Skip to main content

Abstract

There is a dilemma concerning design of control systems. Due to increasing demands on quality and productivity of industrial systems and with deeper understanding of these systems, mathematical models derived to represent the system dynamics are more complete, usually of multi-input-multi-output form, and are of high orders. Consequently, the controllers designed are complex. The order of such controllers designed using, for instance, the \(\mathcal{H}_{\infty}\) optimization approach or the μ-method, is higher than, or at least similar to, that of the plant. On the other hand, in the implementation of controllers, high-order controllers will lead to high cost, difficult commissioning, poor reliability and potential problems in maintenance. Lower-order controllers are always welcomed by practicing control engineers. Hence, how to obtain a low-order controller for a high-order plant is an important and interesting task, and is the subject of the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamjan, V.M., Arov, D.Z., Krein, M.G.: Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur–Takagi problem. Math. USSR Sb. 15, 31–73 (1971)

    Article  Google Scholar 

  2. Al-Saggaf, U.M., Franklin, G.F.: An error bound for a discrete reduced order model of a linear multivariable system. IEEE Trans. Autom. Control AC-32, 815–819 (1987)

    Article  Google Scholar 

  3. Bernstein, D.S., Haddad, W.M.: LQG control with an \(\mathcal{H}^{\infty}\) performance bound: a Riccati equation approach. IEEE Trans. Autom. Control AC-34, 293–305 (1989)

    Article  MathSciNet  Google Scholar 

  4. Choi, B.W., Gu, D.W., Postlethwaite, I.: Low-order \(\mathcal{H}_{\infty}\) sub-optimal controllers. IEE Proc. Part D, Control Theory Appl. 141, 243–248 (1994)

    Article  MATH  Google Scholar 

  5. Desai, U.B., Pal, D.: A transformation approach to stochastic model reduction. IEEE Trans. Autom. Control AC-29, 1097–1100 (1984)

    Article  MathSciNet  Google Scholar 

  6. Enns, D.: Model reduction for control systems design. PhD thesis, Department of Aeronautics and Astronautics, Stanford University, Stanford, CA (1984)

    Google Scholar 

  7. Enns, D.: Model reduction with balanced realizations: an error bound and a frequency weighted generalization. In: Proceedings of the 23rd IEEE Conference on Decision and Control, Las Vegas, NV, pp. 127–132 (1984)

    Chapter  Google Scholar 

  8. Fernando, K.V., Nicholson, H.: Singular perturbational model reduction of balanced systems. IEEE Trans. Autom. Control AC-27, 466–468 (1982)

    Article  Google Scholar 

  9. Fernando, K.V., Nicholson, H.: Singular perturbational approximation for discrete-time systems. IEEE Trans. Autom. Control AC-28, 240–242 (1983)

    Article  Google Scholar 

  10. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their l -error bounds. Int. J. Control 39, 1115–1193 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Glover, K.: Multiplicative approximation of linear multivariable systems with \(\mathcal{L}_{\infty}\) error bounds. In: Proceedings of the 1986 American Control Conference, Minneapolis, MN, pp. 1705–1709 (1986)

    Google Scholar 

  12. Glover, K., Jonckheere, E.A.: A comparison of two Hankel norm methods for approximating spectra. In: Byrnes, C.I., Lindquist, A. (eds.) Modelling, Identification and Robust Control. North-Holland, Amsterdam (1986)

    Google Scholar 

  13. Green, M.: Balanced stochastic realizations. Linear Algebra Appl. 98, 211–247 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Green, M.: A relative error bound for balanced stochastic truncation. IEEE Trans. Autom. Control AC-33, 961–965 (1988)

    Article  Google Scholar 

  15. Gu, D.W., Choi, B.W., Postlethwaite, I.: Low-order stabilizing controllers. IEEE Trans. Autom. Control AC-38, 1713–1717 (1993)

    Article  MathSciNet  Google Scholar 

  16. Hammarling, S.: Numerical solution of the stable non-negative definite Lyapunov equation. IMA J. Numer. Anal. 2, 303–323 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hsu, C.S., Yu, X., Yeh, H.H., Banda, S.S.: \(\mathcal{H}_{\infty}\) compensator design with minimal order observer. In: Proceedings of the 1993 American Control Conference, San Francisco, CA, June 1993

    Google Scholar 

  18. Iwasaki, T., Skelton, R.E.: All low order \(\mathcal{H}_{\infty}\) controllers with covariance upper bound. In: Proceedings of the 1993 American Control Conference, San Francisco, CA, June 1993

    Google Scholar 

  19. Kim, S.W., Anderson, B.D.O., Madievski, A.G.: Error bound for transfer function order reduction using frequency weighted balanced truncation. Syst. Control Lett. 24, 183–192 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kung, S.: A new low-order approximation algorithm via singular value decomposition. In: Proceedings of the 18th IEEE Conference on Decision and Control, Ft. Lauderdale, Florida, December 1979

    Google Scholar 

  21. Kung, S., Lin, D.W.: Optimal Hankel norm model reduction: multivariable systems. IEEE Trans. Autom. Control AC-26, 832–852 (1981)

    Article  MathSciNet  Google Scholar 

  22. Laub, A.J.: On computing balancing transformations. In: Proceedings of the Joint 1980 American Control Conference, San Francisco, CA, August 1980, p. 8 (1980)

    Google Scholar 

  23. Laub, A.J., Heath, M.T., Paige, C.C., Ward, R.C.: Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Autom. Control AC-32, 115–121 (1987)

    Article  Google Scholar 

  24. Lin, C.-A., Chiu, T.-Y.: Model reduction via frequency weighted balanced realization. Control Theory Adv. Technol. 8, 341–351 (1992)

    MathSciNet  Google Scholar 

  25. Lindquist, A., Picci, G.: On the stochastic realization problem. SIAM J. Control Optim. 17, 365–389 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y., Anderson, B.D.O.: Singular perturbation of balanced systems. Int. J. Control 50(4), 1379–1405 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Meyer, D.G.: Fractional balanced reduction: Model reduction via fractional representation. IEEE Trans. Autom. Control AC-35(3), 1341–1345 (1990)

    Article  Google Scholar 

  28. Moore, B.C.: Principle component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control AC-26, 17–31 (1981)

    Article  Google Scholar 

  29. Murad, G.: Robust multivariable control of industrial production processes: a discrete-time multi-objective approach. PhD thesis, Department of Engineering, University of Leicester, Leicester, UK (1995)

    Google Scholar 

  30. Murad, G., Gu, D.-W., Postlethwaite, I.: A Direct Model Reduction Approach for Discrete-Time Non-Minimal State-Space Systems. Internal Report 94-23, University of Leicester, Leicester, UK, September 1994

    Google Scholar 

  31. Nehari, Z.: On bounded bilinear forms. Ann. Math. 65, 153–162 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pernebo, L., Silverman, L.M.: Model reduction via balanced state space representations. IEEE Trans. Autom. Control AC-27, 382–387 (1982)

    Article  MathSciNet  Google Scholar 

  33. Safonov, M.G., Chiang, R.Y.: A Schur method for balanced-truncation model reduction. IEEE Trans. Autom. Control AC-34, 729–733 (1989)

    Article  MathSciNet  Google Scholar 

  34. Safonov, M.G., Chiang, R.Y., Limebeer, D.J.N.: Hankel model reduction without balancing—a descriptor approach. In: Proceedings of the 26th IEEE Conference on Decision and Control, Los Angeles, CA, December 1987

    Google Scholar 

  35. Samar, R., Postlethwaite, I., Gu, D.-W.: Model reduction with balanced realizations. Int. J. Control 62, 33–64 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sreeram, V., Anderson, B.D.O., Madievski, A.G.: New results on frequency weighted balanced reduction technique. In: Proceedings of the 1995 American Control Conference, Seattle, WA, June 1995, pp. 4004–4009 (1995)

    Chapter  Google Scholar 

  37. Tombs, M.S., Postlethwaite, I.: Truncated balanced realization of a stable non-minimal state space system. Int. J. Control 46(4), 1319–1330 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  38. Varga, A.: Balancing free square-root algorithm for computing singular perturbation approximations. In: Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, UK, December 1991, pp. 1062–1065 (1991)

    Google Scholar 

  39. Varga, A.: On stochastic balancing related model reduction. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, December 2000, pp. 2385–2390 (2000)

    Google Scholar 

  40. Wang, G., Sreeram, V., Liu, W.Q.: A new frequency-weighted balanced truncation method and an error bound. IEEE Trans. Autom. Control 44, 1734–1737 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zeiger, H.P., McEwen, A.J.: Approximate linear realization of given dimension via Ho’s algorithm. IEEE Trans. Autom. Control AC-19, 153 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Gu, DW., Petkov, P.H., Konstantinov, M.M. (2013). Lower-Order Controllers. In: Robust Control Design with MATLAB®. Advanced Textbooks in Control and Signal Processing. Springer, London. https://doi.org/10.1007/978-1-4471-4682-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4682-7_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4681-0

  • Online ISBN: 978-1-4471-4682-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics