Skip to main content

Abstract

In this chapter, we treat scenes as being composed of a tapestry of materials which can then be unmixed into end members. This leads to a treatment by which materials are intrinsic to the scene. Subsequently, we elaborate on how consistency may be imposed on the scene materials and by departing from the linear unmixing model, we address the problem of unmixing with non-negative constraints. We provide a geometric interpretation of the problem, which allows us to review these methods and their relation to simplex-based approaches elsewhere in the literature. We then turn our attention to the use of absorptions for material discovery by spectral feature fitting and spectral angle mappers. We finish the chapter by tackling discriminative band selection; we do this by making use of the Rényi entropy and classifier fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alencar, M. S., & Assis, F. M. (1998). A relation between the Renyi distance of order α and the variational distance. In International telecommunications symposium (Vol. I, pp. 242–244).

    Google Scholar 

  • Ambikapathi, A., Chan, T., Ma, W., & Chi, C. (2010). A robust alternating volume maximization algorithm for endmember extraction in hyperspectral images. In Proceedings of the IEEE workshop on hyperspectral image and signal processing: evolution in remote sensing (pp. 1–4).

    Google Scholar 

  • Barnard, K., Martin, L., Funt, B., & Coath, A. (2002). A data set for colour research. Color Research and Application, 27(3), 147–151.

    Article  Google Scholar 

  • Berman, M., Kiiveri, H., Lagerstrom, R., Ernst, A., Dunne, R., & Huntington, J. F. (2004). ICE: a statistical approach to identifying endmembers in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 42(10), 2085–2095.

    Article  Google Scholar 

  • Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P., & Plemmons, R. J. (2007). Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics & Data Analysis, 52(1), 155–173.

    Article  MathSciNet  MATH  Google Scholar 

  • Bioucas-Dias, J. (2009). A variable splitting augmented Lagrangian approach to linear spectral unmixing. In Proceedings of the IEEE workshop on hyperspectral image and signal processing: evolution in remote sensing (pp. 1–4).

    Google Scholar 

  • Bioucas-Dias, J., & Plaza, A. (2010). Hyperspectral unmixing: Geometrical, statistical and sparse regression-based approaches. In Society of Photo-Optical Instrumentation Engineers (SPIE) conference series: Vol. 7830. Image and signal processing for remote sensing XVI.

    Chapter  Google Scholar 

  • Boardman, J. W., & Huntington, J. F. (1996). Mineral mapping with 1995 AVIRIS data. In Summaries of the sixth annual JPL airborne research science workshop (pp. 9–11).

    Google Scholar 

  • Boardman, J. W., & Kruse, F. A. (1994). Automated spectral analysis: a geological example using AVIRIS data, northern Grapevine Mountains, Nevada.

    Google Scholar 

  • Chan, T.-H., Chi, C.-Y., Huang, Y.-M., & Ma, W.-K. (2009). A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Transactions on Signal Processing, 47(11), 4418–4432.

    Article  MathSciNet  Google Scholar 

  • Chang, C.-I. (2003). Hyperspectral imaging: techniques for spectral detection and classification. Dordrecht: Kluwer Academic/Plenum.

    Google Scholar 

  • Chang, C.-I. (2006). Hyperspectral imaging: techniques for spectral detection and classification. Berlin: Springer.

    Google Scholar 

  • Chen, J., Jia, X., Yang, W., & Matsushita, B. (2009). Generalization of subpixel analysis for hyperspectral data with flexibility in spectral similarity measures. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2165–2171.

    Article  Google Scholar 

  • Chum, O., Philbin, J., Sivic, J., Isard, M., & Zisserman, A. (2007). Total recall: automatic query expansion with a generative feature model for object retrieval. In International conference on computer vision.

    Google Scholar 

  • Cichocki, A., Zdunek, R., Phan, A. H., & Amari, S. (2009). Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. New York: Wiley.

    Book  Google Scholar 

  • Clark, R. N., Gallagher, A. J., & Swayze, G. (1990). Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra. In Proceedings of the second airborne visible/infrared imaging spectrometer workshop (pp. 176–186).

    Google Scholar 

  • Craig, M. D. (1994). Minimum-volume transforms for remotely sensed data. IEEE Transactions on Geoscience and Remote Sensing, 32(1), 99–109.

    Google Scholar 

  • Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. Cambridge: Cambridge University Press.

    Google Scholar 

  • Davis, B.-C., & Gao, C. O. (1997). Development of a line-by-line-based atmosphere removal algorithm for airborne and spaceborne imaging spectrometers. In Proceedings of SPIE: Vol. 3118. Imaging Spectrometry III (pp. 132–141).

    Chapter  Google Scholar 

  • Donoho, D., & Stodden, V. (2004). When does non-negative matrix factorization give a correct decomposition into parts? In Neural information processing systems. Cambridge: MIT Press.

    Google Scholar 

  • Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  Google Scholar 

  • Drew, M. S., & Finlayson, G. D. (2007). Analytic solution for separating spectra into illumination and surface reflectance components. Journal of the Optical Society of America A, 24(2), 294–303.

    Article  MathSciNet  Google Scholar 

  • Duda, R. O., & Hart, P. E. (2000). Pattern classification. New York: Wiley.

    Google Scholar 

  • Dundar, M., & Landgrebe, D. (2004). Toward an optimal supervised classifier for the analysis of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 42(1), 271–277.

    Article  Google Scholar 

  • Fukunaga, K. (1990). Introduction to statistical pattern recognition (2nd ed.). New York: Academic Press.

    MATH  Google Scholar 

  • Guo, Z., Wittman, T., & Osher, S. (2009). L1 unmixing and its application to hyperspectral image enhancement. In S. S. Shen & P. E. Lewis (Eds.), Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery (Vol. 7334, p. 73341M).

    Chapter  Google Scholar 

  • Hapke, B. (1993). Theory of reflectance and emittance spectroscopy. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling. In Advances in neural information processing systems (Vol. 10).

    Google Scholar 

  • Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5, 1457–1469.

    MathSciNet  MATH  Google Scholar 

  • Huck, A., Guillaume, M., & Blanc-Talon, J. (2010). Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 48(6), 2590–2602.

    Article  Google Scholar 

  • Iordache, M. D., Plaza, A., & Bioucas-Dias, J. (2010). Recent developments in sparse hyperspectral unmixing. In IEEE international geoscience and remote sensing symposium.

    Google Scholar 

  • Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630.

    Article  MathSciNet  MATH  Google Scholar 

  • Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. In Proceedings of the royal society A (Vol. 186, p. 453).

    Google Scholar 

  • Jia, S., & Qian, Y. (2007). Spectral and spatial complexity-based hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 45(12), 3867–3879.

    Article  Google Scholar 

  • Jia, S., & Qian, Y. (2009). Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 47(1), 161–173.

    Article  Google Scholar 

  • Jimenez, L., & Landgrebe, D. (1999). Hyperspectral data analysis and feature reduction via projection pursuit. IEEE Transactions on Geoscience and Remote Sensing, 37(6), 2653–2667.

    Article  Google Scholar 

  • Jolliffe, I. (2002). Principal component analysis. Berlin: Springer.

    MATH  Google Scholar 

  • Judd, D. B., Macadam, D. L., Wyszecki, G., Budde, H. W., Condit, H. R., Henderson, S. T., & Simonds, J. L. (1964). Spectral distribution of typical daylight as a function of correlated color temperature. Journal of the Optical Society of America, 54(8), 1031–1036.

    Article  Google Scholar 

  • Keshava, N. (2003). A survey of spectral unmixing algorithms. The Lincoln Laboratory Journal, 14(1), 55–78.

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  • Kruse, F. A., Lefkoff, A. B., & Dietz, J. B. (1993). Expert system-based mineral mapping in northern Death Valley, California/Nevada using the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment, 44, 309–336.

    Article  Google Scholar 

  • Landgrebe, D. (2002). Hyperspectral image data analysis. IEEE Signal Processing Magazine, 19, 17–28.

    Article  Google Scholar 

  • Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788–791.

    Article  Google Scholar 

  • Lennon, M., Mercier, G., Mouchot, M. C., & Hubert-moy, L. (2001). Spectral unmixing of hyperspectral images with the independent component analysis and wavelet packets. In Proceedings of the international geoscience and remote sensing symposium.

    Google Scholar 

  • Miao, L. D., & Qi, H. R. (2007). Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Transactions on Geoscience and Remote Sensing, 45(3), 765–777.

    Article  Google Scholar 

  • Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Muller, K. (1999). Fisher discriminant analysis with kernels. In IEEE neural networks for signal processing workshop (pp. 41–48).

    Google Scholar 

  • Nascimento, J. M. P., & Dias, J. M. B. (2005). Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43(4), 898–910.

    Article  Google Scholar 

  • Nilsback, M. E., & Zisserman, A. (2006). A visual vocabulary for flower classification. In Computer vision and pattern recognition (Vol. II, pp. 1447–1454).

    Google Scholar 

  • Nister, D., & Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In Computer vision and pattern recognition (Vol. II, pp. 2161–2168).

    Google Scholar 

  • Paatero, P. (1997). Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37(1), 23–35.

    Article  Google Scholar 

  • Parkkinen, J., Hallikainen, J., & Jaaskelainen, T. (1989). Characteristic spectra of Munsell colors. Journal of the Optical Society of America A, 6(2), 318–322.

    Article  Google Scholar 

  • Pascual-Montano, A., Carazo, J. M., Kochi, K., Lehmann, D., & P.-Marqui, R. D. (2006). Nonsmooth nonnegative matrix factorization (nsNMF). IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(3):403–415.

    Article  Google Scholar 

  • Pauca, V. P., Piper, J., & Plemmons, R. J. (2006). Nonnegative matrix factorization for spectral data analysis. Linear Algebra and Its Applications, 416(1), 29–47.

    Article  MathSciNet  MATH  Google Scholar 

  • Platt, J. (2000). Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In Advances in large learning a discriminative margin classifiers (pp. 61–74).

    Google Scholar 

  • Qian, Y., & Wang, Q. (2010). Noise-robust subband decomposition blind signal separation for hyperspectral unmixing. In IEEE international geoscience and remote sensing symposium.

    Google Scholar 

  • Renyi, A. (1960). On measures of information and entropy. In 4th Berkeley symposium on mathematics, statistics and probability (pp. 547–561).

    Google Scholar 

  • Scholkopf, B., & Smola, A. J. (2001). Learning with kernels: support vector machines, regularization, optimization, and beyond. Cambridge: MIT Press.

    Google Scholar 

  • Schölkopf, B., Smola, A. J., & Müller, K.-R. (1999). Kernel principal component analysis. In Advances in kernel methods: support vector learning (pp. 327–352).

    Google Scholar 

  • Sivic, J., Russell, B., Efros, A., Zisserman, A., & Freeman, W. (2005). Discovering objects and their location in images. In International conference on computer vision (Vol. I, pp. 370–377).

    Google Scholar 

  • Sunshine, J., Pieters, C. M., & Pratt, S. F. (1990). Deconvolution of mineral absorption bands: an improved approach. Journal of Geophysical Research, 95(B5), 6955–6966.

    Article  Google Scholar 

  • Thompson, D., Castao, R., & Gilmore, M. (2009). Sparse superpixel unmixing for exploratory analysis of CRISM hyperspectral images. In Proceedings of the IEEE workshop on hyperspectral image and signal processing: evolution in remote sensing (pp. 1–4).

    Google Scholar 

  • Varga, R. S. (2000). Matrix iterative analysis (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Varma, M., & Ray, D. (2007). Learning the discriminative powerinvariance trade-off. In International conference on computer vision.

    Google Scholar 

  • Vasconcelos, N. (2004). On the efficient evaluation of probabilistic similarity functions for image retrieval. IEEE Transactions on Information Theory, 50(7), 1482–1496.

    Article  MathSciNet  Google Scholar 

  • Wang, J., & Chang, C.-I. (2006). Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2601–2616.

    Article  Google Scholar 

  • Winder, S., & Brown, M. (2007). Learning local image descriptors. In IEEE conference on computer vision and pattern recognition.

    Google Scholar 

  • Winter, M. E. (1999). N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Proceedings of the SPIE conference on imaging spectrometry V (pp. 266–275).

    Chapter  Google Scholar 

  • Ye, J., & Li, Q. (2004). LDA/QR: An efficient and effective dimension reduction algorithm and its theoretical foundation. Pattern Recognition, 37, 851–854.

    Article  Google Scholar 

  • Yuhas, R. H., Goetz, A. F. H., & Boardman, J. W. (1992). Discrimination among semiarid landscape endmembers using the spectral angle mapper SAM algorithm. In Summaries of the third annual JPL airborne geoscience workshop (pp. 147–149).

    Google Scholar 

  • Zare, A., & Gader, P. (2008). Hyperspectral band selection and endmember detection using sparsity promoting priors. IEEE Geoscience and Remote Sensing Letters, 5(2), 256–260.

    Article  Google Scholar 

  • Zymnis, A., Kim, S., Skaf, J., Parente, M., & Boyd, S. (2007). Hyperspectral image unmixing via alternating projected subgradients. In Proceedings of the asilomar conference on signals, systems, and computers (pp. 1164–1168).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Robles-Kelly, A., Huynh, C.P. (2013). Material Discovery. In: Imaging Spectroscopy for Scene Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-4652-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4652-0_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4651-3

  • Online ISBN: 978-1-4471-4652-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics