Skip to main content

Microgrippers and their Influence on High Precision Assembly Processes

  • Chapter
  • First Online:
Grasping in Robotics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 10))

  • 3255 Accesses

Abstract

Microgrippers have their roots in macrogrippers, with many of the first microgrippers being scaled down versions of their larger counterparts. Although similar, with the smaller handled parts comes a different set of requirements. After presenting an overview of these requirements, different microgrippers are presented. Of these, a more detailed discussion of mechanical, vacuum, electrostatic, capillary, and freezing microgripping technologies is presented. In the last portion of this chapter, three different microgrippers will be used for the same microassembly task. Within these examples, it is shown how gripper design plays a large role in obtaining the required assembly tolerances. In one example, the gripper design is modified to improve the available information about the assembly scene, allowing an improvement in the resulting assembly uncertainty. In a further example, hot melt adhesives are used with both passive and active microgripping solutions. Through these examples, it is shown how gripper design is an important part in improving the assembly uncertainty within microassembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hesselbach J (2002) MikroPRO: Untersuchung zum internationalen Stand der Mikroproduktionstechnik. Vulkan-Verl, Essen

    Google Scholar 

  2. Wormuth D, Zapf J (2001) Surface mount technology basics. Siemens DEMATIC AG, Munich

    Google Scholar 

  3. Brecher C, Weinzierl M (2008) Parallel precision alignment of multiple micro components. Microsyst Technol 14(12):1847–1853

    Article  Google Scholar 

  4. Fearing RS (1995) Survey of sticking effects for micro parts handling. In: IEEE/RSJ international conference on intelligent robots and systems, vol 2, p. 2212

    Google Scholar 

  5. Wrege J (2007) Elektrostatisch unterstützte Handhabungstechniken in der Mikromontage. Vulkan-Verlag, Essen

    Google Scholar 

  6. Pokar G (2004) Untersuchung zum Einsatz von ebenen Parallelrobotern in der Mikromontage. Vulkan-Verlag, Essen

    Google Scholar 

  7. Srinivasan U, Liepmann D, Howe R (2001) Microstructure to substrate self-assembly using capillary forces. J Microelectromech Syst 10(1):17–24

    Article  Google Scholar 

  8. Haliyo DS, Dionnet F, Regnier S (2006) Controlled rolling of micro objects for autonomous manipulation. J Micromechatron 3(2):75–101

    Google Scholar 

  9. Xie H, Régnier S (2009) Three-dimensional automated micromanipulation using a nanotip gripper with multi-feedback. J Micromech Microeng 19(7):75009

    Article  Google Scholar 

  10. Grutzeck H, Kiesewetter L (2002) Downscaling of grippers for micro assembly. Microsyst Technol 8(1):27–31

    Article  Google Scholar 

  11. Reinhart G, Hoeppner J (2000) Non-contact handling using high-intensity ultrasonics. CIRP Ann Manuf Technol 49(1):5–8

    Article  Google Scholar 

  12. Reinhart G, Kirchmeier T (2011) Fuzzy logic based ultrasonic gripper design for handling small parts. In: 2011 IEEE international symposium on assembly and manufacturing (ISAM): IEEE, pp 1–6

    Google Scholar 

  13. Pittschellis R (1998) Mechanische Miniaturgreifer mit Formgedächtnisantrieb. VDI-Verlag, Düsseldorf

    Google Scholar 

  14. Monkman GJ, Hesse S, Steinmann R, Schunk H (2007) Robot grippers. Wiley-VCH, Weinheim

    Google Scholar 

  15. Hoxhold B (2010) Mikrogreifer und aktive Mikromontagehilfsmittel mit integrierten Antrieben. Shaker, Aachen

    Google Scholar 

  16. MEMS Precision Instruments (2011) Micro tweezer specifications. http://www.memspi.com/. Accessed Oct 2011

  17. Agnus J, Nectoux P, Chaillet N (2005) Overview of microgrippers and design of a micromanipulation station based on a MMOC microgripper. In: 2005 international symposium on computational intelligence in robotics and automation: IEEE, pp 117–123

    Google Scholar 

  18. Piezosystem Jena (2011) Piezogripper grippy III fibergripper: data sheet

    Google Scholar 

  19. Seidemann V, Bütefisch S, Büttgenbach S (2002) Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers. Sens Actuators A Phys 97–98(1–2):457–461

    Article  Google Scholar 

  20. Hoxhold B, Büttgenbach S (2008) Pneumatic actuators for micro grippers and active assembling devices. In: Borgmann H (ed) Conference proceedings/actuator 08, Bremen, Germany. HVG, Division Messe Bremen, Bremen, pp 766–769

    Google Scholar 

  21. Zesch W, Brunner M, Weber A (1997) Vacuum tool for handling microobjects with a nanorobot. In: Proceedings of international conference on robotics and automation: IEEE, pp 1761–1766

    Google Scholar 

  22. Bütefisch S (2003) Entwicklung von Greifern für die automatisierte Montage hybrider Mikrosysteme. Shaker, Aachen

    Google Scholar 

  23. Oh H-S (1998) Elektrostatische Greifer für die Mikromontage. VDI-Verlag, Düsseldorf

    Google Scholar 

  24. Hesselbach J, Wrege J, Raatz A (2007) Micro handling devices supported by electrostatic forces. CIRP Ann Manuf Technol 56(1):45–48

    Article  Google Scholar 

  25. Mastrangelo C, Hsu C (1993) Mechanical stability and adhesion of microstructures under capillary forces. I. Basic theory. J Microelectromech Syst 2(1):33–43

    Article  Google Scholar 

  26. Lambert P, Delchambre A (2005) Design rules for a capillary gripper in microassembly. In: Assembly and task planning: from nano to macro assembly and manufacturing, 2005 (ISATP 2005), pp 67–73

    Google Scholar 

  27. Biganzoli F, Fassi I, Pagano C (2005) Development of a gripping system based on capillary force. In (ISATP 2005). The 6th IEEE international symposium on assembly and task planning: from nano to macro assembly and manufacturing, 2005: IEEE, pp 36–40

    Google Scholar 

  28. Stephan J, Seliger G (1999) Handling with ice—the cryo-gripper, a new approach. Assembl Autom 19(4):332–337

    Article  Google Scholar 

  29. Kochan A (1997) European project develops “ice” gripper for micro-sized components. Assembl Autom 17(2):114–115

    Article  Google Scholar 

  30. Lang D, Tichem M, Warner F (2007) An Industrial prototype of a liquid solidification based micro-gripping system. In: 2007 IEEE international symposium on assembly and manufacturing: IEEE, pp 227–232

    Google Scholar 

  31. Schöttler K, Raatz A, Hesseibach J (2008) Precision assembly of active microsystems with a size-adapted assembly system. In: Ratchev S, Koelemeijer S (eds) IFIP—international federation for information processing. Springer, Boston, pp 199–206

    Google Scholar 

  32. Keck C, Berndt M, Tutsch R (2011) Stereophotogrammetry in microassembly. In: Büttgenbach S, Burisch A, Hesselbach J (eds) Microtechnology and MEMS. Springer, Berlin, pp 309–326

    Google Scholar 

  33. Büttgenbach S, Burisch A, Hesselbach J (eds) (2011) Microtechnology and MEMS. Springer, Berlin

    Google Scholar 

  34. Schöttler K (2008) Planung und Untersuchung automatisierter Mikromontageprozesse unter besonderer Berücksichtigung der Einflussgrössen. Vulkan-Verlag, Essen

    Google Scholar 

  35. Ellwood RJ, Raatz A, Hesselbach J (2010) Vision and force sensing to decrease assembly uncertainty. In: Ratchev S (ed) IFIP advances in information and communication technology. Springer, Berlin, pp 123–130

    Google Scholar 

  36. Rathmann S, Ellwood J, Raatz A, Hesselbach J (2011) Design of a microassembly process based on hot melt adhesives. In: Büttgenbach S, Burisch A, Hesselbach J (eds) Microtechnology and MEMS. Springer, Berlin, pp 345–364

    Google Scholar 

  37. Hemken G, Böhm S, Dilger K (2011) Use of hot melt adhesives for the assembly of microsystems. In: Büttgenbach S, Burisch A, Hesselbach J (eds) Microtechnology and MEMS. Springer, Berlin, pp 327–343

    Google Scholar 

  38. Rathmann S, Raatz A, Hesselbach J (2010) Active gripper for hot melt joining of micro components. In: Ratchev S (ed) IFIP advances in information and communication technology. Springer, Berlin, pp 191–198

    Google Scholar 

  39. Rathmann S (2012) Prozessfuehrung Automatisierter Klebprozesse in der Mikromontae (Preprint). Vulkan-Verlag, Essen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Raatz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Raatz, A., Ellwood, R. (2013). Microgrippers and their Influence on High Precision Assembly Processes. In: Carbone, G. (eds) Grasping in Robotics. Mechanisms and Machine Science, vol 10. Springer, London. https://doi.org/10.1007/978-1-4471-4664-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4664-3_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4663-6

  • Online ISBN: 978-1-4471-4664-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics