD, Parker HR. Hypoplastic lungs in fetal lambs with surgically produced congenital diaphragmatic hernia. Surgery. 1967;62(1):12–7.Google Scholar
  50. 50.
    Harrison MR, Bressack MA, Churg AM, de Lorimier AA. Correction of congenital diaphragmatic hernia in utero. II. Simulated correction permits fetal lung growth with survival at birth. Surgery. 1980;88(2):260–8. Epub 1980/08/01PubMedGoogle Scholar
  51. 51.
    Haller JA Jr, Signer RD, Golladay ES, Inon AE, Harrington DP, Shermeta DW. Pulmonary and ductal hemodynamics in studies of simulated diaphragmatic hernia of fetal and newborn lambs. J Pediatr Surg. 1976;11(5):675–80. Epub 1976/10/01CrossRefPubMedGoogle Scholar
  52. 52.
    Adzick NS, Outwater KM, Harrison MR, Davies P, Glick PL, de Lorimier AA, et al. Correction of congenital diaphragmatic hernia in utero. IV. An early gestational fetal lamb model for pulmonary vascular morphometric analysis. J Pediatr Surg. 1985;20(6):673–80. Epub 1985/12/01CrossRefPubMedGoogle Scholar
  53. 53.
    Ting A, Glick PL, Wilcox DT, Holm BA, Gil J, DiMaio M. Alveolar vascularization of the lung in a lamb model of congenital diaphragmatic hernia. Am J Respir Crit Care Med. 1998;157(1):31–4. Epub 1998/01/28CrossRefPubMedGoogle Scholar
  54. 54.
    Lipsett J, Cool JC, Runciman SI, Ford WD, Kennedy JD, Martin AJ, et al. Morphometric analysis of preterm fetal pulmonary development in the sheep model of congenital diaphragmatic hernia. Pediatr Dev Pathol. 2000;3(1):17–28. Epub 1999/12/14CrossRefPubMedGoogle Scholar
  55. 55.
    Wu J, Ge X, Verbeken EK, Gratacos E, Yesildaglar N, Deprest JA. Pulmonary effects of in utero tracheal occlusion are dependent on gestational age in a rabbit model of diaphragmatic hernia. J Pediatr Surg. 2002;37(1):11–7. Epub 2002/01/10CrossRefPubMedGoogle Scholar
  56. 56.
    Fauza DO, Tannuri U, Ayoub AA, Capelozzi VL, Saldiva PH, Maksoud JG. Surgically produced congenital diaphragmatic hernia in fetal rabbits. J Pediatr Surg. 1994;29(7):882–6. Epub 1994/07/01CrossRefPubMedGoogle Scholar
  57. 57.
    Roubliova X, Verbeken E, Wu J, Yamamoto H, Lerut T, Tibboel D, et al. Pulmonary vascular morphology in a fetal rabbit model for congenital diaphragmatic hernia. J Pediatr Surg. 2004;39(7):1066–72. Epub 2004/06/24CrossRefPubMedGoogle Scholar
  58. 58.
    Andersen DH. Incidence of congenital diaphragmatic hernia in the young of rats bred on a diet deficient in vitamin A. Am J Dis Child. 1941;62:888.Google Scholar
  59. 59.
    Warkany J, Roth CB. Congenital malformations induced in rats by maternal vitamin A deficiency. II. Effect of varying the preparatory diet upon the yield of abnormal young. J Nutr. 1948;35:1–12.CrossRefGoogle Scholar
  60. 60.
    Hurley LS. Teratogenic aspects of manganese, zinc, and copper nutrition. Physiol Rev. 1981;61(2):249–95.CrossRefPubMedGoogle Scholar
  61. 61.
    Barr M Jr. The teratogenicity of cadmium chloride in two stocks of Wistar rats. Teratology. 1973;7(3):237–42.CrossRefPubMedGoogle Scholar
  62. 62.
    Drobeck HP, Coulston F, Cornelius D. Effects of thalidomide on fetal development in rabbits and on establishment of pregnancy in monkeys. Toxicol Appl Pharmacol. 1965;7:165–78.CrossRefPubMedGoogle Scholar
  63. 63.
    Brent RL. Antibodies and malformations. In: Tuchmann-Duplessis H, editor. Malformations Congénitales des Mammiféres. Paris: Masson City; 1971. p. 187–222.Google Scholar
  64. 64.
    Ambrose AM, Larson PS, Borzelleca JF, Smith RB Jr, Hennigar GR Jr. Toxicologic studies on 2,4-dichlorophenyl-p-nitrophenyl ether. Toxicol Appl Pharmacol. 1971;19(2):263–75.CrossRefPubMedGoogle Scholar
  65. 65.
    Iritani I. Experimental study on embryogenesis of congenital diaphragmatic hernia. Anat Embryol. 1984;169(2):133–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Kluth D, Tenbrinck R, von Ekesparre M, Kangah R, Reich P, Brandsma A, et al. The natural history of congenital diaphragmatic hernia and pulmonary hypoplasia in the embryo. J Pediatr Surg. 1993;28(3):456–62. discussion 62–3CrossRefPubMedGoogle Scholar
  67. 67.
    Beaudoin AR. Teratogenicity of polybrominated biphenyls in rats. Environ Res. 1977;14(1):81–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Sutherland MF, Parkinson MM, Hallett P. Teratogenicity of three substituted 4-biphenyls in the rat as a result of the chemical breakdown and possible metabolism of a thromboxane A2- receptor blocker. Teratology. 1989;39(6):537–45.CrossRefPubMedGoogle Scholar
  69. 69.
    Ackerman KG, Herron BJ, Vargas SO, Huang H, Tevosian SG, Kochilas L, et al. Fog2 is required for normal diaphragm and lung development in mice and humans. PLoS Genet. 2005;1(1):58–65.CrossRefPubMedGoogle Scholar
  70. 70.
    Jay PY, Bielinska M, Erlich JM, Mannisto S, WT P, Heikinheimo M, et al. Impaired mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and primary lung defects. Dev Biol. 2007;301(2):602–14.CrossRefPubMedGoogle Scholar
  71. 71.
    You LR, Takamoto N, CT Y, Tanaka T, Kodama T, Demayo FJ, et al. Mouse lacking COUP-TFII as an animal model of Bochdalek-type congenital diaphragmatic hernia. Proc Natl Acad Sci U S A. 2005;102(45):16351–6.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Carmel JA, Friedman F, Adams FH. Fetal Tracheal Ligation and Lung Development. Am J Dis Child. 1965;109:452–6. Epub 1965/05/01PubMedGoogle Scholar
  73. 73.
    Alcorn D, Adamson TM, Lambert TF, Maloney JE, Ritchie BC, Robinson PM. Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J Anat. 1977;123(3):649–60.PubMedPubMedCentralGoogle Scholar
  74. 74.
    DiFiore JW, Fauza DO, Slavin R, Peters CA, Fackler JC, Wilson JM. Experimental fetal tracheal ligation reverses the structural and physiological effects of pulmonary hypoplasia in congenital diaphragmatic hernia. J Pediatr Surg. 1994;29(2):248–56. discussion 56–7CrossRefPubMedGoogle Scholar
  75. 75.
    DiFiore JW, Fauza DO, Slavin R, Wilson JM. Experimental fetal tracheal ligation and congenital diaphragmatic hernia: a pulmonary vascular morphometric analysis [see comments]. J Pediatr Surg. 1995;30(7):917–23. discussion 23–4CrossRefPubMedGoogle Scholar
  76. 76.
    Wilson JM, DiFiore JW, Peters CA. Experimental fetal tracheal ligation prevents the pulmonary hypoplasia associated with fetal nephrectomy: possible application for congenital diaphragmatic hernia. J Pediatr Surg. 1993;28(11):1433–9. discussion 9–40CrossRefPubMedGoogle Scholar
  77. 77.
    Ikadai HFH, Agematsu Y. Observation of congenital aganglionosis rat and its genetical analsysis. Congenit Anom. 1979;19:31–6.Google Scholar
  78. 78.
    Lane PW, Liu HM. Association of megacolon with a new dominant spotting gene (Dom) in the mouse. J Hered. 1984;75(6):435–9. Epub 1984/11/01CrossRefPubMedGoogle Scholar
  79. 79.
    Lane PW. Association of megacolon with two recessive spotting genes in the mouse. J Hered. 1966;57(1):29–31. Epub 1966/01/01CrossRefPubMedGoogle Scholar
  80. 80.
    Cass DT, Zhang AL, Morthorpe J. Aganglionosis in rodents. J Pediatr Surg. 1992;27(3):351–5. discussion 5–6. Epub 1992/03/01CrossRefPubMedGoogle Scholar
  81. 81.
    Puri P, Shinkai T. Pathogenesis of Hirschsprung's disease and its variants: recent progress. Semin Pediatr Surg. 2004;13(1):18–24. Epub 2004/02/07CrossRefPubMedGoogle Scholar
  82. 82.
    Pouliot Y. Phylogenetic analysis of the cadherin superfamily. BioEssays. 1992;14(11):743–8. Epub 1992/11/01CrossRefPubMedGoogle Scholar
  83. 83.
    Robertson K, Mason I. Expression of ret in the chicken embryo suggests roles in regionalisation of the vagal neural tube and somites and in development of multiple neural crest and placodal lineages. Mech Dev. 1995;53(3):329–44. Epub 1995/11/01CrossRefPubMedGoogle Scholar
  84. 84.
    Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367(6461):380–3. Epub 1994/01/27CrossRefPubMedGoogle Scholar
  85. 85.
    Martucciello G, Ceccherini I, Lerone M, Jasonni V. Pathogenesis of Hirschsprung's disease. J Pediatr Surg. 2000;35(7):1017–25. Epub 2000/08/05CrossRefPubMedGoogle Scholar
  86. 86.
    Kusafuka T, Puri P. Altered RET gene mRNA expression in Hirschsprung's disease. J Pediatr Surg. 1997;32(4):600–4. Epub 1997/04/01CrossRefPubMedGoogle Scholar
  87. 87.
    Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, et al. Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature. 1994;367(6461):378–80. Epub 1994/01/27CrossRefPubMedGoogle Scholar
  88. 88.
    Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, et al. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature. 1994;367(6461):377–8. Epub 1994/01/27CrossRefPubMedGoogle Scholar
  89. 89.
    Young HM, Hearn CJ, Farlie PG, Canty AJ, Thomas PQ, Newgreen DF. GDNF is a chemoattractant for enteric neural cells. Dev Biol. 2001;229(2):503–16. Epub 2001/01/11CrossRefPubMedGoogle Scholar
  90. 90.
    Worley DS, Pisano JM, Choi ED, Walus L, Hession CA, Cate RL, et al. Developmental regulation of GDNF response and receptor expression in the enteric nervous system. Development. 2000;127(20):4383–93. Epub 2000/09/27PubMedGoogle Scholar
  91. 91.
    Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, et al. GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron. 1998;21(1):53–62. Epub 1998/08/11PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Tomac AC, Grinberg A, Huang SP, Nosrat C, Wang Y, Borlongan C, et al. Glial cell line-derived neurotrophic factor receptor alpha1 availability regulates glial cell line-derived neurotrophic factor signaling: evidence from mice carrying one or two mutated alleles. Neuroscience. 2000;95(4):1011–23. Epub 2000/02/22CrossRefPubMedGoogle Scholar
  93. 93.
    Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, et al. GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron. 1998;21(2):317–24. Epub 1998/09/05CrossRefGoogle Scholar
  94. 94.
    Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382(6586):73–6. Epub 1996/07/04CrossRefPubMedGoogle Scholar
  95. 95.
    Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996;382(6586):70–3. Epub 1996/07/04CrossRefPubMedGoogle Scholar
  96. 96.
    Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet. 1996;14(3):341–4. Epub 1996/11/01CrossRefPubMedGoogle Scholar
  97. 97.
    Amiel J, Lyonnet S. Hirschsprung disease, associated syndromes, and genetics: a review. J Med Genet. 2001;38(11):729–39. Epub 2001/11/06PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Martucciello G, Thompson H, Mazzola C, Morando A, Bertagnon M, Negri F, et al. GDNF deficit in Hirschsprung's disease. J Pediatr Surg. 1998;33(1):99–102. Epub 1998/02/24CrossRefPubMedGoogle Scholar
  99. 99.
    Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994;79(7):1277–85. Epub 1994/12/30CrossRefPubMedGoogle Scholar
  100. 100.
    Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 1994;79(7):1267–76. Epub 1994/12/30CrossRefPubMedGoogle Scholar
  101. 101.
    Kapur RP, Yost C, Palmiter RD. A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice. Development. 1992;116(1):167–75. Epub 1992/09/01PubMedGoogle Scholar
  102. 102.
    Puffenberger EG, Hosoda K, Washington SS, Nakao K, de Wit D, Yanagisawa M, et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell. 1994;79(7):1257–66. Epub 1994/12/30CrossRefPubMedGoogle Scholar
  103. 103.
    Kusafuka T, Wang Y, Puri P. Mutation analysis of the RET, the endothelin-B receptor, and the endothelin-3 genes in sporadic cases of Hirschsprung's disease. J Pediatr Surg. 1997;32(3):501–4. Epub 1997/03/01CrossRefPubMedGoogle Scholar
  104. 104.
    Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, et al. Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development. 1998;125(5):825–36. Epub 1998/05/09PubMedGoogle Scholar
  105. 105.
    Hofstra RM, Valdenaire O, Arch E, Osinga J, Kroes H, Loffler BM, et al. A loss-of-function mutation in the endothelin-converting enzyme 1 (ECE-1) associated with Hirschsprung disease, cardiac defects, and autonomic dysfunction. Am J Hum Genet. 1999;64(1):304–8. Epub 1999/01/23PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Southard-Smith EM, Kos L, Pavan WJ. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet. 1998;18(1):60–4. Epub 1998/01/13CrossRefPubMedGoogle Scholar
  107. 107.
    Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A, et al. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci U S A. 1998;95(9):5161–5. Epub 1998/06/06PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kapur RP. Hirschsprung disease and other enteric dysganglionoses. Crit Rev Clin Lab Sci. 1999;36(3):225–73. Epub 1999/07/17CrossRefPubMedGoogle Scholar
  109. 109.
    Kuhlbrodt K, Schmidt C, Sock E, Pingault V, Bondurand N, Goossens M, et al. Functional analysis of Sox10 mutations found in human Waardenburg-Hirschsprung patients. J Biol Chem. 1998;273(36):23033–8. Epub 1998/08/29CrossRefPubMedGoogle Scholar
  110. 110.
    Gariepy CE. Intestinal motility disorders and development of the enteric nervous system. Pediatr Res. 2001;49(5):605–13. Epub 2001/05/01CrossRefPubMedGoogle Scholar
  111. 111.
    Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature. 1999;399(6734):366–70. Epub 1999/06/09CrossRefGoogle Scholar
  112. 112.
    Garcia-Barcelo M, Sham MH, Lui VC, Chen BL, Ott J, Tam PK. Association study of PHOX2B as a candidate gene for Hirschsprung's disease. Gut. 2003;52(4):563–7. Epub 2003/03/13PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lang D, Chen F, Milewski R, Li J, Lu MM, Epstein JA. Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J Clin Invest. 2000;106(8):963–71. Epub 2000/10/18PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Meijers JH, Tibboel D, van der Kamp AW, van Haperen-Heuts IC, Molenaar JC. A model for aganglionosis in the chicken embryo. J Pediatr Surg. 1989;24(6):557–61. Epub 1989/06/01CrossRefPubMedGoogle Scholar
  115. 115.
    Rothman TP, Le Douarin NM, Fontaine-Perus JC, Gershon MD. Developmental potential of neural crest-derived cells migrating from segments of developing quail bowel back-grafted into younger chick host embryos. Development. 1990;109(2):411–23. Epub 1990/06/01PubMedGoogle Scholar
  116. 116.
    Gershon MD, Chalazonitis A, Rothman TP. From neural crest to bowel: development of the enteric nervous system. J Neurobiol. 1993;24(2):199–214. Epub 1993/02/01CrossRefPubMedGoogle Scholar
  117. 117.
    Payette RF, Tennyson VM, Pomeranz HD, Pham TD, Rothman TP, Gershon MD. Accumulation of components of basal laminae: association with the failure of neural crest cells to colonize the presumptive aganglionic bowel of ls/ls mutant mice. Dev Biol. 1988;125(2):341–60. Epub 1988/02/01CrossRefPubMedGoogle Scholar
  118. 118.
    Thiery JP, Duband JL, Delouvee A. Pathways and mechanisms of avian trunk neural crest cell migration and localization. Dev Biol. 1982;93(2):324–43. Epub 1982/10/01CrossRefPubMedGoogle Scholar
  119. 119.
    Sato A, Yamamoto M, Imamura K, Kashiki Y, Kunieda T, Sakata K. Pathophysiology of aganglionic colon and anorectum: an experimental study on aganglionosis produced by a new method in the rat. J Pediatr Surg. 1978;13(4):399–435. Epub 1978/08/01CrossRefPubMedGoogle Scholar
  120. 120.
    Parr EJ, Sharkey KA. Multiple mechanisms contribute to myenteric plexus ablation induced by benzalkonium chloride in the guinea-pig ileum. Cell Tissue Res. 1997;289(2):253–64. Epub 1997/08/01CrossRefPubMedGoogle Scholar
  121. 121.
    Yoneda A, Shima H, Nemeth L, Oue T, Puri P. Selective chemical ablation of the enteric plexus in mice. Pediatr Surg Int. 2002;18(4):234–7. Epub 2002/05/22CrossRefPubMedGoogle Scholar
  122. 122.
    Goto S, Grosfeld JL. The effect of a neurotoxin (benzalkonium chloride) on the lower esophagus. J Surg Res. 1989;47(2):117–9. Epub 1989/08/01CrossRefPubMedGoogle Scholar
  123. 123.
    See NA, Epstein ML, Schultz E, Pienkowski TP, Bass P. Hyperplasia of jejunal smooth muscle in the myenterically denervated rat. Cell Tissue Res. 1988;253(3):609–17. Epub 1988/09/01CrossRefPubMedGoogle Scholar
  124. 124.
    Luck MS, Dahl JL, Boyeson MG, Bass P. Neuroplasticity in the smooth muscle of the myenterically and extrinsically denervated rat jejunum. Cell Tissue Res. 1993;271(2):363–74. Epub 1993/02/01CrossRefPubMedGoogle Scholar
  125. 125.
    Holle GE, Forth W. Myoelectric activity of small intestine after chemical ablation of myenteric neurons. Am J Phys. 1990;258(4 Pt 1):G519–26. Epub 1990/04/01Google Scholar
  126. 126.
    Holle GE. Changes in the structure and regeneration mode of the rat small intestinal mucosa following benzalkonium chloride treatment. Gastroenterology. 1991;101(5):1264–73. Epub 1991/11/01CrossRefPubMedGoogle Scholar
  127. 127.
    Hadzijahic N, Renehan WE, Ma CK, Zhang X, Fogel R. Myenteric plexus destruction alters morphology of rat intestine. Gastroenterology. 1993;105(4):1017–28. Epub 1993/10/01CrossRefPubMedGoogle Scholar
  128. 128.
    Dahl JL, Bloom DD, Epstein ML, Fox DA, Bass P. Effect of chemical ablation of myenteric neurons on neurotransmitter levels in the rat jejunum. Gastroenterology. 1987;92(2):338–44. Epub 1987/02/01CrossRefPubMedGoogle Scholar
  129. 129.
    Sibbons PD, Spitz L, van Velzen D. Necrotizing enterocolitis induced by local circulatory interruption in the ileum of neonatal piglets. Pediatr Pathol. 1992;12(1):1–14. Epub 1992/01/01CrossRefPubMedGoogle Scholar
  130. 130.
    Krasna IH, Howell C, Vega A, Ziegler M, Koop CE. A mouse model for the study of necrotizing enterocolitis. J Pediatr Surg. 1986;21(1):26–9. Epub 1986/01/01CrossRefPubMedGoogle Scholar
  131. 131.
    Clark DA, Thompson JE, Weiner LB, McMillan JA, Schneider AJ, Rokahr JE. Necrotizing enterocolitis: intraluminal biochemistry in human neonates and a rabbit model. Pediatr Res. 1985;19(9):919–21. Epub 1985/09/01CrossRefPubMedGoogle Scholar
  132. 132.
    Miller MJ, Adams J, Gu XA, Zhang XJ, Clark DA. Hemodynamic and permeability characteristics of acute experimental necrotizing enterocolitis. Dig Dis Sci. 1990;35(10):1257–64. Epub 1990/10/01CrossRefPubMedGoogle Scholar
  133. 133.
    Clark DA, Fornabaio DM, McNeill H, Mullane KM, Caravella SJ, Miller MJ. Contribution of oxygen-derived free radicals to experimental necrotizing enterocolitis. Am J Pathol. 1988;130(3):537–42. Epub 1988/03/01PubMedPubMedCentralGoogle Scholar
  134. 134.
    Bahr R, Flach A. Morphological and functional adaptation after massive resection of the small intestine: experiments using minipigs of the Gottingen strain. Prog Pediatr Surg. 1978;12:107–42. Epub 1978/01/01PubMedGoogle Scholar
  135. 135.
    Sigalet DL, Lees GM, Aherne F, Van Aerde JE, Fedorak RN, Keelan M, et al. The physiology of adaptation to small bowel resection in the pig: an integrated study of morphological and functional changes. J Pediatr Surg. 1990;25(6):650–7. Epub 1990/06/01CrossRefPubMedGoogle Scholar
  136. 136.
    Thompson JS, Quigley EM, Adrian TE. Factors affecting outcome following proximal and distal intestinal resection in the dog: an examination of the relative roles of mucosal adaptation, motility, luminal factors, and enteric peptides. Dig Dis Sci. 1999;44(1):63–74. Epub 1999/02/10CrossRefPubMedGoogle Scholar
  137. 137.
    Lansky Z, Dodd RM, Stahlgren LH. Regeneration of the intestinal epithelium after resection of the small intestine in dogs. Am J Surg. 1968;116(1):8–12. Epub 1968/07/01CrossRefPubMedGoogle Scholar
  138. 138.
    Cuthbertson EM, Gilfillan RS, Burhenne HJ, Mackby MJ. Massive small bowel resection in the beagle, including laboratory data in severe undernutrition. Surgery. 1970;68(4):698–705. Epub 1970/10/01PubMedGoogle Scholar
  139. 139.
    Nygaard K. Resection of the small intestine in rats. 3. Morphological changes in the intestinal tract. Acta Chir Scand. 1967;133(3):233–48. Epub 1967/01/01PubMedGoogle Scholar
  140. 140.
    Dowling RH, Booth CC. Structural and functional changes following small intestinal resection in the rat. Clin Sci. 1967;32(1):139–49. Epub 1967/02/01PubMedGoogle Scholar
  141. 141.
    Helmrath MA, VanderKolk WE, Can G, Erwin CR, Warner BW. Intestinal adaptation following massive small bowel resection in the mouse. J Am Coll Surg. 1996;183(5):441–9. Epub 1996/11/01PubMedGoogle Scholar
  142. 142.
    Kim HB, Fauza D, Garza J, Oh JT, Nurko S, Jaksic T. Serial transverse enteroplasty (STEP): a novel bowel lengthening procedure. J Pediatr Surg. 2003;38(3):425–9. Epub 2003/03/13CrossRefPubMedGoogle Scholar
  143. 143.
    Chang RW, Javid PJ, Oh JT, Andreoli S, Kim HB, Fauza D, et al. Serial transverse enteroplasty enhances intestinal function in a model of short bowel syndrome. Ann Surg. 2006;243(2):223–8. Epub 2006/01/25PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Piper H, Modi BP, Kim HB, Fauza D, Glickman J, Jaksic T. The second STEP: the feasibility of repeat serial transverse enteroplasty. J Pediatr Surg. 2006;41(12):1951–6. Epub 2006/12/13CrossRefPubMedGoogle Scholar
  145. 145.
    Dudrick SJ. History of parenteral nutrition. J Am Coll Nutr. 2009;28(3):243–51. Epub 2010/02/13CrossRefPubMedGoogle Scholar
  146. 146.
    SJ Dudrick HV, Rawnsley HM. Total intravenous feeding and growth in puppies. Fed Proc. 1966;25:481.Google Scholar
  147. 147.
    Dudrick SJDW, Vars HM. Long-term parenteral nutrition with growth in puppies and positive nitrogen balance in patients. Surg Forum. 1967;18:356–7.Google Scholar
  148. 148.
    Dudrick SJ, Wilmore DW, Vars HM, Rhoads JE. Long-term total parenteral nutrition with growth, development, and positive nitrogen balance. Surgery. 1968;64(1):134–42. Epub 1968/07/01PubMedGoogle Scholar
  149. 149.
    Wilmore DW, Dudrick SJ. Growth and development of an infant receiving all nutrients exclusively by vein. JAMA. 1968;203(10):860–4. Epub 1968/03/04CrossRefPubMedGoogle Scholar
  150. 150.
    Abu-Hijleh G, Qi BQ, Williams AK, Beasley SW. Development of the bones and synovial joints in the rat model of the VATER association. J Orthop Sci. 2000;5(4):390–6. Epub 2000/09/12PubMedGoogle Scholar
  151. 151.
    Beasley SW, Diez Pardo J, Qi BQ, Tovar JA, Xia HM. The contribution of the adriamycin-induced rat model of the VATER association to our understanding of congenital abnormalities and their embryogenesis. Pediatr Surg Int. 2000;16(7):465–72. Epub 2000/11/01CrossRefPubMedGoogle Scholar
  152. 152.
    Kotsios C, Merei J, Hutson JM, Graham HK. Skeletal anomalies in the adriamycin-exposed prenatal rat: a model for VATER association. J Orthop Res. 1998;16(1):50–3. Epub 1998/05/09CrossRefPubMedGoogle Scholar
  153. 153.
    Merei J, Batiha A, Hani IB, El-Qudah M. Renal anomalies in the VATER animal model. J Pediatr Surg. 2001;36(11):1693–7. Epub 2001/10/31CrossRefPubMedGoogle Scholar
  154. 154.
    Merei J, Hasthorpe S, Farmer P, Hutson JM. Visceral anomalies in prenatally adriamycin-exposed rat fetuses: a model for the VATER association. Pediatr Surg Int. 1999;15(1):11–6. Epub 1999/01/23CrossRefPubMedGoogle Scholar
  155. 155.
    Merei JM. Single umbilical artery and the VATER-animal model. J Pediatr Surg. 2003;38(12):1756–9. Epub 2003/12/11CrossRefPubMedGoogle Scholar
  156. 156.
    Naito Y, Kimura T, Aramaki M, Izumi K, Okada Y, Suzuki H, et al. Caudal regression and tracheoesophageal malformation induced by adriamycin: a novel chick model of VATER association. Pediatr Res. 2009;65(6):607–12. Epub 2009/02/17CrossRefPubMedGoogle Scholar
  157. 157.
    Orford JE, Cass DT. Dose response relationship between adriamycin and birth defects in a rat model of VATER association. J Pediatr Surg. 1999;34(3):392–8. Epub 1999/04/22CrossRefPubMedGoogle Scholar
  158. 158.
    Sorio C, Moore PS, Ennas MG, Tecchio C, Bonora A, Sartoris S, et al. A novel cell line and xenograft model of ampulla of Vater adenocarcinoma. Virchows Archiv. 2004;444(3):269–77. Epub 2003/12/17CrossRefPubMedGoogle Scholar
  159. 159.
    Temelcos C, Hutson JM. Ontogeny of the VATER kidney in a rat model. Anat Rec A Discov Mol Cell Evol Biol. 2004;278(2):520–7. Epub 2004/05/28CrossRefPubMedGoogle Scholar
  160. 160.
    Fauza DO. Tissue engineering: current state of clinical application. Curr Opin Pediatr. 2003;15:267–71.CrossRefPubMedGoogle Scholar
  161. 161.
    Vacanti JP. Tissue engineering: from bench to bedside via commercialization. Surgery. 2008;143(2):181–3.CrossRefPubMedGoogle Scholar
  162. 162.
    Ashizuka S, Peranteau WH, Hayashi S, Flake AW. Busulfan-conditioned bone marrow transplantation results in high-level allogeneic chimerism in mice made tolerant by in utero hematopoietic cell transplantation. Exp Hematol. 2006;34(3):359–68. Epub 2006/03/18PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Hayashi S, Peranteau WH, Shaaban AF, Flake AW. Complete allogeneic hematopoietic chimerism achieved by a combined strategy of in utero hematopoietic stem cell transplantation and postnatal donor lymphocyte infusion. Blood. 2002;100(3):804–12. Epub 2002/07/20CrossRefPubMedGoogle Scholar
  164. 164.
    Peranteau WH, Hayashi S, Hsieh M, Shaaban AF, Flake AW. High-level allogeneic chimerism achieved by prenatal tolerance induction and postnatal nonmyeloablative bone marrow transplantation. Blood. 2002;100(6):2225–34. Epub 2002/08/30CrossRefPubMedGoogle Scholar
  165. 165.
    Peranteau WH, Heaton TE, Gu YC, Volk SW, Bauer TR, Alcorn K, et al. Haploidentical in utero hematopoietic cell transplantation improves phenotype and can induce tolerance for postnatal same-donor transplants in the canine leukocyte adhesion deficiency model. Biol Blood Marrow Transplant. 2009;15(3):293–305. Epub 2009/02/11PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Fauza DO, Fishman SJ, Mehegan K, Atala A. Videofetoscopically assisted fetal tissue engineering: skin replacement. J Pediatr Surg. 1998;33(2):357–61. Epub 1998/03/14CrossRefPubMedGoogle Scholar
  167. 167.
    Fauza DO, Fishman SJ, Mehegan K, Atala A. Videofetoscopically assisted fetal tissue engineering: bladder augmentation. J Pediatr Surg. 1998;33(1):7–12. Epub 1998/02/24CrossRefPubMedGoogle Scholar
  168. 168.
    Fuchs JR, Kaviani A, Oh JT, LaVan D, Udagawa T, Jennings RW, et al. Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg. 2004;39(6):834–8. discussion -8. Epub 2004/06/09CrossRefPubMedGoogle Scholar
  169. 169.
    Fuchs JR, Nasseri BA, Vacanti JP, Fauza DO. Postnatal myocardial augmentation with skeletal myoblast-based fetal tissue engineering. Surgery. 2006;140(1):100–7.CrossRefPubMedGoogle Scholar
  170. 170.
    Fuchs JR, Terada S, Hannouche D, Ochoa ER, Vacanti JP, Fauza DO. Fetal tissue engineering: chest wall reconstruction. J Pediatr Surg. 2003;38(8):1188–93. Epub 2003/08/02CrossRefPubMedGoogle Scholar
  171. 171.
    Fuchs JR, Terada S, Ochoa ER, Vacanti JP, Fauza DO. Fetal tissue engineering: in utero tracheal augmentation in an ovine model. J Pediatr Surg. 2002;37(7):1000–6. discussion -6. Epub 2002/06/22CrossRefPubMedGoogle Scholar
  172. 172.
    Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg. 2001;36(11):1662–5.CrossRefPubMedGoogle Scholar
  173. 173.
    Klein JD, Turner CG, Ahmed A, Steigman SA, Zurakowski D, Fauza DO. Chest wall repair with engineered fetal bone grafts: an efficacy analysis in an autologous leporine model. J Pediatr Surg. 2010;45(6):1354–60. Epub 2010/07/14CrossRefPubMedGoogle Scholar
  174. 174.
    Kunisaki SM, Freedman DA, Fauza DO. Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. J Pediatr Surg. 2006;41(4):675–82. discussion -82. Epub 2006/03/29CrossRefPubMedGoogle Scholar
  175. 175.
    Kunisaki SM, Fuchs JR, Kaviani A, Oh JT, LaVan DA, Vacanti JP, et al. Diaphragmatic repair through fetal tissue engineering: a comparison between mesenchymal amniocyte- and myoblast-based constructs. J Pediatr Surg. 2006;41(1):34–9. discussion -9. Epub 2006/01/18CrossRefPubMedGoogle Scholar
  176. 176.
    Kunisaki SM, Fuchs JR, Steigman SA, Fauza DO. A comparative analysis of cartilage engineered from different perinatal mesenchymal progenitor cells. Tissue Eng. 2007;13(11):2633–44. Epub 2007/07/28CrossRefPubMedGoogle Scholar
  177. 177.
    Kunisaki SM, Jennings RW, Fauza DO. Fetal cartilage engineering from amniotic mesenchymal progenitor cells. Stem Cells Dev. 2006;15(2):245–53.CrossRefPubMedGoogle Scholar
  178. 178.
    Schmidt D, Achermann J, Odermatt B, Breymann C, Mol A, Genoni M, et al. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation. 2007;116(11 Suppl):I64–70.PubMedGoogle Scholar
  179. 179.
    Schmidt D, Mol A, Breymann C, Achermann J, Odermatt B, Gossi M, et al. Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation. 2006;114(1 Suppl):I125–31.PubMedGoogle Scholar
  180. 180.
    Steigman SA, Ahmed A, Shanti RM, Tuan RS, Valim C, Fauza DO. Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J Pediatr Surg. 2009;44(6):1120–6. discussion 6. Epub 2009/06/16PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Kunisaki SM, Armant M, Kao GS, Stevenson K, Kim H, Fauza DO. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg. 2007;42(6):974–9. discussion 9–80CrossRefPubMedGoogle Scholar
  182. 182.
    Steigman SA, Armant M, Bayer-Zwirello L, Kao GS, Silberstein L, Ritz J, et al. Preclinical regulatory validation of a 3-stage amniotic mesenchymal stem cell manufacturing protocol. J Pediatr Surg. 2008;43(6):1164–9.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Turner CG, Klein JD, Steigman SA, Armant M, Nicksa GA, Zurakowski D, et al. Preclinical regulatory validation of an engineered diaphragmatic tendon made with amniotic mesenchymal stem cells. J Pediatr Surg. 2011;46(1):57–61. Epub 2011/01/18CrossRefPubMedGoogle Scholar
  184. 184.
    Fauza DO, Jennings RW, Teng YD, Snyder EY. Neural stem cell delivery to the spinal cord in an ovine model of fetal surgery for spina bifida. Surgery. 2008;144(3):367–73.CrossRefPubMedGoogle Scholar
  185. 185.
    Klein JD, Turner CG, Steigman SA, Ahmed A, Zurakowski D, Eriksson E, et al. Amniotic mesenchymal stem cells enhance normal fetal wound healing. Stem Cells Dev. 2011;20(6):969–76. Epub 2010/10/29CrossRefPubMedGoogle Scholar
  186. 186.
    Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shin'oka T. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials. 2003;24(13):2303–8. Epub 2003/04/18CrossRefPubMedGoogle Scholar
  187. 187.
    Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, et al. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 2007;13(5):947–55. Epub 2007/05/09CrossRefPubMedGoogle Scholar
  188. 188.
    Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg. 2010;139(2):431–6. 6 e1–2. Epub 2010/01/29CrossRefPubMedGoogle Scholar
  189. 189.
    Shin'oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg. 2005;129(6):1330–8. Epub 2005/06/09CrossRefPubMedGoogle Scholar
  190. 190.
    Shin'oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344(7):532–3. Epub 2001/02/28CrossRefPubMedGoogle Scholar
  191. 191.
    Dionigi B, Ahmed A, Brazzo J 3rd, Connors JP, Zurakowski D, Fauza DO. Partial or complete coverage of experimental spina bifida by simple intra-amniotic injection of concentrated amniotic mesenchymal stem cells. J Pediatr Surg. 2015;50(1):69–73. Epub 2015/01/20CrossRefPubMedGoogle Scholar
  192. 192.
    Dionigi B, Brazzo JA 3rd, Ahmed A, Feng C, Wu Y, Zurakowski D, et al. Trans-amniotic stem cell therapy (TRASCET) minimizes Chiari-II malformation in experimental spina bifida. J Pediatr Surg. 2015;50(6):1037–41. Epub 2015/05/02CrossRefPubMedGoogle Scholar
  193. 193.
    Feng C, D’Graham C, Connors JP, Brazzo J 3rd, Zurakowski D, Fauza DO. A comparison between placental and amniotic mesenchymal stem cells for transamniotic stem cell therapy (TRASCET) in experimental spina bifida. J Pediatr Surg. 2016;51(6):1010–3.CrossRefPubMedGoogle Scholar
  194. 194.
    Feng C, Graham CD, Connors JP, Brazzo J 3rd, Pan AH, Hamilton JR, et al. Transamniotic stem cell therapy (TRASCET) mitigates bowel damage in a model of gastroschisis. J Pediatr Surg. 2016;51(1):56–61. Epub 2015/11/10CrossRefPubMedGoogle Scholar
  195. 195.
    Rangel SJ, Kelsey J, Henry MC, Moss RL. Critical analysis of clinical research reporting in pediatric surgery: justifying the need for a new standard. J Pediatr Surg. 2003;38(12):1739–43. Epub 2003/12/11CrossRefPubMedGoogle Scholar
  196. 196.
    Abdullah F, Ortega G, Islam S, Barnhart DC, St Peter SD, Lee SL, et al. Outcomes research in pediatric surgery. Part 1: overview and resources. J Pediatr Surg. 2011;46(1):221–5. Epub 2011/01/18CrossRefPubMedGoogle Scholar
  197. 197.
    Chang DC, Rhee DS, Papandria D, Aspelund G, Cowles RA, Huang EY, et al. Outcomes research in pediatric surgery. Part 2: how to structure a research question. J Pediatr Surg. 2011;46(1):226–31. Epub 2011/01/18CrossRefPubMedGoogle Scholar
  198. 198.
    Moss RL. The CONSORT statement: Progress in clinical research in pediatric surgery. J Pediatr Surg. 2001;36(12):1739–42. Epub 2001/12/06CrossRefPubMedGoogle Scholar
  199. 199.
    Polites SF, Habermann EB, Zarroug AE, Wagie AE, Cima RR, Wiskerchen R, et al. A comparison of two quality measurement tools in pediatric surgery—the American College of Surgeons National Surgical Quality Improvement Program-Pediatric versus the Agency for Healthcare Research and Quality Pediatric Quality Indicators. J Pediatr Surg. 2015;50(4):586–90. Epub 2015/04/04CrossRefPubMedGoogle Scholar
  200. 200.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6. Epub 1971/11/18CrossRefPubMedGoogle Scholar
  201. 201.
    Klagsbrun M, Moses MA. Obituary: M. Judah Folkman (1933–2008). Nature. 2008;451(7180):781. Epub 2008/02/15CrossRefPubMedGoogle Scholar
  202. 202.
    Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6. Epub 2005/12/16CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Maine Medical CenterPortlandUSA
  2. 2.Department of SurgeryBoston Children’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations